
- 1 -

Optimal Dimension Order:
A Generic Technique for the Similarity Join

Christian Böhm1, Florian Krebs2, and Hans-Peter Kriegel2
1 University for Health Informatics and Technology, Innsbruck, Christian.Boehm@umit.at

2 University of Munich, {krebs,kriegel}@dbs.informatik.uni-muenchen.de

Abstract. The similarity join is an important database primitive which has been suc-
cessfully applied to speed up applications such as similarity search, data analysis
and data mining. The similarity join combines two point sets of a multidimensional
vector space such that the result contains all point pairs where the distance does not
exceed a given parameter ε. Although the similarity join is clearly CPU bound, most
previous publications propose strategies that primarily improve the I/O perfor-
mance. Only little effort has been taken to address CPU aspects. In this paper, we
show that most of the computational overhead is dedicated to the final distance com-
putations between the feature vectors. Consequently, we propose a generic tech-
nique to reduce the response time of a large number of basic algorithms for the sim-
ilarity join. It is applicable for index based join algorithms as well as for most join
algorithms based on hashing or sorting. Our technique, called Optimal Dimension
Order, is able to avoid and accelerate distance calculations between feature vectors
by a careful order of the dimensions. The order is determined according to a proba-
bility model. In the experimental evaluation, we show that our technique yields high
performance improvements for various underlying similarity join algorithms such
as the R-tree similarity join, the breadth-first-R-tree join, the Multipage Index Join,
and the ε-Grid-Order.

1. Introduction
The similarity join is a database primitive which gains increasing importance for similarity search
[2] and data mining [4]. Like the relational join, the similarity join combines tuples (vectors) of two
sets into one such that a join condition is fulfilled. The join condition of the similarity join is the sim-
ilarity between the two objects (vectors) according to some suitable metric ||·||. In most cases, the
Euclidean distance metric is used. Formally, the similarity join P Q between two finite sets
P = {p1,..., pn} and Q = {q1,..., qm} is defined as the set

P Q := {(pi,qj) | || pi −qj || ≤ ε}

and can also be expressed in a SQL like fashion as

SELECT * FROM P, Q WHERE ||P.vector − Q.vector|| ≤ ε.

Due to its high importance, many different algorithms for the similarity join have been proposed,
operating on multidimensional index structures [9, 14, 11], multidimensional hashing [15, 16], or
various sort orders [19, 12, 7]. In contrast to algorithms for simple similarity queries upon a single
data set (such as range queries or nearest neighbor queries), all of these algorithms are clearly CPU
bound. In spite of the filtering capabilities of the above algorithms the evaluations cost are dominated
by the final distance calculations between the points. This is even true for index structures which are
optimized for minimum CPU cost [8].

Therefore, in the current paper, we propose a technique for the effective reduction of the high
number of the distance calculations between feature vectors. Our method shows some resemblance
to the paradigm of plane-sweep algorithms [17] which is extended by the determination of an optimal
order of dimensions. A design objective of our technique was generality, i.e. our method can be im-

sim

sim

4th Int. Conf. on Data Warehousing and Knowledge Discovery (DaWaK) Aix-en-Provence, France, 2002.

- 2 -

plemented on top of a high number of basic algorithms for the similarity join such as R-tree based
joins [9, 14, 11], hashing based methods [15, 16], and sort orders [19, 12, 7]. A precondition for our
optimal dimension order is to have some notion of partitions to be joined having a position and ex-
tension in the data space. This is given for all techniques mentioned above. Our technique is not
meaningful on top of the simple nested loop join [20].

Organization. Section 2 is dedicated to our technique, the Optimal Dimension Order. The experi-
mental evaluation of our approach is presented in section 3 and section 4 concludes the paper.

2. Optimal Dimension Order
In this section we will develop a criterion for ordering the dimensions to optimize the distance com-
putations. We assume that our join algorithm with optimal dimension order is preceded by a filter
step based on some spatial index structure or spatial hash method which divides the point sets that
are to be joined into rectangular partitions and only considers such partitions that have a distance to
each other of at most ε. Suitable techniques are depth-first- and breadth-first-R-tree-Join [9, 11], Spa-
tial Hash Join [15, 16], Seeded Trees [14], the ε-kdB-tree [19], the Multidimensional Join (MDJ)
[13], or the ε-grid-order [7].

2.1 Algorithm
The integration of the dimension order is shown
in figure 1. Our dimension order algorithm re-
ceives partition pairs (P, Q) from the basic tech-
nique for the similarity join and generates
point-pairs as candidates for the final distance
calculations. The general idea of the dimension
order is as follows: If the points of one partition,
say Q are sorted by one of the dimensions, then
the points of Q which can be join mates of a point p of P form a contiguous sequence in Q (cf. figure
2). A large number of points which are excluded by the sort dimension can be ignored. In most cases,
the points which can be ignored, are located at the lower or upper end of the sorted sequence, but it
is also possible, that the sequence of points that must be processed are in the middle of the sequence.
In the latter case, the start and end of the sequence of relevant points must be searched e.g. by binary
search, as depicted in the algorithm in figure 3. In the other cases, it is actually not necessary to de-
termine the first (last) point before entering the innermost loop. Here, we can replace the search by a
suitable break operation in the innermost loop.

2.2 Determining the Optimal Sort Dimension
We will show in section 3 that the proposed algorithm gains much performance only if the optimal
sort dimension is selected for each partition pair individually. If two partitions are joined by the basic
technique, we can use the following information in order to choose the optimal dimension:
 • The distance of the two partitions with respect to each other or the overlap (which we will interpret

as negative distance from now on) in each case projected on the one single dimension of the data

basic join
algorithm

distance
calculation

M1

M2

P

Q

p

q

p

q

index or hash join partitions candidates join-results

Figure 1. Integration of the dimension-order-algorithm

dimension
order

ε
d0

d1

Figure 2. Idea of the Dimension Order

- 3 -

space. We observe that the overall distance of the two partitions as well as the distance projected
on each of the dimensions cannot exceed ε as otherwise the whole partition pair would have been
eliminated by the preprocessing step in the basic technique.

 • The extent of the two partitions with respect to each of the single dimensions
In order to demonstrate in a 2-dimensional example that both distance as well as extent, really do
matter, see figure 4: In both cases the distance of the two partitions is the same. For simplification we
show one exemplary point with its ε-neighborhood in partitions Q and Q´ although in our further
discussion we assume uniform distribution of points within the two partitions i.e. we will not consider
one specific point.

On the left side of figure 4 both
of the partitions are roughly square.
Let us first look at the projection on
the d0-axis: We observe that about
70% of the projected area of P lies
within the projected ε-neighbor-
hood of our sample point in Q. If we
were to choose d0 as sort-dimension
only about 30% of the points can be
excluded as join-mates for our sam-
ple point in the first step. For the re-
maining 70% we still have to test
dimension d1 i.e. we have to compute the overall point distance. If we now look at the projection on
dimension d1: here only 25% of the area of P lies within the ε-neighborhood of our sample point in
Q. If we choose d1 as start-dimension as much as 75% of the points are already eliminated in the first
step of our dimension ordering algorithm. In the case of quadratic partitions it is thus advisable to
choose the dimension within which the partitions have the largest distance with respect to each other
as this minimizes the area of the projected ε-neighborhood.

The right side of figure 4 shows the two partitions P’ and Q’ which have a much larger extent in
dimension d0 than in dimension d1. For this reason the projection on the d0-axis, with a portion of
33% of the area, is much better than the projection on the d1-axis (75%). In this case the dimension
d0 should be chosen as sort-dimension.

algorithm optimal_dimension_order_join (index M1, M2)
the similarity-join basic method
generates partition pairs from M1 and M2 ;

for all parition pairs (P,Q) with dist(P,Q) ≤ ε
determine best sort dimension s according to Eq. (9) ;
sort (indirectly) points in Q according to dimension s ;
for all points p ∈ P

determine the first point a ∈ Q: ;
determine the last point b ∈ Q: ;
for all points q ∈ Q with

if dist(p,q) ≤ ε
output (p,q) ;

end ;

as ps– ε≤
bs ps– ε≤

as qs bs≤ ≤

Figure 3. Algorithmic Scheme

εε

25%

70%

75%

33%

d0

d1

P’

Q’
Q

P

Figure 4. Distance and extension of partitions

- 4 -

We can note the following as a first rule of thumb for the selection of the dimension: for approx-
imately square partitions choose the dimension with the greatest distance, otherwise the dimension
with the greatest extent.

2.3 Probability Model
In the following we will propose a model which grasps this rule of thumb much more precisely. Our
model is based on the assumption that the points within each partition follow a uniform distribution.
Data from real life applications such as those used in our experimental evaluation are far from being
uniformly distributed. In our previous work, however, it has been shown that the conclusions which
are drawn from such models with respect to optimization in multidimensional index structures are
good enough to clearly improve the performance of multidimensional query processing [5].

Our model determines for each dimension the probability Wi[ε] (termed mating probability of
dimension di) that two points in partitions P and Q with given rectangular boundaries P.lbi, P.ubi,
Q.lbi, Q.ubi (; lb and ub for lower bound and upper bound, respectively) have at most the
distance ε with respect to dimension di.
Definition 1

Given two partitions P and Q, let Wi[ε] denote the probability for each dimension di that an
arbitrary pair of points (p,q) with p ∈ P and q ∈ Q has a maximal distance of ε with respect to di:

Wi[ε] := W (|pi−qi| ≤ ε), (p,q) ∈ (P,Q) (1)
If P.# denotes the number of points within partition P, then the expectation of the number of point
pairs which are excluded by the optimal dimension order equals to

Ei[ε] = P.# · Q.# · (1 − Wi[ε]). (2)
This means that exactly the dimension di should be chosen as sort dimension that minimizes the mat-
ing probability Wi[ε].

We will now develop a universal formula to determine the mating probability. We assume uni-
form distribution within each of the partitions P and Q. Thus the i-th component pi of the point p ∈ P
is an arbitrary point from the uniform interval given by [P.lbi .. P.ubi]. The pair (pi,qi) is chosen from
an independent and uniform distribution within the two-dimensional interval
[P.lbi..P.ubi] × [Q.lbi..Q.ubi] because of the independence of the distributions within P and Q, which
we can assume for P ≠ Q. Hence the event space of dimension di is given by

Fi = (P.ubi − P.lbi) · (Q.ubi − Q.lbi) (3)
Wi[ε] is therefore given by the ratio of the portion of the area of Fi where pi and qi have a distance of
at most ε to the whole area Fi. This can be expressed by the following integral:

(4)

We can now simplify the integral of formula (4) by case analysis looking at the geometric properties
of our configuration, i.e. we can transform our problem into d distinct two-dimensional geometric
problems. To illustrate this, we look at the join of the two partitions P and Q in two-dimensional space
as shown on the left hand side of figure 5. In this case, it is not directly obvious which dimension
yields better results. The projection on d0 which is the transformation that is used to determine W0[ε]
is shown on the right hand side of figure 5. The range with respect to d0 of points which can be stored
in P is shown on the x-axis while the range with respect to d0 of points which can be stored in Q is
shown on the y-axis. The projection (p0,q0) of an arbitrary pair of points (p,q) ∈ (P,Q) can only be
drawn inside the area denoted as event space (cf. equation 3), as all points of P with respect to dimen-
sion d0 are by definition within P.lb0 and P.ub0. The same holds for Q.

The area within which our join condition is true for dimension d0 i.e. the area within which the
corresponding points have a distance of less than ε with respect to d0 is marked in gray in figure 5.

0 i d<≤

Wi ε[] 1
Fi
----- 1 for x y– ε≤

0 otherwise

Q .lbi

Q .ubi

∫
P .lbi

P .ubi

∫⋅= dydx

- 5 -

All these projections of pairs of points which fall into the gray area are located within a stripe of width
2ε (the ε-stripe) which is centered around the 45° main diagonal. All projections outside this stripe
can be excluded from our search as the corresponding points already have a distance with respect to
d0 that exceeds our join condition. The intersection of this stripe with the event space represents those
point pairs that cannot be excluded from our search using d0 alone. The mating probability is given
by the ratio of the intersection to the whole event space which equals 18% in our example.

2.4 Efficient Computation
In the previous section, we have seen that the exclusion probability of a dimension di corresponds to
the proportion of the event space which is covered by the ε-stripe. In this section, we show how this
proportion can be efficiently determined. Efficiency is an important aspect here because the exclu-
sion probability must be determined for each pair of mating pages and for each dimension di.

Throughout this section we will use the shortcut PL for P.lbi and similarly PU, QL, and QU. Con-
sidering figure 6 we can observe that there exists a high number of different shapes that the intersec-
tion of the event space and the ε-stripe can have. For each shape, an individual formula for the inter-
section area applies. We will show
 • that exactly 20 different shapes are possible,
 • how these 20 cases can be efficiently distinguished, and
 • that for each case a simple, efficient formula exists.
Obviously, the shape of the intersection is determined by the relative position of the 4 corners of the
event space with respect to the ε-stripe. E.g. if 3 corners of the event space are above (or left from)
the ε-stripe, and 1 corner is inside the ε-stripe, the intersection shape is always a triangle. For the
relative position of a corner and the ε-stripe, we define the following cornercode cc of a point:

Definition 2 Cornercode (cc) of a point in the event space
A point (p,q) in the event space has the corner code cc(p,q) with

cc(p,q) = (5)

Intuitively, the cornercode is 1 if the point is left (or above) from the ε-stripe, 3 if it is right (or un-
derneath) from the ε-stripe, and 2 if it is inside the ε-stripe (cf. figure 8). For an event space given by
its upper and lower bounds (PL,PU,QL,QU), the corners are denoted as C1, C2a, C2b, and C3 as de-
picted in figure 7. We induce the cornercode for the event space given by lower and upper bounds.

ε

9
8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 d0

P

Q

6
5
4
3
2
1

1 2 3 4 P0

projection on d0:

distance ≤ε

event space

d1

Q0

Figure 5. Determining the mating probability W0[ε]

7

18%

2ε

Q.ub0

Q.lb0

1 if q p ε+>
2 otherwise
3 if q p ε–<

- 6 -

Code Figure Formula

1111 0.0

1112

1122

1212

1222 1.0 − (%)

1113 − (*)

1123 − (*)

1213 − (*)

1223 1.0 − (%) − (*)

1133

Code Figure Formula

1313

1333 − (%)

1233 − (%)

1323 − (%)

2222 1.0

2223 1.0 − (*)

2233

2323

2333

3333 0.0

PU QL ε+–()2

2 PU PL–() QU QL–()
--

PU PL+() 2⁄ ε QL–+
QU QL–

PU QU QL+() 2⁄– ε+
PU PL–

PU QL ε+–()2

2 PU PL–() QU QL–()
--

PU PL+() 2⁄ ε QL–+
QU QL–

PU QU QL+() 2⁄– ε+
PU PL–

2ε
QU QL–

2ε
PU PL–

QU PL ε+–()2

2 PU PL–() QU QL–()
--

QU PU PL+() 2⁄– ε+
QU QL–

--

QU QL+() 2⁄ ε PL–+
PU PL–()

--

QU PU PL+() 2⁄– ε+
QU QL–

--

QU QL+() 2⁄ ε PL–+
PU PL–()

--

QU PL ε+–()2

2 PU PL–() QU QL–()
--

Figure 6. Relative Positions of Event Space and ε-Stripe and Corresp. Probability Formulas

where (%) = and (*) = QU PL ε––()2

2 PU PL–() QU QL–()
-- PU QL ε––()2

2 PU PL–() QU QL–()
--

- 7 -

Definition 3 Cornercode cc(ES) of the event space
The cornercode of the event space ES given by the lower and upper limits ES = (PL,PU,QL,QU)
is the 4-tuple:

cc(ES) = (cc(C1), cc(C2a), cc(C2b), cc(C3)) (6)
Formally, there exist 34=81 different 4-tuples over the alphabet {1,2,3}. However, not all these 4-tu-
ples are geometrically meaningful. For instance it is not possible that simultaneously C1 is below and
C3 above the ε-stripe. As C1 is left from C2a and C2a is above C3 we have the constraint:

cc (C1) ≤ cc (C2a) ≤ cc (C3) (7)
And as C1 is above C2b and C2b is left from C3 we have the constraint:

cc (C1) ≤ cc (C2b) ≤ cc (C3) (8)
The corner code of C2a may be greater than, less than, or equal to the corner code of C2b. The following
lemma states that there are 20 different 4-tuples that fulfill the two constraints above.

Lemma 1. Completeness of Case Distinction
There are 20 different intersection shapes for the event space and the ε-stripe.
Proof. By complete enumeration of all four-tuples: There are 3 tuples where cc(C1) = cc(C3): 1111,
2222, and 3333. If the difference between cc(C1) and cc(C3) is equal to 1 (i.e. tuples like 1??2 or
2??3), we obtain 2 possibilities for each of the corner codes cc(C2a) and cc(C2b), i.e. 2·22 = 8 different
tuples. For a difference of two between cc(C1) and cc(C3), which corresponds to tuples like 1??3, we
have a choice out of three for each of the corners C2a and C2b, i.e. 32 = 9 tuples. Summarized, we
obtain 20 different tuples

Note that the cornercodes 1111 and 3333 which are associated with a probability of 0.0 actually
are never generated because the corresponding partitions have a distance of more than ε and, thus,
are excluded by the preceding filter step.

Each corner code of the event space is associated with a geometric shape of the intersection be-
tween event space and ε-stripe. The shape varies from a triangle (e.g. cc = 1112) to a six-angle
(cc = 1223). The fact that only 45° and 90° angles occur facilitates a simple and fast computation.
Figure 6 shows the complete listing of all 20 shapes along with the corresponding corner codes and
the formulas to compute the intersection area.

C1 C2a

C2b C3

Figure 7. Identifiers for the Corners of the Event Space
p

q

C2b = (PL,QL)

C1 = (PL,QU)

C3 = (PU,QL)

C2a = (PU,QU)

PL PU

QL

QU

Figure 8. The ε-stripe

p

q

ε

ε cc = 2 cc = 3cc = 1

ε-s
trip

e

q =
 p

+ ε

q =
 p

− ε

45°

- 8 -

The concept of the cornercodes is not only a formal means to prove the completeness of our case
distinction but also provides an efficient means to implement the area determination. Our algorithm
computes the corner code for each of the 4 corners of the event space, concatenates them using arith-
metic operations and performs a case analysis between the 20 cases.

2.5 Determining the Optimal Sort Dimension
Our algorithm determines the sort dimension such that the mating probability Wi[ε] is minimized.
Ties are broken by random selection, i.e.

dsort = some {di | 0 ≤ i < d, Wi[ε] ≤ Wj[ε] ∀j, 0 ≤ j < d}. (9)
Thus, we have an easy way to evaluate the formula for the sort dimension. As Wi[ε] merely is eval-
uated for each dimension di, thus keeping the current minimum and the corresponding dimension in
local variables, the algorithm is linear in the dimensionality d of the data space and independent of
all remaining parameters such as the number of points stored in the partitions, the selectivity of the
query, etc. Moreover, the formula must be evaluated only once per pair of partitions. This constant
(with respect to the capacity of the partition) effort is contrasted by potential savings which are qua-
dratic in the capacity (number of points stored in a partition). The actual savings will be shown in the
subsequent section.

3. Experimental Evaluation
In order to show the benefits of our technique we implemented our optimal dimension order on top
of several basic similarity join methods and performed an extensive experimental evaluation using
artificial and real data sets of varying size and dimensionality. For comparison we tested our algo-
rithm not only against plain basic techniques, but also against a simple version of the dimension-order
algorithm which does not calculate the best dimensions for each partition pair, but chooses one di-
mension which then is used globally for all partition pairs. In the following we will not only observe
that our algorithm can improve CPU-efficiency by an important factor, but we will also see that it
performs much better than the simple dimension-ordering algorithm − even if this algorithm chooses
the best global dimension.

We integrated the ODO-algorithm into two index-based techniques, namely the Multipage Index
Join (MuX) [8] and the Z-order-RSJ which is based on the R-tree Spatial Join (RSJ) [9] and employs
a page scheduling strategy using Z-ordering. The latter is very similar to the
Breadth-First-R-tree-Join (BFRJ) proposed in [11]. We also implemented the ODO-algorithm into
the recently proposed Epsilon Grid Order (EGO) [7] which is a technique operating without precon-
structed index.

0%
100%
200%
300%
400%
500%
600%
700%

ba
se

 te
ch

niq
ue

ODO-al
go

rith
m

SDS di
men

sio
n 1

SDS di
men

sio
n 2

SDS di
men

sio
n 3

SDS di
men

sio
n 4

SDS di
men

sio
n 5

SDS di
men

sio
n 6

SDS di
men

sio
n 7

SDS di
men

sio
n 8

SDS di
men

sio
n 9

SDS di
men

sio
n 1

0

SDS di
men

sio
n 1

1

SDS di
men

sio
n 1

2

SDS di
men

sio
n 1

3

SDS di
men

sio
n 1

4

SDS di
men

sio
n 1

5

SDS di
men

sio
n 1

6

0%
100%
200%
300%
400%
500%
600%
700%

ba
se

 te
ch

niq
ue

ODO-al
go

rith
m

SDO di
men

sio
n 1

SDO di
men

sio
n 2

SDO di
men

sio
n 3

SDO di
men

sio
n 4

SDO di
men

sio
n 5

SDO di
men

sio
n 6

SDO di
men

sio
n 7

SDO di
men

sio
n 8

16-D Real Data from a CAD-ApplicationUniformly Distributed 8-D Data

Figure 9. Experimental Results for MuX: Plain Basic Technique, ODO and Simple DS

- 9 -

The Multipage Index (MuX) is an index structure in which each page accommodates a secondary
main-memory search structure which effectively improves the CPU performance of the similarity
join. We implemented ODO on top of this secondary search structure, i.e. we measured the improve-
ment that ODO brings on top of this secondary search structure. For comparison, we used the original
MuX code which also exploited the secondary search structure.

All our experiments were carried out under Windows NT4.0 on Fujitsu-Siemens Celsius 400 ma-
chines equipped with a Pentium III 700 MHz processor and 256 MB main memory (128 MB avail-
able). The installed disk device was a Seagate ST310212A with a sustained transfer rate of about
9 MB/s and an average read access time of 8.9ms with an average latency time of 5.6ms.

Our 8-dimensional synthetic data sets consisted of up to 800,000 uniformly distributed points in
the unit hypercube. Our real-world data set is a CAD database with 16-dimensional feature vectors
extracted from geometrical parts.

The Euclidean distance was used for the similarity join. We determined the distance parameter ε
for each data set such that it is suitable for clustering following the selection criteria proposed in [18]
obtaining a reasonable selectivity.
Figure 9 shows our experiments comparing the overall runtime i.e. I/O- and CPU-time for the plain
basic technique MuX either to MuX with integrated ODO or integrated simple dimension-order
(SDO) for all possible start dimensions. The left diagram shows the results for uniformly distributed
8-dimensional artificial data while the right diagram shows results for 16-dimensional real data from
a CAD-application. The database contained 100,000 points in each case. The SDO-algorithm de-
pends heavily on the shape of the page regions i.e on the split algorithm used by the index employed
by the basic technique. For uniformly distributed artificial data the loading procedure used by MuX
treats all dimensions equally and therefore the results for the simple dimension-ordering algorithm
are roughly the same for all start dimensions. ODO performs 6 times faster than plain MuX and 4
times faster than the best SDO while SDO itself is about 1.5 times faster than plain MuX. Note again
that our algorithm chooses the most suitable dimension for each pair of partitions. Therefore, it is
possible that ODO clearly outperforms the simple dimension ordering technique (SDO) even for its
best dimension. For our real data set SDO shows varying performance with varying start dimension.
We can even observe that for some start dimensions the overhead of SDO outweighs the savings and
overall performance degrades slightly compared to the plain basic technique. This shows that it can
be disadvantageous to apply dimension-ordering for one fixed start dimension. MuX with integrated
ODO is about 5.5 times faster for the real data set than plain MuX while it is still 3 times faster than
the SDO with the best performance, however it is more than 6 times faster than SDO with the worst
performance.

Figure 10 shows all results for the uniformly distributed artificial data set for varying database
size, including the diagram with distance calculations. We can see that the plain MuX performs up
to 50 times more distance calculations than with ODO. The diagrams for the real data set are left out
due to space ristrictions.

Figure 10. Experimental Results for MuX: Uniformly Distributed 8-D Data

101

102

103

104

105

1007

1008

1010

1011

25 50 100 200 400 800

Plain MuX
Best SDO
ODO

Number of Points [x 1000]Number of Points [x 1000]

D
is

ta
nc

e
C

al
cu

la
tio

ns

To
ta

l T
im

e
[S

ec
.]

25 50 100 200 400 800

1009 Best SDO

- 10 -

In order to show that the optimal dimension-ordering algorithm can be implemented on top of
other basic techniques as well, we show the results for the Z-order-RSJ with uniformly distributed
data in figure 11. Z-order-RSJ without ODO is up to 7 times slower than with integrated ODO and
performs up to 58 times more distance calculations. The results for Z-order-RSJ with real data are
shown in figure 12. We can see a speedup factor of 1.5 for SDO vs. plain Z-order-RSJ with respect
to total time and of 1.8 with respect to distance calculations. ODO performs 3.5 times faster and per-
forms 17 times fewer distance calculations than SDO while it performs 5.5 times faster and up to 25
times less distance calculations than SDO.

EGO was used to demonstrate integration of ODO with a basic technique that does not use a pre-
constructed index. The results are given in figure 13 where EGO with SDO, as well as plain EGO
clearly perform worse than ODO i.e. SDO is about 1.5 times faster than plain EGO, but ODO is twice
as fast as SDO and outperforms plain EGO by a factor of 3.5.

Figure 11. Experimental Results for Z-RSJ: Uniformly Distributed 8-D Data

1007

1008

1010

1012

25 50 100 200 400 800
Number of Points [x 1000]

D
is

ta
nc

e
C

al
cu

la
tio

ns

1009

1011

101

102

103

104

105

Number of Points [x 1000]

To
ta

l T
im

e
[S

ec
.]

25 50 100 200 400 800

Plain Z-RSJ
Best SDO
ODO
Best SDO

Figure 12. Experimental Results for Z-RSJ: 16-D Real Data from a CAD-Application

1007

1008

1010

1012

25 50 100 200 400 800
Number of Points [x 1000]

D
is

ta
nc

e
C

al
cu

la
tio

ns

1009

1011

101

102

103

104

105

Number of Points [x 1000]

To
ta

l T
im

e
[S

ec
.]

25 50 100 200 400 800

Plain Z-RSJ
Best SDO
ODO
Best SDO

Figure 13. Experimental Results for EGO (16d CAD data)

Plain EGO
Best SDO
ODO
Best SDO

101

102

103

104

105

Number of Points [x 1000]

To
ta

l T
im

e
[S

ec
.]

25 50 100 200 400 800

- 11 -

4. Conclusions
Many different algorithms for the efficient computation of the similarity join have been proposed in
the past. While most well-known techniques concentrate on disk I/O operations, relatively few ap-
proaches are dedicated to the reduction of the computational cost, although the similarity join is clear-
ly CPU bound. In this paper, we have proposed the Optimal Dimension Order, a generic technique
which can be applied on top of many different basic algorithms for the similarity join to reduce the
computational cost. The general idea is to avoid and accelerate the distance calculations between
points by sorting the points according to a specific dimension. The most suitable dimension for each
pair of pages is carefully chosen by a probability model. Our experimental evaluation shows substan-
tial performance improvements for several basic join algorithms such as the multipage index, the
ε-grid-order and the breadth-first-R-tree join.

References
 1 Ankerst M., Breunig M. M., Kriegel H.-P., Sander J.: OPTICS: Ordering Points To Identify the Cluster-

ing Structure, ACM SIGMOD Int. Conf. on Management of Data, 1999.
 2 Agrawal R., Lin K., Sawhney H., Shim K.: Fast Similarity Search in the Presence of Noise, Scaling, and

Translation in Time-Series Databases, Int. Conf. on Very Large Data Bases (VLDB), 1995.
 3 Arge L., Procopiuc O., Ramaswamy S., Suel T., Vitter J. S.: Scalable Sweeping-Based Spatial Join, Int. Conf.

on Very Large Databases (VLDB), 1998.
 4 Böhm C., Braunmüller B., Breunig M. M., Kriegel H.-P.: Fast Clustering Based on High-Dimensional Sim-

ilarity Joins, Int. Conf. on Information Knowledge Management (CIKM), 2000.
 5 Berchtold S., Böhm C., Jagadish H.V., Kriegel H.-P., Sander J.: Independent Quantization: An Index Com-

pression Technique for High Dimensional Spaces, IEEE Int. Conf. on Data Engineering (ICDE), 2000.
 6 Berchtold S., Böhm C., Keim D., Kriegel H.-P.: A Cost Model For Nearest Neighbor Search in High-Dimen-

sional Data Space, ACM Symposium on Principles of Database Systems (PODS), 1997.
 7 Böhm C., Braunmüller B., Krebs F., Kriegel H.-P.: Epsilon Grid Order: An Algorithm for the Similarity Join

on Massive High-Dimensional Data, ACM SIGMOD Int. Conf. on Management of Data, 2001.
 8 Böhm C., Kriegel H.-P.: A Cost Model and Index Architecture for the Similarity Join, IEEE Int. Conf. on Data

Engineering (ICDE), 2001.
 9 Brinkhoff T., Kriegel H.-P., Seeger B.: Efficient Processing of Spatial Joins Using R-trees, ACM SIGMOD

Int. Conf. on Management of Data, 1993.
 10 Brinkhoff T., Kriegel H.-P., Seeger B.: Parallel Processing of Spatial Joins Using R-trees, IEEE Int. Conf. on

Data Engineering (ICDE), 1996.
 11 Huang Y.-W., Jing N., Rundensteiner E. A.: Spatial Joins Using R-trees: Breadth-First Traversal with Glo-

bal Optimizations, Int. Conf. on Very Large Databases (VLDB), 1997.
 12 Koudas N., Sevcik C.: Size Separation Spatial Join, ACM SIGMOD Int. Conf. on Managem. of Data, 1997.
 13 Koudas N., Sevcik C.: High Dimensional Similarity Joins: Algorithms and Performance Evaluation, IEEE

Int. Conf. on Data Engineering (ICDE), Best Paper Award, 1998.
 14 Lo M.-L., Ravishankar C. V.: Spatial Joins Using Seeded Trees, ACM SIGMOD Int. Conf., 1994.
 15 Lo M.-L., Ravishankar C. V.: Spatial Hash Joins, ACM SIGMOD Int. Conf., 1996.
 16 Patel J.M., DeWitt D.J., Partition Based Spatial-Merge Join, ACM SIGMOD Int. Conf., 1996.
 17 Preparata F. P., Shamos M. I.: ‘Computational Geometry’, Chapter 5 (‘Proximity: Fundamental Algo-

rithms’), Springer Verlag New York, 1985.
 18 Sander J., Ester M., Kriegel H.-P., Xu X.: Density-Based Clustering in Spatial Databases: The Algorithm

GDBSCAN and its Applications, Data Mining and Knowledge Discovery, Vol. 2, No. 2, 1998.
 19 Shim K., Srikant R., Agrawal R.: High-Dimensional Similarity Joins, Int. Conf. on Data Engineering, 1997.
 20 Ullman J. D.: Database and Knowledge-Base Systems, Vol. II, Computer Science Press, Rockville MD, 1989

