Efficiently Indexing
High-Dimensional Data Spaces

Dissertation im Fach Informatik
an der Fakultat fir Mathematik und Informatik
der Ludwig-Maximilians-Universitat Minchen

von
Christian Bohm

Tag der Einreichung: 06.10.1998
Tag der miindlichen Prifung: 17.12.1998

Berichterstatter:
Prof. Dr. Hans-Peter Kriegel, Ludwig-Maximilians-Universitat Miinchen
Prof. Dr. Bernhard Seeger, Philipps-Universitat Marburg

Acknowledgments

I would like to express my thanksto all people who supported me during the past years

while | have been working on thisthesis. | extend my warmest thanks to my supervisor,
Professor Dr. Hans-Peter Kriegel. He took particular care to maintain a good working
atmosphere within the group and to provide a supportive and inspiring environment. | am

grateful to Professor Dr. Bernhard Seeger who was readily willing to act as the second

referee to thiswork. | would also like to thank Professor R. Bayer, Ph.D. for supporting

me during my employment at the FORWISS institute, Technische Universitat Minchen.
This work could not have grown and matured without the discussions with my col-
leagues. In particular | would like to thank Dr. Stefan Berchtold and Professor Dr. Daniel
Keim from whom | learned important things about scientific work. During a research
visit to AT&T, Florham Park, USA, | cooperated with Dr. H. V. Jagadish who inspired
me to a great extent. Other fruitful discussions which brought this work forward took
place with (in alphabetical order): Mihael Ankerst, Bernhard Braunmdller, Markus Bre-
unig, Dr. Martin Ester, Andreas Miethsam, Jorg Sander, Thomas Schmidt, Dr. Thomas
Seidl, and Dr. Xiaowei Xu. | thank them all. | would like to thank all my students who
supported my work: Gerald Klump, Sven Messfeld, Urs Michel, Stefan Schénauer and
Gert Unterhofer. Particular thanks go to Franz Krojer who took special care of our tech-
nical environment. This work could not have been completed without the background
help of Susanne Grienberger. Besides shouldering much of the administrative burden,
she carefully read this thesis and helped to polish the English. Last, but not least, | want
to thank my parents, my friends and my girlfriend Bianca.

Christian Béhm
Munich, September 1998.

Acknowledgments

Abstract

Indexing high-dimensional data spacesisan emerging research domain. It gainsincreas-
ing importance by the need to support modern applications by powerful search tools. In
the so-called non-standard applications of database systems such as multimedia, CAD,
molecular biology, medical imaging, time series processing and many others, similarity
search in large data setsis required as abasic functionality.

A technique widely applied for similarity search is the so-called feature transforma-
tion, where important properties of the database objects are transformed into points of a
multidimensional vector space, the so-called feature vectors. Thus, similarity queriesare
naturally translated into neighborhood queriesin the feature space. In order to achieve a
high performance in query processing, multidimensional index structures are used to
manage the feature vectors. Unfortunately, multidimensional index structures deterio-
rate in performance when the dimension of the data space increases, because they are
primarily designed for low-dimensional data spacesand dueto abunch of effectsusually
called the turse of dimensionality’.

The general goal of this thesis is therefore the improvement of the efficiency of index-
based query processing in high-dimensional data spaces.

For this purpose, a cost model for index-based query processing in high-dimensional
data spaces was developed. It is applicable to a variety of index structures and query
processing techniques and can be used for the evaluation of techniques and for optimi-
zation.

Based on this cost model, a variety of improvement and optimization techniques for
multidimensional index structures was developed. The first, called DABS-tree, involves
a cost model based split algorithm supporting a dynamic and local adaptation of the
block size of the index structure. Dynamic block size adaptation is especially useful as
we can show that conventional index structures often access data in too small portions.

iv Abstract

The optimal unit of processing is not only dependent on the dimension but also on the
number of objects currently stored in the database and on the distribution from which
dataand query points are taken.

A second technique for query processing based on our cost model is called tree strip-
ing. Here, the vectors are vertically decomposed into sub-vectors from data spaces of
lower dimensionality. These subspaces are indexed and queried independently. The par-
tia results of the single indexes must be merged to achieve atotd result. Here, it isan
optimization task to choose appropriate dimensionalities of the subspaces.

The next technique optimizes directly the shape of bounding boxes by exploiting
a priori knowledge of the data set when bulk-load operations are applied. In thiscontext,
anew method for bottom-up construction of indexesis developed.

A further technique is intended for high-dimensional query processing in parallel
environments. An optimal strategy for distributing points among serversin anetwork or
among disks connected to a single computer is presented.

The last technique presented in this thesis is called Pyramid tree. It is based on a
transformation of feature vectors and range queries into a one-dimensional space. For
range queries using maximum metric, it turned out that this techniqueis not affected by
the ‘curse of dimensionality’. Therefore, it can be efficiently used for indexing data
spaces of very high dimensions.

All indexing and optimization techniques in this thesis were carefully analyzed. The
practical impact was shown by exhaustive experimental evaluations yielding substantial
performance improvements over state-of-the-art indexing techniques. The material pre-
sented in this thesis has matured the new research domain of indexing high-dimensional
data spaces both theoretically as well as practically by a new cost model and various new
index structures and optimization techniques for index-based query processing.

Abstract (In German)

Die Indexierung hochdimensionaler Datenrdume ist eine neue Forschungsrichtung, die
durch die Notwendigkeit, neue Anwendungen mit machtigen Suchwerkzeugen auszu-
statten, zunehmend an Bedeutung gewinnt. In den sogenannten Nicht-Standard-Anwen-
dungen von Datenbanksystemen wie z.B. Multimedia, CAD, Molekularbiologie, medi-
zinische Bildverarbeitung, Analyse von Zeitreinen usw. ist die Ahnlichkeitssuche in
grolRen Datenmengen eine wichtige Basisfunktion.

Eine weit verbreitete Technik zur Ahnlichkeitssuche ist die sogenannte Feature-
Transformation, bei der wichtige Eigenschaften der Datenobjekte in Punkte eines mehr-
dimensionalen Vektorraums, die sogenannten Feature-Vektoren Uberfiihrt werden. So
werden Ahnlichkeitsanfragen auf natiirliche Weise in Nachbarschaftsanfragen im Fea-
ture-Raum Ubersetzt. Um eine hohe Effizienz bei der Anfragebearbeitung zu erreichen,
werden haufig multidimensionale Indexstrukturen zur Verwaltung der Feature-Vektoren
eingesetzt. Leider versagen herkémmliche multidimensionale Indexstrukturen oft bei
einer hohen Dimension des Datenraums, da sie in erster Linie fUr niedrigdimensionale
Raume konzipiert wurden. Verantwortlich fur das Versagen der Indexstrukturen sind
eine Reihe von Effekten, die Ublicherweise mit dem Bedglffich der hohen Dimensi-
on’ (‘ Curse of Dimensionality’) belegt werden.

Das Hauptziel der vorliegenden Arbeit ist deshalb die Verbesserung der Performanz
bei der indexbasierten Anfragebearbeitung in hochdimensionalen Datenraumen. Hierzu
wurde ein Kostenmodell fuir die indexbasierte Anfragebearbeitung in hochdimensiona-
len Datenraumen entwickelt, das auf eine Reihe von Indexstrukturen und Techniken zur
Anfragebearbeitung anwendbar ist und sowohl zur Evaluation dieser Techniken als auch
zu deren Optimierung genutzt werden kann.

Basierend auf dem Kostenmodell wurden eine Menge von Optimierungstechniken
entwickelt. Die erste, genanDABS Tree beinhaltet einen kostenmodellbasierten Split-

Vi Abstract (In German)

Algorithmus, der eine dynamische und lokale Adaptierung der logischen BlockgroRle
der Indexstruktur gestattet. Dies ist insbesondere nitzlich, da in der Arbeit gezeigt wird,
daf konventionelle Indexstrukturen haufig die Daten in zu kleinen Portionen einlesen.
Die optimale Verarbeitungseinheit ist dabei nicht nur von Schemainformationen wie
z.B. der Dimension des Datenraums abhangig sondern auch von Instanzinformationen
wie z.B. der Anzahl von Objekten, die in der Datenbank gespeichert sind.

Eine weitere Optimierungstechnik, die auf dem Kostenmodell basiert, ist das soge-
nannte Tree-Striping. Die Vektoren werden hierbei in Teilvektoren mit niedrigerer Di-
mension zerlegt. Die Teilrdume werden unabhéngig voneinander indexiert und bearbei-
tet. Die Zwischenergebnisse der einzelnen Indexe werden am Schluf3 zu einem
Endergebnis zusammengefal3t. Die Optimierungsaufgabe besteht bei dieser Technik in
einer geeigneten Auswabhl der Teilrdume.

Die né&chste Technik optimiert direkt die Form der Seitenregionen der Indexstruktur
bei Vorliegen vora-priori-Wissen Uber die Datenobjekte. In diesem Zusammenhang
wurde auch eine effiziengottom-Up-Konstruktion fiir Indexe entwickelt.

Eine weitere Technik dient zur hochdimensionalen Anfragebearbeitung in einer Par-
allelrechnerumgebung. Hier wurde eine optimale Strategie zur Verteilung der Daten-
punkte auf verschiedene Knoten eines Rechnernetzes (das sogdbeshnsgering)
entwickelt

Die letzte Technik die im Rahmen dieser Arbeit prasentiert wird, ist der sogenannte
Pyramid-Tree. Fir diese neuartige Indexstruktur wird gezeigt, dal sie fiir einen be-
stimmten AnfragetypudRange-Queriesin Verbindung mit der Maximumsmetrik) nicht
dem Fluch der hohen Dimension’ unterworfen ist.

Alle neuentwickelten Indexierungstechniken wurden einer sorgféltigen theoretischen
Analyse unterzogen. lhre Praktikabilitdt wurde anhand einer umfassenden experimen-
tellen Evaluation gezeigt, bei der das enorme Verbesserungspotential gegentber bishe-
rigen Techniken nachgewiesen werden konnte. Durch unsere Beitrdge zur Kostenmo-
dellierung und zahlreiche neue Indexstrukturen und Optimierungstechniken wurde das
neue Forschungsgebiet der hochdimensionalen Indexierung daher sowohl um theoreti-
sche als auch praktische Aspekte substantiell bereichert.

Vii

Table of Contents

ACKNOWIEAGMENTS i
A DS aCt . o iii
Abstract (IN German)ovi et \Y
Table of Contents e vii
List Of FIQUIES ..o Xi
1 Introduction 1
11 Non-Standard Applicationsto Database Systems 2
111 Retrieval of Similar GeometricShapes 2
1.1.2 Histogram-Based Similarity of Color Images 5
113 Medica IMagingouni i 6
114 Molecular Biologyc.oiiiiii 7
115 TimeSequence ANalySiS . ..ot 8
12 Feature Transformationiiirneiii e, 9
121 ObJect DIiStanCettt 9
122 FeatureDistanCe oo i et 10
123 Multi-Step QUEry ProCESSING . . . oo v v ettt 10
124 INdeX SITUCIUIES 11
13 Outlineof theThesis 12
2 Query Processing in High-Dimensional Data Spaces 15
21 Basic DEfiNitionst e 16
211 Daabase . . 16
212 Vector Space MEMriCS . ..ot 17
213 QUENY TYPES ittt 18
214 Query Evaluationwithout Index 21
22 Common Principles of High-Dimensional Indexing Methods 21
221 SHUCIUIE . o 21
222 Managementt 22
223 REJIONS . ..ttt e 23

23 Basic Algorithms e 25

viii

231
232
233
234
2.35
24
24.1
24.2
243
244
245
2.4.6
247
24.8
24.9
24.10

31

32

321
322
323
3.3

331
332
333
334
335
34

341
342
343
35

351
352
353
354
355
3.6

Table of Contents

Insert, Deleteand Updatet 25
Exact MatCh QUENY e 26
RaANGE QUENY . . o s 27
Nearest Neighbor Query s 28
Ranking QUENY e 38
Previous Approaches to High-Dimensional Indexing 39
RATEE o 40
S = T 42
Kol ot e 43
K-O-B-tree . . o 46
LDt . . ot e 47
SO 49
TVArEE 50
SRAIEE . 52
Space Flling CUrVES 54
SUMMAETY . e e e e 56
A Cost Model for Query Processing in High-Dimensional Data Spaces 59
Review of Related CostModelso 62
RaNGEQUENY 65
The Minkowski SUM e 66
Estimating Rectangular PageRegionsooou.. 69
Expected Number of Page ACCeSSES . ..o v 70
Nearest Neighbor QUENYo o oot e e 71
Coarse Estimation of the Nearest Neighbor Distance 71
Exact Estimation of the Nearest Neighbor Distance 72
Numerical Evaluation 74
K-Nearest Neighbor Query 76
Expectation of the Number of Page Accesses 77
Effectsin High-Dimensional DataSpacesvvvvinnn.. 78
Problems specific to High-Dimensional DataSpaces 78
RaANGE QUENY . . o 80
Nearest Neighbor Queryt i 87
Data Sets from Real-World-Applications 92
Independent Non-Uniformity i 93
Correlation 93
Model Dependence on the Fractal Dimension 95
RaNgE QUENYt 96
Nearest Neighbor QUENYot e e 97

Modeling the Storage System i 100

41
42
4.3
4.4
45
451
452
4.6
47
471
472
473
48

51
52
521
522
53
54
55

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.3.1
6.3.2
6.3.3
6.34
6.3.5
6.3.6
6.3.7
6.4
6.5

Dynamic Optimization of the L ogical Block Size

Handling Insert Operationst
SearchingtheDataPagettt
Free Storage Managementuuuiinineiniiiineaa e
Handling Delete Operations
Dynamic Adaptation of theBlock Size
Splitand Merge Managementcouiiiiniin
Model Based Local Cost Estimationcovviivinnn..n.
Monotonicity Properties of Splittingand Merging
Experimental Evaluation i

Optimizing the Dimension Assignment

INtrodUCtioN e
TrEE SHIPING - v vt
Basicldea
Definitionof TreeStripingo
Analytical Model
QUENY PrOCESSING v v v vttt ettt ettt et et e
Experimental Analysis

Optimizing the Geometry of Regions Using Bulk-L oad Operations

INtrodUCtioN
Related Work
General Ideaof bulk-loading i
HIlDert R-Treeso e
VAM-Split R-TreeS ..ottt
BUfer TreeS . oo e
Our New TEChNIQUE oot e e e e e
Basicldeao
Determination of the Tree Topology,
The Split SIrategy . .« . v oottt
Recursive Top-Down Partitioningcciiiiiin....
External Bipartitioningof theDataSet
Constructing the Index Directory,
Analytical Evaluation of the Construction Algorithm
Improving the Query Performance.ot
Experimental Evaluation i e

X

7 Optimized Declustering for Parallel Query Processing
7.1 Introduction
7.2 Parallel Nearest-Neighbor Search
7.21 EffectsinHigh-Dimensional Spaces
7.22 Declustering for Nearest-Neighbor Search
7.3 Near-optimal Declustering for Nearest-Neighbor Queries
7.31 Declustering asaGraph Coloring Problem
7.3.2 The Vertex Coloring Algorithm
7.3.3 Extensionsof our Declustering Technique
7.4 Experimental Results i
8 Indexing Ultra-High-Dimensional Feature Spaces

8.1 Introduction
8.2 The Pyramid-Technique
821 MOtIVAiON ...
8.22 DataSpacePartitioning
823 IndexCreationoiiiiiiiiii
8.3 QUENY ProCeSSING . . v v v et et et
84 Theoretical Analysis. ...t
8.4.1 Anaysisof Balanced Splitting
8.4.2 Anaysisof the Pyramid Technique
8.4.3 COMPAiSON ...ttt ittt
85 The Extended Pyramid-Technique
8.6 Experimental Evaluation,
8.6.1 Evaluation Using SyntheticData
8.6.2 EvauationUsingReal DataSets
9 Conclusions

9.1 Background
9.2 Contributions
9.3 Future Work e
References
INOEX .
CurriculumVitae

Table of Contents

171

Xi

List of Figures

1 Introduction

Fig. 1: Similarity Searchin CADDatabases.vvviiiiiiinnnan.. 2
Fig. 20 Section Coding.o v vi it 3
Fig. 3: Object Transformation According to Jagadish[Jag91] 4
Fig. 4. Two similar images and the corresponding 112-D color histograms[Sei 97] .. 5
Fig. 5 Medica Imaging (MRI) [K& 97] 6
Fig. 6: The Opening and Closing Operation of Mathematical Morphology 6
Fig. 7: Examplefor Molecular Docking[Sei 97] oo 7
Fig. 8 A Time Series: DAX Performance Index (Source: Frankfurt Stock Exchange). 8
Fig. 9: Multi-Step Processing of Similarity Queries.covvinnn.. 9
2 Query Processing in High-Dimensional Data Spaces

Fig.10: Metricsfor DataSpaces.o oottt 17
Fig.11: Hierarchical Index Structurest ... 22
Fig.12: Corresponding Page Regions of an Indexing Structure. 24
Fig.13: Algorithm for Exact Match QUeriesc.oiiiniiniiinnnnn 27
Fig.14: Algorithm for Range QUENies.ottt e i aes 28
Fig.15: MINDIST and MAXDISTot 29
Fig.16: MINMAXDIST ..ot e e e ees 31
Fig.17: The RKV Algorithm for Finding the Nearest Neighbor 32
Fig.18: The HS Algorithm for Finding the Nearest Neighbor 34
Fig.19: Schedulesof RKV and HSAlgorithm.o ot 38
Fig.20: ExamplefortheSplitHistory ... 44
Fig.21: TheKd-tree.o e 45
Fig.22: Thek-O-B-treeo e e 46
Fig.23: TheLSDh-tree. . ..o e e 47
Fig.24: Region Approximation UsingtheLSDh-tree 48
Fig.25: Situation in R-tree Variants where no Overlap-Free Insert isPossible. 48
Fig.26: Situation in the SS-tree where no Overlap-Free SplitisPossible 49
Fig.27: Telestope VeCtOrSot 51

Fig.28:

PageRegionsof anSR-tree. 52

Xii List of Figures

Fig.29: Incorrect MINDIST intheSR-treet 53
Fig.30: Examplesof SpaceFillingCurves., 54
Fig.31: MINDIST Determination Using Space FillingCurves. 55

3 A Cost Model for Query Processing in High-Dimensional Data Spaces

Fig.32: Evaluation of the model of Friedman, Bentley and Finkel 63
Fig.33: The Minkowski SUM i 65
Fig.34: The Compensation Factor for Considering Gaps. vvvviiiinnnnn. 70
Fig.35: Probability Density FUNCLIONS 73
Fig.36: Probability that a Point is Near by the Data Space Boundary 78
Fig.37: Expected Nearest Neighbor Distance with Varying Dimension 79
Fig.38: Side Lengths of Page Regionsfor Ceff=30............................ 80
Fig.39: Side Lengthsand Positions of Page Regionsin the Modified Mode! 81
Fig.40: Minkowski Sum Outside the Boundary of theDataSpace................ 82

Fig.41: The Modified Minkowski Sum for the Max. (I.) and Euclidean Metric (r.) ... 82
Fig.42: The Volume of the Intersection between Sphere and the Unit Hypercube 83
Fig.43: The Volume of the Intersection between a Sphere and the Unit Hypercube. .. 84

Fig.44: Various Modelsin High-Dimensional DataSpaces 85
Fig.45: Accuracy of the Modelsina16-dimensional DataSpace. 86
Fig.46: The Intersection Volume for Maximum Metric and Arbitrary Center Point. .. 87
Fig.47: The Impact of Boundary Effects on the Nearest Neighbor Distance. 88
Fig.48: The Intersection Volume for Euclidean Metric and Arbitrary Center Point . .. 89
Fig.49: Accuracy of the Cost Models for Nearest Neighbor Queries 92
Fig.50: Correlationsand their Problems. 94
Fig.51: Accuracy for Data Sets from Real-World Applications 100
Fig.52: Structureof aDisk Drive[SPGO1]. ...t 101
Fig.53: Access Time of Disk Drive with Varying Logical Blocksize............. 102

4 Dynamic Optimization of the Logical Block Size

Fig.54: Performance of Query Processing With Varying Dimension 104
Fig.55: Block Size Optimizationooiiiiiii et 105
Fig.56: Structureof theDABS-Tree ... 107
Fig.57: Algorithm for Exact Match Queriescovviiiiiinnnann. 109
Fig.58: The Additional kd-tree. e 110
Fig.59: Optimal block sizefor UniformData ..., 116
Fig.60: Performance for 4-Dimensiona (left) and 16-Dimensiond (right) Data 117
Fig.61: Sequential Scan and X-treeare Outperformed 118
Fig.62: Query ProcessngUsingCADData. 118
5 Optimizing the Dimension Assignment

Fig.63: Improvement over Inverted Lists and Multidimensional Indexing......... 121
Fig.64: TreeStipiNg - v oottt ettt e et e 121

Fig.65: A First Query Processing Algorithmt 124

Xiii

Fig.66: Total Cost for Query Processingovvviiiiiiiiiiinnnan... 128
Fig.67: Optimal Dimension ASSIgNMENto vt ie ettt eiieeeeeen 129
Fig.68: Insertion Algorithm 131
Fig.69: Query ProcessingUsing Tree Stripingcovvveviinneeniiiinneennn 132
Fig.70: Comparison of Measured Optimum and Model Prediction............... 134
Fig.71: Improvement of Tree Striping for aVarying Dimension of the Data Space.. 135
Fig.72: Improvement of Tree Striping for an Increasing Number of Dataltems 136
Fig.73: Performance for Varying Selectivities. 137
Fig.74: Optima Dimension Assignment for Real Data(TextData) 138
Fig.75: Performance of Partial Range Queries. ..., 138
Fig.76: Improvement for Partial Range Queriest 139
Fig.77: Performance of Partial Range Queries with Varying Selectivities (Text Data) 140
6 Optimizing the Geometry of Regions Using Bulk-L oad Oper ations
Fig. 78: SpaceFlling CUIVESo ot e e 143
Fig.79: Basicldeaof Our Technique.t 147
Fig.80: The Split Tree e 150
Fig.81: Recursive Top-Down Data Set Partitioning 152
Fig.82: Adapted QUICKSOIT.\ttt 154
Fig.83: External BiseCtionot 155
Fig.84: Improvement Factor for the Index Construction According to Lemma7-11 . 160
Fig.85: Examplesfor Balanced and Unbalanced Split Strategiesin 2-d Space. 162
Fig.86: Performance of Index Construction Against Database Size and Dimension. . 164
Fig.87: Performance of Range Querieswith Varying SideLength............... 165
Fig.88: Performance of Range Queries with Varying Database Size and Dimension. 165
Fig.89: Influence of the Storage Utilization on Range Query Performance 166
Fig.90: CPU-Timefor Executing Range Queriesccovieinnnn. 167
Fig.91: Rea Timefor Executing RangeQueries.coiiiinnnen.n. 167
Fig.92: Experimentson Real Data (Text Descriptors).coovvveo.... 168
7 Optimized Declustering for Parallel Query Processing

Fig.93: Nearest-Neighbor Queriesin High Dimensions (X-tree) 172
Fig.94: Speed-Up of Parallel Nearest-Neighbor Search (Round Robin)........... 173
Fig.95: Improvement of Hilbert over Round Robin. 175
Fig. 96 NN-SPhere.ttt e e 176
Fig.97: Partitions Affected by the Search when Increasing the NN-sphere. 177
Fig.98: Disk Modulo, FX and Hilbert are not Near-Optimal Declustering Techniques 179
Fig.99: Disk Assignment Graph.ttt 181
Fig.100: Vertex Coloring Algorithm e 182
Fig.101: Number of ColorsRequiredby colt 187
Fig.102: Recursive Declustering.uuutiiiiiiiiiiiinann 189
Fig.103: Speed-Up of Our Technique on Uniformly Distributed Data (1 MByte) ... 190
Fig.104: Speed-Up of Our Technique and Hilbert Declustering (Fourier Points) 191

Xiv List of Figures

Fig.105: Improvement Factor over Hilbert Declustering (Fourier Points). 192
Fig.106: Scale-Up on NN Queries and 10-NN Queries (Fourier Points)........... 192
Fig.107: Tota search time of our technique and the Hilbert curve (Text Data). 193
Fig.108: Effect of RecursiveDeclustering, 193
8 Indexing Ultra-High-Dimensional Feature Spaces

Fig.109: Operationson Indexesc.covvitiiin i 197
Fig.110: Partitioning Srategiesuuetiteiiiiiieeas 198
Fig.111: Partitioning the Data Spaceinto Pyramids. 199
Fig.112: Propertiesof Pyramids.t 200
Fig.113: Height of aPoint withinitsPyramid 201
Fig.114: Transformation of Range QUEriesc.c.vviiiiiiinnnnn... 203
Fig.115: Restrictionof Query Rectangleoo it 205
Fig.116: Processing Range Queries (Algorithm) 207
Fig.117: Modeling the Pyramid-Technique, 209
Fig.118: Range Queries Using the Pyramid Technique and Balanced Splitting 210
Fig.119: Effect of Clustered Data.uuiitiiiiiiiieeenn 211
Fig.120: Transformation FUNCLIONStivutet i eeees 213
Fig.121: Performance Behavior over DatabaseSize 215
Fig.122: Performance Behavior over Data Space Dimension 217
Fig.123: Percentage of ACCessed Pages 218
Fig.124: Query ProcessingonTextDatacovvveniiinnne i 219
Fig.125: Query Processing on WarehousingData, 220
Fig.126: Varying the Query Mix (WarehouseData)ccoovn... 221

9 Conclusions

Chapter 1
| ntroduction

Information is the master key to economic success and influence in the contemporary
society. It is generally agreed upon this proposition: “Only who can apply the newest
information for his product development, is able to survive in the global competition”
[Sch 95]. Crucial for the applicability of information is its quality and its fast availabili-

ty. What is lacking most, however, is not the access to information resources but rather
the facility to effectively and efficiently search for the required information.

If the structure of the information to be searched is simple, such as in one-dimensional
numerical attributes or character strings, the problem can be considered as solved. Data-
base management systems (DBMS) provide index structures for the management of
such data [BM 77, Com 79] which are well-understood and widely applied.

In recent years, an increasing number of applications has emerged processing large
amounts of complex, application-specific data objects [Jag 91, AFS 93, GM 93,
FBFH 94, FRM 94, ALSS 95, Kor+ 96, BK 97, Ber 97, Kei 97, Sei 97]. In application
domains such as multimedia, medical imaging, molecular biology, computer aided de-
sign, marketing and purchasing assistance, etc., a high efficiency of query processing is
crucial due to the immense and even increasing size of current databases. The search in
such databases, called non-standard databases, is seldom based on an exact match of
objects. Instead, the search is often based on some notion of similarity which is also
specific to the application.

We will start with a brief description of some of these new application domains,
showing how similarity search is applied to fulfill the user’s requirements. Then we will

2 Introduction

show a common solution to these different application domains, the so-called feature
transformation. We will motivate that specialized index structures for high-dimensional
vector spaces are needed for efficient query processing when using the feature approach.
Unfortunately, the state-of-the-art in index structures and query processing techniques
does not yield satisfactory performance. Based on this fact, we will substantiate our
general motivation for the current thesis. An outline of the techniques proposed in this
thesiswill round off our introduction.

1.1 Non-Standard Applicationsto Database Systems

In this section, we will briefly sketch five applications to similarity search in database
systems including the search for similar geometric shapes, as required in CAD databas-
es, the search for similar color images in a multimedia database, medical imaging, the
search for similar proteinsin molecular biology, and the analysis of time sequences such
asstock exchangerates, etc. Here, we do not strivefor completeness, sincethisintroduc-
tionisnot actually arelated work for our thesis. It should rather serve for motivation and
illustration.

1.1.1 Retrieval of Similar Geometric Shapes

An important application domain for non-standard database systemsisthe area of Com-
puter Aided Design (CAD). Most current CAD systems are file based systems which do
not take advantage from any database technology. Some modern CAD systemscurrently
use object-relational or object-oriented database technol ogy, but only simple operations
are supported, such as object retrieval according to the key. Database systems arein this
case merely used as storage managers supporting data independence, concurrency and
recovery, but not to support the user with apowerful search tool.

Figure 1: Similarity Search in CAD Databases

08 08

0.1 0.1

—» [08]0.1]0.2[0.7]0.7]0.2[0.1]0.8]

0.2 0.2

07 07

Figure 2: Section Coding

In arecent research project, the S3-System (Smilarity Search System) was developed
[Ber 97, BK 97, BKK 97]. The scope of this project was to reduce the diversity of parts
in the car industry by providing the designerswith a CAD database. Theideaisto avoid
the redesign of plastic clips when asimilar design already exists. Cost can be saved by
the reuse of mounting tools and injection moulds. The designsin the S3-project are two-
dimensional. A further application to the search for similar geometric shapesis comput-
er vision [Jag 91, GM 93, MG 93]. In different applications, the notion of similarity is
defined differently. These definitions vary in their properties. Several similarity mea-
sures yield invariances which may be meaningful in some context, in another context
not. The following invariances are considered as important: Translation invariance, ro-
tation invariance, invariance with respect to uniform and non-uniform scaling, shearing
invariance, invariance with respect to partial object occlusion. Moreover, we can distin-
guish between partial and total similarity. When speaking about total similarity, two
objects have to be similar over al. In partial similarity, these objects have only to be
similar in some detail.

Berchtold, Keim and Kriegel [Ber 97, BK 97, BKK 97] define similarity measures
for two-dimensional polygons based on two different principles: The first, section cod-
ing, isbased on volume coincidence. Starting from its center of gravity, the object is cut
into slices in a pizza-like fashion (cf. figure 2). In each slice, the ratio of the volume
intersection is determined independently. The vector of the ratios of all slices in the
Euclidean spaceisused for the determination of the similarity. Seidl and Kriegel [Sei 97,
KKS 98] extend the model by replacing the Euclidean metric by the more general qua-
dratic form distance. By doing so, vicinity properties of two sectors can be taken into
account which makes the model more realistic. Section coding isinvariant with respect
to tranglation, scaling and (to alimited degree) rotation.

4 Introduction

Figure 3: Object Transformation According to Jagadish [Jag 91]

The second similarity measure in the S3-project is based on the boundary of the poly-
gon. The line segments of the polygon are transformed into a parametric form, the cur-
vature. Then, an analytical Fourier transform is applied, and the coefficients are again
interpreted as vectors in a Euclidean space. By applying this method to the complete
object boundary, ameasurefor total similarity isdefined. Partial similarity isdefined by
decomposing the object boundary into sequences of line segments with fixed length and
applying the same technique to all sequences.

Jagadish proposes a technique for the retrieval of similar shapes in two dimensions
[Jag 91]. He derives an appropriate object description from a rectilinear cover of an
object, i.e. a cover consisting of axis-parallel rectangles (cf. figure 3). The rectangles
belonging to asingle object are sorted by size, and thelargest ones serve asretrieval key
for the shape of the object. Dueto anormalization, invariance with respect to scaling and
translation isachieved. The technique is not rotation-invariant.

Mehrotra and Gary suggest the use of boundary features for the retrieval of shapes
[MG 93, MG 95, GM 93]. Here, a 2-D shape is represented by an ordered set of surface
points, and fixed-sized subsets of this representation are extracted as shape features. All
of these features are mapped to points in a multidimensional space. This method can
handle translation, rotation and scaling invariance as well as partially occluded objects.

The QBIC (Query By Image Content) system [FBFH 94] contains a component for
2-D shape retrieval where shapes are given as sets of points. The method is based on
a gebraic moment invariantsand is also applicableto 3-D objects[TC 91]. Asanimpor-
tant advantage, the invariance of the feature vectorswith respect to rigid transformations
(trandations and rotations) isinherently given. However, the adjustability of the method
to specific application domainsiis restricted. From the available moment invariants ap-
propriate ones have to be selected, and their weighting factors may be modified.

Non-Standard Applications to Database Systems 5

0.4 0.4
03+-----p--—-——-——-—-—----+9 03+-----F---------—7
02+ ----- F 7777777777 02+-----F--—-—------+4
0l+---———FF----—-—----1 Ol+--—--Fbsy-——"""""-"--1
0 {¥ Y ('] 0 4# t ' . +
- < N~ O M © O N W < N~ O M © O o W

Figure 4: Two similar images and the corresponding 112-D color histograms[Sei 97].

1.1.2 Histogram-Based Similarity of Color Images

A natural way to search for color images in a multimedia database is based on color
distributions[SH 94]. Two color images are defined to be similar if they contain approx-
imately the same colors. This is formalized by the means of a color histogram. After
accordingly reducing and normalizing the color spectrum of theimagesto amanageable
number of different colors, theimages are analyzed. For each color, theratio of pixelsis
determined which are correspondingly colored (cf. figure 4).

An obviousway to compare color histogramsis, again, to interpret them asvectorsin
Euclidean space. Thisapproach leadsto the difficulty that all pairsof different colorsare
interpreted as likewise dissimilar. In human perception, however, some colors are very
similar to each other (e.g. red and orange) whereasothersarevery dissimilar (e.g. yellow
and blue). The so-called cross-talk between similar colors can again be taken into ac-
count if not the Euclidean distance between the histogram vectorsis determined, but the
following quadratic form distance metric:

Saxy) = (x—y) AOx-y)".

Inthisformula, the similarity matrix A containstheinformation which colorsare similar
to each other and to what degree. Both approaches, the QBIC system [FBFH 94] and the
approach of Seidl and Kriegel [SK 97] use this definition of similarity in color images.

6 Introduction

Figure 5: Medical Imaging (MRI) [Kei 97].

1.1.3 Medical Imaging

Korn et al. propose a method for searching similar tumor shapes in a medical image
database[Kor+ 96]. For diagnostic purposes, especially the constitution of the surface of
atumor (parameters such as smoothness, raggedness, etc.) is important. Therefore, the
similarity measureisin this method based on the theory of Mathematical Morphology, a
quantitative theory of shape which incorporates a multi-scale component. |n mathemat-
ical morphology, mappings are defined in terms of a structural element, a primitive
shape such asacircle. It interacts with theinput to transform it by two operations called
opening and closing. I ntuitively, opening isthe set of pointsthat abrush with the form of
the structural element can reach when it is barely allowed to touch the boundary of the
shape. In contrast, closing is equivalent to opening the complement of the object (cf.
figure 6).

The similarity between two objects is defined in the following way: The objects are
subject to a sequence of openings and closings with varying size of the structural ele-
ment. For each opening (closing) in the sequence and for the original objects, the differ-
ence volumeis determined. The largest observed difference volume determines the dis-
similarity of the two objects.

original object structural element opening closing

Figure 6: The Opening and Closing Operation of Mathematical Morphology.

Non-Standard Applications to Database Systems 7

Figure 7: Example for Molecular Docking [Sei 97].

1.1.4 Molecular Biology

Asintheareaof CAD, multimediaand medical image processing, similarity queriesare
important in molecular biology [AGMM 90], too. Similarity queriesareimportant since
most of the biological functions in organisms are performed by the interaction of pro-
teins. Similar functions are usually performed by molecules with a similar geometrical
structure. There are various applications that require the three-dimensional structure of
themolecular surface. The structure of moleculesis provided by the Brookhaven Protein

Data Bank which contains more than 3,000 molecules.

One of the most interesting tasks in molecular biology isthe prediction of molecular
interaction. Molecules interact if their surfaces have a complementary structure with
respect to their 3-dimensional geometric shape and to electromagnetic and chemical
properties. Finding molecul es with acomplementary structure, however, isatask close-
ly related to the similarity search problem. The basic idea is to determine the comple-
ment of the query object and then to search for database objects which are similar to the
complement of the query.

Kriegel, Schmidt and Seidl [KSS 97, KS 98] defined a similarity measure for seg-
ments of molecule surfaces which is based on fitting standard segments such as parabo-
loids to the molecular surface and determining the approximation error. The mutual

approximation error is used as measure for the (dis-)similarity.

8 Introduction

0

5333,

436

3400

Aug 29
Oct 17
Jan 30

Mar 19

May 11
Jun 30

Figure8: A Time Series: DAX Performance Index (Source: Frankfurt Stock Exchange).

1.1.5 Time Sequence Analysis

The analysis of time sequences has many applications in economic and other sciences.
Questions of interest include, for example:

« |dentify companies with similar growth patterns

» Determine products with similar selling patterns

« Discover stocks with similar movements in stock prices (cf. figure 8)

« Find if two musical scores are similar [AFS 93].
Agrawal et al. present a method for similarity search in a sequence database of one-

dimensional data [AFS 93]. The authors define the square root of the sum of squared
differences as the distance function between two sequerarely:

8y = | T -y

0<t<n
This definition coincides with the Euclidean distance of vectors and wittnéngy of
the difference signal in a signal theoretic sense. The sequences are mapped onto points
of a low-dimensional feature space by using a Discrete Fourier Transform.
The technique was later generalized for subsequence matching [FRM 94], and
searching in the presence of noise, scaling, and translation [ALSS 95].

Further applications of similarity search include information retrieval [Kuk 92,
Wel 71], vector quantization [RP 92] and data mining [AGGR 98, BJK 98, CD 97].

Feature Transformation 9

d-dimensional index
Query

Y
——
—-d-dimensional +—]
::fealturelvectlorsZ:><
[T 1 |
Feature Table Object Table

Figure 9: Multi-Step Processing of Similarity Queries.

1.2 Feature Transfor mation

At afirst glance, the similarity notions of the five applications introduced above seem
quite different from each other. Neverthel ess, the similarity measures have some proper-
ties in common which facilitate query processing by the same paradigm in al these
applications.

1.2.1 Object Distance

The first community of the similarity measuresis that they al are defined in terms of a
distance between two objects. That means, each similarity measure & assigns a positive
valueto apair of objects saying how dissimilar they are:

3:0x0 - Og.

Usually, the similarity measure d isequal to O if and only if the two objectsareidentical.
The higher dis, thelesssimilar are the two objects. Therefore, disalso called the object
distance. In all applications mentioned above, & forms a metric, because it is positive,
symmetric, and fulfills the triangle inequality. Recently, some query processing tech-
nigues have been proposed which can directly handle objectsin a metric space[Yia 93,
Chi 94, Uhl 91, Bri 95, BO 97, CPZ 97]. These structures, however, generally lack the
required performance and were thus not applied in any of the sample applications.

10 Introduction

1.2.2 FeatureDistance

To handle similarity queries efficiently, usually a so-called feature transformation is
applied. Thisapproach extractsimportant properties from the objectsin the database and
transforms them into vectors of ad-dimensional vector space, the so-called feature vec-
tors. Usudlly, the feature transformation is defined such that the distance between the
feature vectors (the feature distance) either corresponds to the object distance or is, at
least a lower bound thereof (“lower bounding property). This way, the similarity
search is naturally translated into arange query on the feature space.

The feature transformation is usually provided by an expert in the corresponding
application domain, as it has to capture the most important and most distinguishing
properties of the objectsin order to achieve agood performance in query processing. In
our example of time sequence databases, the discrete Fourier transform was used as
feature transformation. In the example of medical image databases, the volumes of the
object and its openings and closings were used as features. In molecular similarity, the
features were based on the approximation by standard surfaces such as paraboloids. In
all cases, the feature distance can be proven to be alower bound of the object distance
which is anecessary condition for the correctness of the method.

1.2.3 Multi-Step Query Processing

If the feature distance does not directly correspond to the object distance, but is only a
lower bound, we talk about the paradigm of multi-step query processintn a so-called
filter step arange query is processed on the feature space. As the feature distances are
lower bounds of the actual object distances, the result of the range query is a set of
candidates. It isguaranteed that each object satisfying therange query iscontained in the
candidate set (no false dismissalsut there may be candidates which are not actual
answersto the similarity query. Therefore, the candidates have to be tested in the object
spacein aso-called refinement stepr he paradigm yields advantagesif only afew can-
didates haveto betested, i.e. if thereisagood filter selectivity

Figure 9 depicts the setting in multi-step query processing: The feature vectors are
organized in an index. A query on this filter produces a set of candidates. The set is
complete (no false dismissals), but may contain several objects which are not actual hits
tothe query. Therefore, the exact object representation must beloaded to the main mem-
ory. Thefinal test whether an object is an actual answer to the query is called refinement
step. From a database point of view, there are two main cost factorsin this setting: The

Feature Transformation 11

cost for the filter step is mainly influenced by the quality of the index. The cost of
refinement ismainly influenced by thefilter selectivity, i.e. the size of the candidate set.
Aswe assumethe algorithm for the refinement step to be given by the application, we do
not consider it as a parameter for optimization, although there may be potential for im-
provement, too. The filter step, however, is identical for any application. Hence, it is
desired to support the filter step by the database management system.

This alows us to particularly focus on the following problem: Given a set N of d-
dimensional points, how can we quickly search for points that fulfill agiven query con-
dition. The query condition could either be a multidimensional interval in which all
points have to belocated (window query) or it could be a point and we are looking for all
points having a distance less than some value € from this point (range query) or we are
looking for the nearest neighbor of this point (nearest neighbor query). All these query
types are useful in non-standard databases and it depends on the specific application
which one will be used. In the following, we restrict our considerations on query pro-
cessing in the feature space.

1.2.4 Index Structures

Various solutions to the problem of multidimensional search have been proposed. If the
dimension d is sufficiently small, e.g. 3, we are able to use index structures such as the

grid file [NHS 84], the hB-tree [LS 89, LS 90], the kd-tree [Ben 75, Ben 79] or the R'-

tree [BKSS 90]. However, if d is quite large, e.g. 16, these index structures do not pro-

vide an appropriate performance. The reasons for this degeneration of performance are
subsumed by the term “curse of dimensionality”. The major problem in high-dimension-
al spaces is that most of the measures one could defirkdimgnsional vector space,

such as volume, area, or perimeter are exponentially depending on the dimensionality of
the space. Thus, many techniques work only in low-dimensional spaces where we still
have an exponential dependency provided that the exponent is small enough.

To overcome these problems, a variety of specialized new index structures has been
proposed in the past years dealing with the problem of high-dimensional indexing. Ex-
amples are the TV-tree [LJF 95], the SS-tree [WJ 96], or the X-tree [BKK 96]. For a
complete overview cf. chapter 2. These structures, however, do not break the curse of
dimensionality. They rather extend the area of dimensions where efficient indexing is
possible, but still have their limitations when dimension increases to values above 20.

12 Introduction

Unfortunately, the problems leading to the curse of dimensionality are complex.
Therefore, no ssimple criterion exists do decide when to use which indexing method. To
achieve good results in high-dimensional indexing, careful optimization must be under-
taken. These optimizations are the most important motivation for the current thesis.

1.3 Outline of the Thesis

Chapter 2 is devoted to the related work. First, we introduce the common principles of
the well-known index structuresfor high-dimensional data spaces and develop aframe-
work to distinguish the previous approaches. We present the basic algorithms for query
processing and index maintenance and describe then the state-of-the-art in high-dimen-
sional indexing in acomprehensive way.

In chapter 3, we are going to introduce a cost model for query processing in high-
dimensional data spaces. We start with a basic model for range queries and nearest
neighbor querieswhichisapplicableto query processing in low-dimensional dataspaces
under uniformity and independence assumption. We extend this model in two steps:
First, we take the implications of high-dimensional query processing into account. This
isdone by acareful analysis of the effects and problems of high-dimensional data spac-
es. Inasecond step, the unrealistic assumption of auniform and independent distribution
of the data points is removed. For this purpose, we introduce the concept of the fractal
dimension. We present all formulas of the cost model for the two most relevant vector
metrics, the Euclidean metric (L,) and the maximum metric (L.,).

In chapter 4, we come to afirst conclusion of the cost model presented in chapter 3.
We use the cost model for the optimization of the logical block size of the index struc-
ture. Asthe optimum may dynamically change when new data objects areinserted in the
database, and the optimum may aso vary at different positions in the data space, the
particularity of our approach is that the logical block size is adapted dynamically and
independently in all data pages.

The next techniquewhichispresentedin chapter 5, iscalled tree striping. Itisinspired
from the so-called inverted list approach where not asingle d-dimensional index isused
for query processing, but a set of d one-dimensional indexes. Although the performance
of inverted listsis very bad, it turns out that a mixture of inverted lists and multidimen-
sional indexing outperforms both query processing techniques. In our approach, the vec-
tors are decomposed into sub-vectors of a moderate dimensionality. The subspaces are

Outline of the Thesis 13

indexed and queried independently. The results of query processing have to be merged
in aseparate step. The decomposition decision isbased on our cost model. Thereforethe
optimization task isin this chapter the right dimension assignment.

In the next chapter, we optimized the shape of the page regions under the assumption
that the complete dataset is previously known. In contrast to the classical approachesfor
low-dimensional indexing which tend to optimize for cube-like page regions, it can be
derived from our cost model that cube-optimization is inappropriate when indexing
high-dimensional data spaces. We can conclude that range search becomes more effi-
cient when thin pages are cut from the borders of the data space. In the context of this
chapter, a fast algorithm for the index construction from the scratch (bulk-load) was
developed. The benefit is therefore two-fold: Additionally to the performance gain for
the search operation, we present a sophisticated new algorithm for the fast index con-
struction improving the efficiency of this operation by orders of magnitude.

Although these optimization techniques accelerate the range search and the nearest
neighbor search in case of amoderate dimensionality by large factors, there still existsa
dimension boundary where efficient index-based query processing is not possible. To
overcome this problem, we propose in chapter 7 to exploit parallelism for high-dimen-
sional query processing. We present an optimal declustering method. The general ideais
to decompose the data space into quadrants and to assign the quadrants to servers such
that neighboring quadrants are assigned to different servers. The quadrants can berepre-
sented asverticesin agraph, whereasthe nei ghborhood rel ationshi ps (we consider direct
and indirect neighborhoods) are represented by the edges. Server assignment can be
considered as graph coloring. An efficient solution, however, is possible, as not general
graphs occur in our problem, but only a special type.

In chapter 8, we present an indexing technique for a specia query type, range queries
on maximum metric. It can be observed that it is for this special query type not subject
to the curse of dimensionality. The ratio of page accesses is even decreasing with in-
creasing dimension. The genera idea of the technique is a decomposition of the data
space in pyramid-like objects starting from the center of the data space. These pyramids
are decomposed in a second step parallel to the base area. As every point can be repre-
sented by a pair containing the pyramid number and the height inside this pyramid,
simple one-dimensional index structures can be applied for the management of thetrans-
formed points. Apart from the improved performance, a further advantage of the pyra-
mid technique isthat it isthe easily to integrate in arelational database system.

14

Introduction

15

Chapter 2
Query Processing in
High-Dimensional Data Spaces

In thischapter, wewill give an introduction about the basics of query processingin high-
dimensional data spaces. We start with afew definitions which introduce important no-

tions and formalize our problem description. Then, we will present the common princi-

ples of multidimensional index structures. There are two basic classes of multidimen-

sional access methods: Hierarchical, data organizing structures such as R-trees [Gut 84,
BKSS90] and space organizing structures such as Multidimensional Hashing

[HSW 88a, KS 86, KS 87, Oto 84] or grid-files [NHS 84, Fre 87, Hin 85, HSW 88b,

KW 85, KS 88, Ouk 85]. For a comprehensive description of all multidimensional ac-

cess methods, primarily concentrating on low-dimensional indexing problems, cf. to the

survey of Gaede and Giinther [GG 98]. We will concentrate here on the first class, the
data organizing structures, since hashing-based methods do not play an important role in
high-dimensional indexing. To our best knowledge, there exists no serious approach to
solve the high-dimensional indexing problem with a space organizing structure. Also,
we focus in this work on index structures primarily designed for secondary storage.

After introducing the common framework for multidimensional index structures, al-
gorithms for query processing are presented according to all relevant query types. We
will see that these algorithms can be expressed independently from the underlying mul-
tidimensional access method. In contrast, algorithms for the construction and mainte-
nance of the index structures in a dynamic environment are specific to the corresponding

16 Query Processing in High-Dimensional Data Spaces

index structures and therefore presented later. Two algorithms for processing nearest
neighbor queries are discussed in detail, because they are referenced later in thisthesis.

Inarelated work section, we will give an overview over well-known index structures
for high-dimensiona query processing classifying the approaches by our common
framework.

2.1 Basic Definitions

Before we are able to proceed, we need to introduce some notions and to formalize our
problem description. In this section, we will define our notion of the database and we
will develop a two-fold orthogonal classification for various neighborhood queries.
Neighborhood queries can either be classified according to the metric which is applied
to determine distances between points or according to the query type. Any combination
between metrics and query typesis possible.

2.1.1 Database

We assumethat in our similarity search application, objects are feature-transformed into
points of avector space with afixed, finite dimension d. Therefore, a database DB isa
set of points in a d-dimensional data space DS. The data space DSis a subset of 0.
Usually, analytical considerations are simplified if the data spaceisrestricted to the unit
hypercube DS=[0..1]4.

Our database is completely dynamic. That means, insertions of new points and dele-
tions of points are possible and should be handled efficiently. The number of point ob-
jects currently stored in our database is abbreviated as n. We should note that the notion
of a point is ambiguous. Sometimes, we mean a point object, i.e. a point stored in the
database. In other cases, we mean a point in the data space, i.e. a position which is not
necessarily stored in DB. The most common example for the second possibility is the
query point. From the context, the intended meaning of the notion point will always be
obvious.

Definition 1: Database
A database DB isaset of n pointsin ad-dimensional data space DS

DB = {Py, ... P, _}

Basic Definitions 17

P,ODSi = 0.n-1
DSO IR,

In some applications, objects cannot be mapped into feature vectors, however, there
exists some notion of similarity between objects that can be expressed as a metric dis-
tance between objects. Thus, the objects are embedded in a metric space. These object
distances can directly be used for query evaluation. Several index structures for pure
metric spaces have been proposed [CPZ 97, Yia 93, Chi 94, Uhl 91, Bri 95, BO 97]. Our
notion of a database, however, is restricted to vector spaces with finite dimension and
therefore, we will not consider these approaches.

2.1.2 Vector Space Metrics

All neighborhood queries are based on the notion of the distance between two points P
and Q in the data space. Depending on the application to be supported, several metricsto
define the distances are applied. Most common is the Euclidean metric L, defining the
usual Euclidean distance function &, :

2

But also other L, metrics such as the Manhattan metric (L4, also known as city block
metric) or the maximum metric (L) are widely applied:
d-1
5P Q) = T IQ=P| 8P, Q) = max{|Q; =P}

i=0

Queries using the L, metric are (hyper-) sphere shaped. Queries using the maximum
metric or the Manhattan metric are hypercubes and rhomboids, respectively (cf. figure

Manhattan (L) Euclidean (L) Maximum (L) weighted Eucl. weighted Max. Ellipsoid

Figure 10: Metrics for Data Spaces.

18 Query Processing in High-Dimensional Data Spaces

10). If additional weights wy,..., Wy, are assigned to the dimensions, then we define
weighted Euclidean or weighted Maximum Metrics which correspond to axis-parallel
ellipsoids and axis-parallel hyperrectangles:

5wem(P, Q)) Z W |:(Q| _Pi)z 6wmm(P’ Q) = max{ Wi |:1Q| _Pi|}

i=0

Arbitrarily rotated el lipsoids can be defined by using apositive definite similarity matrix
W. This quadratic form distance metric is used for adaptable similarity search [Sei 97]:

&m(P.Q) = (P-Q)' DVOP-Q)

2.1.3 Query Types

Thefirst classification of queriesis according to the vector space metric defined on the
feature space. An orthogonal classification is based on the question whether the user
defines aregion of the data space or an intended size of the result set.

Point Query
The most simple query type is the point query. It specifies a point in the data space and
retrieves all point objects in the database with identical coordinates:

PointQuery(DB, Q) = {P 0 DB|P = Q}

A simplified version of the point query determines only the Boolean answer whether the
database contains an identical point or not.

Range Query

In arange query, a query point Q, adistancer, and ametric M are specified. The result
set comprises all points P from the database which have a distance smaller or equal to r
from Q according to metric M:

Definition 2: Range Query
For aquery object Q, aquery ranger, ametric M and a database DB, the range query
retrieves the set

RangeQuery(DB, Q,r, M) = { PO DB|y(P, Q) =r}

Point queries can al so be considered asrange querieswith aradiusr = 0 and an arbitrary
metric M. If M isthe Euclidean metric, then the range query defines ahypersphereinthe

Basic Definitions 19

data space from which al points in the database are retrieved. Analogously, the maxi-

mum metric defines a hypercube.

Window Query

A window query specifiesarectangular region in dataspace from which al pointsin the
database are selected. The specified hyperrectangle is always parallel to the axis (“win-
dow”). We regard the window query as a region query around the center point of the
window using a weighted maximum metric where the weightepresent the inverse

of the side lengths of the window.

Nearest Neighbor Query

The range query and its special cases (point query and window query) have the disad-
vantage that the size of the result set is previously unknown. A user specifying the radius
r may have no idea how many results his query may produce. Therefore, it is likely that

he falls into one of two extremes: either he gets no answers at all or he gets almost all
database objects as answers. To overcome this drawback, it is common to define similar-

ity queries with a defined result set size, the nearest neighbor queries.

The classical nearest neighbor query returns exactly one point object as result which
is the object with the lowest distance to the query point among all points stored in the
database. The only exception from this one-answer rule is due to tie-effects. If several
points in the database have the same (minimal) distance, then our first definition allows

more than one answer:

Definition 3: Nearest Neighbor Query (Deterministic)

For a given query obje€ and a given distance metit, the deterministic nearest

neighbor query retrieves the set:

NNQueryDeterm(DB, Q, M) = { P 0 DB|OP’ 0 DB:&(P, Q) < &,,(P', Q)}

A common solution avoiding the exception to the one-answer rule uses non-determin-
ism. If several points in the database have a minimal distance from the que@,@int
arbitrary point from the result set is chosen and reported as answer. We follow this ap-

proach:

20 Query Processing in High-Dimensional Data Spaces

Definition 4: Nearest Neighbor Query
For a given query object Q and a given distance metric M, a nearest neighbor query
retrieves the set:

NNQuery(DB, Q, M) = SOME{P 0 DB|OP’ 0 DB:5,,(P, Q) < 5,,(P', Q)}

K-Nearest Neighbor Query

If a user does not only want one closest point as answer upon his query, but rather a
natural number k of closest points, he will perform a k-nearest neighbor query. Analo-
gously to the nearest neighbor query, the k-nearest neighbor query selects k points from
the database such that no point among the remaining pointsin the database is closer to
the query point than any of the selected points. Again, we havethe problem of tieswhich
can be solved either by non-determinism or by alowing more than k answers in this
specid case:

Definition 5: k-Nearest Neighbor Query
For agiven query object Q and agiven distance metric M, ak-nearest neighbor query
retrieves the set:
kNNQuery(DB, Q, k, M) = {P,...P,_; 0 DB|=[P' 0 DBY{P,...P,_;}
O-0,0<i <k:dy(P;, Q) >6,(P',Q)}

Approximate Nearest Neighbor Query

In approximate nearest neighbor queries and approximate k-nearest neighbor queries,
the user a so specifiesaquery point and anumber k of answersto be reported. In contrast
to exact nearest neighbor queries, the user is not interested exactly in the closest points,
but wants only points which are not much farther away from the query point than the
exact nearest neighbors. The degree of inexactness can be specified by an upper bound,
how much farther away the reported answers may be compared to the exact nearest
neighbors. Theinexactness can be used for efficiency improvement of query processing.

Ranking Query

Inaranking query, the user specifies neither arangein the data space nor aresult set size.
Even though, the ranking query ismore rel ated to nearest neighbor queriesthan to range
queries, because the first answer of aranking query is always the nearest neighbor. The
user has then the possibility to ask for further answers. Upon this request, the second
nearest neighbor is reported, then the third and so on. The user decides after examining
an answer if he needsfurther answers or not. Ranking queries can be especially useful in

Common Principles of High-Dimensiona Indexing Methods 21

the filter step of a multi-step query processing environment. Here, the refinement step
usually takes the decision whether thefilter step hasto produce further answers or not.

2.1.4 Query Evaluation without Index

All query types introduced in the previous section can be evaluated by a single scan of
the database. Aswe assume that our databaseis densely stored on a contiguous block on
the secondary storage, all queries can be evaluated by a so-called sequential scan which
isfaster than the access of small blocks spread over wide parts of the secondary storage.

Thesequential scan works asfollows: The databaseisread in very large blocks deter-
mined by the amount of main memory available to query processing. After reading a
block from disk, the CPU processes it and extracts the required information. After a
block isprocessed, the next block isread in. We do not assume parallelism between CPU
and disk /O for any query processing technique presented in this thesis as our database
server issingle-threaded.

Further, we do not assume any additional information to be stored in the database.
Therefore, the database has the following size in bytes:

sizeof (DB) = d [h [kizeof(float)

The cost of query processing based on the sequential scan is proportional to the size of
the database in bytes.

2.2 Common Principles of High-Dimensional I ndexing M ethods

2.2.1 Structure

High-dimensional indexing methods are based on the principle of hierarchical clustering
of the data space. Structurally, they aresimilar tothe B*-tree[BM 77, Com 79]: Thedata
vectorsare stored in datanodes such that spatially adjacent vectorsarelikely toresidein
the same node. Each data vector is stored in exactly one datanode, i.e. thereis no object
duplication among the datanodes. The datanodes are organized in ahierarchicaly struc-
tured directory. Each directory node points to a set of subtrees. Usually, the structure of
the information stored in data nodes is completely different from the structure of the
directory nodes. In contrast, the directory nodes are uniformly structured among all lev-
elsof theindex. Thereisasingle directory node which is called the root node. It serves

22 Query Processing in High-Dimensional Data Spaces

Root:
Directory Pages

(o]e[e[e] [[e[e[e] [| [e[e]e] | |[e[e[e[e[e][e[e[e[e] | } DataPages

Figure 11: Hierarchical Index Structures.

as an entry point for query and update processing. The index structures are height-bal-
anced. That means, the lengths of the paths between the root and al data pages are
identical, but may change after insert or delete operations. The length of apath from the
root to adatapageiscalled the height of theindex. The length of the path from arandom
node to adata pageis called the level of the node. Data pages are on level zero.

2.2.2 Management

The high-dimensional access methods are designed primarily for the secondary storage.
Data pages have a data page capacity Cpay dara defining how many data vectors can be
stored in adata page at most. Analogously, the directory page capacity Cypax gir givesan
upper limit to the number of subnodes in each directory node. The original ideawas to
€ho0se Cpyax data @d Cyax dir SUCh that dataand directory nodesfit exactly into the pages
of the secondary storage. However, in modern operating systems, the page size of adisk
drive is considered as a hardware detail hidden from programmers and users. Even
though, consecutive reading of contiguous data on disk is by orders of magnitude less
expensive than reading at random positions. It isagood compromiseto read data contig-
uously from disk in portions between afew kilobytes and afew hundred kilobytes. This
isakind of artificial paging with a user-defined logical page size. How to choose prop-
erly thislogical page size will be investigated in chapter 3 and 4. The logical page sizes
for data and directory nodes are constant for most of the index structures presented in
this chapter. The only exception are the X-tree and the DABS-tree. The X-tree definesa
basic page size and allows directory pages to extend over multiples of the basic page
size. This concept is called supernode (cf. section 2.4.3). The DABS-treeis an indexing
structure giving up the requirement of a constant blocksize. Instead, an optimal block-
sizeis determined individually for each page during the creation of the index. This Dy-

Common Principles of High-Dimensiona Indexing Methods 23

namic Adaptation of the Block Size givesthe DABS-tree which is presented in chapter
4, itsname.

All index structures presented here are dynamic, i.e. they alow insert and delete
operationsin O (log n) time. To cope with dynamic insertions, updates and deletes, the
index structures allow dataand directory nodes to be filled under their capacity Cpay. IN
most index structurestheruleis applied that all nodes up to the root node must be filled
to about 40% at least. Thisthreshold is called the minimum storage utilization Suyy,. For
obvious reasons, the root is generally allowed to hurt thisrule.

For B-trees, it is possible to derive an average storage utilization analytically, called
the effective storage utilization Sugs. In contrast, for high-dimensional index structures,
the effective storage utilization is influenced by the specific heuristics applied in insert
and delete processing. Since these indexing methods are not amenable to an analytical
derivation of the effective storage utilization, it hasto be determined experimentally.

For comfort, we will denote the product of the capacity and the effective storage
utilization as the effective capacity Cg; of apage:

Cettdata = SUeit data FCmax,data Cettair = SUgtt gir Comaxdir -

2.2.3 Regions

For efficient query processing it is important that the data are well clustered into the
pages, i.e. that data objects which are close to each other are likely to be stored in the
same data page. Assigned to each page isaso-called page region which isasubset of the
data space. The page region can be a hypersphere, a hypercube, a multidimensional
cuboid, a multidimensiona cylinder or a set-theoretical combination (union, intersec-
tion) of these possibilities. For most, but not all high-dimensional index structures the
page region isacontiguous, solid and convex subset of the data space without holes. For
most index structures, regions of pages in different branches of the tree may overlap,
athough overlaps lead to bad performance behavior and have to be avoided if possible
or at least minimized.

The regions of hierarchically organized pages always have to be completely con-
tained intheregion of their parent node. Analogously, all data objects stored in asubtree
are dways contained in the page region of the root page of the subtree. The page region
is always a conservative approximation for the data objects and the other page regions
stored in asubtree.

24 Query Processing in High-Dimensional Data Spaces

cS

Figure 12: Corresponding Page Regions of an Indexing Structure.

In query processing, the page region is used to exclude branches of the tree from
further processing. For example, in case of range queriesif a page region does not inter-
sect with the query range, it isimpossible that any region of a hierarchically subordered
page intersects with the query range. Neither is it possible that any data object stored in
this subtree intersects with the query range. Only pages where the corresponding page
region intersects with the query have to be investigated further. Therefore, a suitable
agorithm for range query processing can guarantee that no fal se drops occur.

For nearest neighbor queries arelated but slightly different property of conservative
approximations is important. Here, distances to a query point have to be determined or
estimated. It isimportant that distancesto approximations of point sets are never greater
than the distancesto the regions of subordered pagesand never greater than the distances
to the points stored in the corresponding subtree. Thisis commonly known asthe lower
bounding property.

Page regions have always a representation that is an invertible mapping between the
geometry of the region and a set of values storable in the index. For example, spherical
regions can be represented as center point and radiususing d + 1 floating point valuesiif
d isthe dimension of the data space. For efficient query processing, it is necessary that
the test for intersection with a query region and the distance computation to the query
point in case of nearest neighbor queries can be performed efficiently.

Both geometry and representation of the page regions must be optimized. If the ge-
ometry of the page regionis suboptimal, the probability increases that the corresponding

Basic Algorithms 25

page has to be accessed more frequently. If the representation of the region is unneces-
sarily large, theindex itself getslarger yielding aworse efficiency in query processing as
wewill seelater in this chapter.

2.3 Basic Algorithms

In this section, we will present some basic a gorithms on high-dimensional index struc-
tures for index construction and maintenance in a dynamic environment as well as for
query processing. Although some of the algorithms are published for a specific indexing
structure, here they are presented in amore general way.

2.3.1 Insert, Delete and Update

Insert, delete and update are the operations which are most specific to the corresponding
index structures. Even though, there are basic algorithms capturing all actionswhich are
common to all index structures. Inserts are generally handled as follows:

« Search a suitable data padpefor the data objedo.
* Insertdo into dp.

» If the number of objects stored dip exceed<Cyay gar then splitdp into two data

pages

* Replace the old description (the representation of the region and the background

storage address) dp in the parent node alp by the descriptions of the new pages

» If the number of subtrees stored in the parent exc€ggdsy;, split the parent and
proceed similarly with the parent. It is possible that all pages on the patlgrum
theroot have to be split.

« If the root node has to be split, let the height of the tree grow by one. In this case, a

new root node is created pointing to two subtrees resulting from the split of the

original root.

Individual heuristics for the specific indexing structure are applied to handle the follow-

ing subtasks:

* The search for a suitable data page (commonly calle@ittk®ranch procedure).

Due to the overlap between regions and as the data space is not necessarily com-

26 Query Processing in High-Dimensional Data Spaces

pletely covered by page regions, there are generally multiple aternatives for the
choice of a data page in most multidimensional index structures.

« The choice of the split, i.e. which of the data objects/subtrees are aggregated into
which of the newly created nodes.

Some index structures try to avoid splits by a concept néonesdi re-insert. Some data
objects are deleted from a node having an overflow condition and reinserted into the
index. The details are presented later in this chapter.

The choice of heuristics for insert processing may affect the effective storage utiliza-
tion. For example, if a volume-minimizing algorithm allows unbalanced splitting in a
30:70 proportion, then the storage utilization of the index is decreased and the search
performance is negatively affected. On the other hand, the presence of forced reinsert
operations increases the storage utilization and the search performance.

Until now, few have been done to handle deletions from multidimensional index

structures. Underflow conditions can generally be handled by three different actions:

« Balancing pages by moving objects from one page to another

* Merging pages

« Deleting the page and reinserting all objects into the index.
For most index structures it is a difficult task to find a suitable mate node for balancing
or merging actions. The only exceptions are the h-88e [Hen 98] and the Space Fill-
ing Curves [Mor 66, FB 74, AS 83, OM 84, Fal 85, Fal 88, FR 89, Jag 90] (cf. section
2.4.5 and section 2.4.9). All other authors either suggest reinserting or do not provide a
deletion algorithm at all. An alternative approach might be to permit underfilled pages
and to maintain them until they are completely empty. The presence of delete operations
and the choice of underflow treatment can affagt ya5 aNdSUgs i POSitively as well
as negatively.

An update-operation is viewed as a sequence of a delete-operation followed by an
insert-operation. No special procedure has been suggested, yet.

2.3.2 Exact Match Query

Exact match queries are defined as follows: Given a query ggadetermine whether

is contained in the database or not. Query processing starts with the root node which is
loaded into the main memory. For all regions containing ppitite functionExact-
MatchQuery is called recursively. Since an overlap between page regions is allowed in

Basic Algorithms 27

bool ExactMatchQuery (Point q, PageAdr pa) {
inti;
Page p = LoadPage (pa) ;
if (IsDatapage (p))
for (i=0;i<p.num_objects ;i ++)
if (q == p.object [i])
return true ;
if (IsDirectoryPage (p))
for (i=0;i<p.num_objects ;i ++)
if (IsPointinRegion (q, p.regionli]))
if (ExactMatchQuery (q, p.sonpageli]))
return true ;
return false ;

Figure 13: Algorithm for Exact Match Queries.

most index structures presented in this chapter, it is possible that severa branches of the
indexing structure have to be examined for processing an exact match query. The result
of ExactMatchQuery istrueif any of therecursive calsreturnstrue. For data pages, the
result istrueif one of the points stored on the data pagefits. If no point fits, theresult is
false. Figure 13 contains the pseudocode for processing exact match queries.

2.3.3 Range Query

The agorithm for range query processing returns a set of points contained in the query
range as result to the calling function. The size of the result set is previously unknown
and may reach the size of the entire database. The algorithm isformulated independently
from the applied metric. Any L, metric including metrics with weighted dimensions
(ellipsoid queries, [Sei 97, SK 97]) can be applied if there exists an effective and effi-
cient test for the predicates IsPointinRange and RangelntersectRegion. Also partial
range queries, i.e. range queries where only a subset of the attributesis specified, can be
considered asregular range queries with weights (the unspecified attributes are weighted
with zero). Also window queries can be transformed into range-queries by using a
weighted L 4 Metric.

28 Query Processing in High-Dimensional Data Spaces

PointSet RangeQuery (Point g, float r, Metric m, PageAdr pa) {
inti;
PointSet result = EmptyPointSet ;
Page p = LoadPage (pa) ;
if (IsDatapage (p))
for (i=0;i<p.num_objects ;i ++)
if (IsPointinRange (q, p.object [i], r, m)
AddToPointSet (result, p.object [i]) ;
if (IsDirectoryPage (p))
for (i=0;i<p.num_objects ;i ++)
if (RangelntersectRegion (g, p.region[i]), r, m))
PointSetUnion (result, RangeQuery(q, r, m, p.childpageli])) ;
return result ;

Figure 14: Algorithm for Range Queries.

Theagorithm presented in figure 14 performs arecursive self-call for all child-pages
whose corresponding page regions intersect with the query. The union of the results of
al recursive callsisbuilt and passed to the caller.

2.3.4 Nearest Neighbor Query

There are two different approaches to process nearest neighbor queries on multidimen-
sional index structures. One was published by Roussopoulos, Kelley and Vincent
[RKV 95] andisinthefollowing called RKV algorithm. The other algorithm (‘HS algo-
rithm”), was published by Hjaltason and Samet [HS 95]. Dueto their importance for our
further work, these algorithms are presented in detail and their strengths and weaknesses
are discussed.

We start with the description of the RKV algorithm because it is more similar to the
agorithm for range query processing in the sense that a depth-first traversal through the
index is performed. RKV is an algorithm of the type “branch and bound”. In contrast, the
HS algorithm loads pages from different branches and different levels of the index in an
order induced by the proximity to the query point.

Unlike range query processing, there is no fixed criterion, kreopviori, to exclude
branches of the indexing structure from processing in nearest neighbor algorithms. Ac-
tually, the criterion is the nearest neighbor distance but the nearest neighbor distance is
not known until the algorithm has terminated. To cut branches, nearest neighbor algo-

Basic Algorithms 29

r

prl Z pra . pra Q\é’\
7 pr 4 B
2 3 +O/S) N 3
s

WlNDlST?ﬁ MINDIST pry s
& 4 %y,
\ @?‘ &
pra Pry

Figure 15: MINDIST and MAXDIST.

rithms have to use pessimistic (conservative) estimations of the nearest neighbor dis-
tance which will change during the run of the algorithm and will approach the nearest
neighbor distance. A suitable pessimistic estimation of the nearest neighbor distanceis
the closest point among all points visited at the current state of execution (the so-called
closest point candidate cpc). If no point has been visited yet, it isalso possibleto derive
pessimistic estimations from the page regions visited so far.

The RKV Algorithm

The authors of the RKV agorithm define two important distance functions, MINDIST
and MINMAXDIST. MINDIST is the actual distance between the query point and a
pageregionin thegeometrical sense, i.e. the nearest possible distance of any point inside
theregion to the query point. The definition inthe original proposal [RKV 95] islimited
to R-treelike structures where regions are provided as multidimensional intervals| (i.e.,
minimum bounding rectangles, MBR) with

I = [Ibg, uby] x ... x [Iby_q, uby_4].
Then, MINDIST isdefined as follows:

Definition 6: MINDIST
The distance of apoint qto region I, denoted asMINDIST (q, I) is:
d-1 |b,—q, if qi<lbig

MINDIST(q, 1) = S o otherwise O
“~ .
i=ofgg—ub, if ub<qg O

30 Query Processing in High-Dimensional Data Spaces

Anexampleof MINDIST ispresented on the left side of figure 15. In pageregionspr,
and pr3, the edges of the rectangles define the MINDIST. In page region pr 4 the corner
defines MINDIST. Asthe query point liesin pr,, the corresponding MINDIST is 0. A
similar definition can also be provided for differently shaped page regions, such as
spheres (subtract the radius from the distance between center and g) or combinations. A
similar definition can be given for L, and L 5 metric, respectively. For a pessimistic
estimation, some specific knowledge about the underlying indexing structure is re-
quired. One assumption which is true for all known index structures is that every page
must contain at least one point. Therefore, we could define the following MAXDIST
function determining the distance to the farthest possible point inside aregion:

d-100 _ f
MAXDISTq, 1) =)3 % Ibj—q| i [Ibj—q| > |g; —ubj| E
& [|g; — ubj| otherwise O
=0 0

MAXDIST is not defined in the original paper asit is not needed in R-tree like struc-
tures. An example is shown on the right side of figure 15. Being the greatest possible
distance from the query point to a point in a page region, the MAXDIST isnot equal to
0 even if the query point islocated inside the page region pr.

In R-trees, the page regions are minimum bounding rectangles (MBR), i.e. rectangu-
lar regionswhere each surface hyperplane contains one datapoint at least. Thefollowing
MINMAXDIST function provides a better (i.e. lower) but still conservative estimation
of the nearest neighbor distance:

MINMAXDIST?(g, 1) = min (|g—rm/*+)3 a-rm%)
O<k<d .
izk
O<i<d
where:
0 Ib, + ub 0 Ib; + ub,
O i —k Tk Op i s i i
rm, = 0 b, if q< > andrM, = 0 b, if g= >
Bubk otherwise 0 ub; otherwise

The general ideaisthat every surface hyperareamust contain apoint. The farthest point
on every surfaceis determined and among those the minimum is taken. For each pair of
opposite surfaces, only the nearer surface can contain the minimum. Thus, it is guaran-

Basic Algorithms 31

o®

Figure 16: MINMAXDIST.

teed that a data object can be found in the region having a distance less than or equal to
MINMAXDIST (g, I). MINMAXDIST (q, 1) is the smallest distance providing this
guarantee. The exampleon figure 16 showson theleft sidethe considered edges. Among
each pair of opposite edges of an MBR, only the edge closer to the query point isconsid-
ered. The point yielding the maximum distance on each considered edge is marked with
acircle. The minimum among al marked points of each page region defines the MIN-
MAXDIST as shown on the right side of figure 16.

This pessimistic estimation cannot be used for spherical or combined regions because
no property similar tothe MBR property isfulfilled. Inthiscase, MAXDIST (q, |) which
is an estimation worse than MINMAXDIST has to be used. All definitions presented
with the L,-metric in the original paper [RKV 95] can easily be adapted to Ly or Ly
metrics as well asto weighted metrics.

The algorithm presented in figure 17 performs accesses to the pages of anindex in a
depth-first order (“branch and bound”). A branch of the index is always completely
processed before the next branch starts. Before child nodes are loaded and recursively
processed, they are heuristically sorted according to their probability of containing the
nearest neighbor. For the sorting order, the optimistic or pessimistic estimation or a
combination thereof may be chosen. The quality of sorting is critical for the efficiency
of the algorithm because for different sequences of processing the estimation of the
nearest neighbor distance may approach more or less fast to the actual nearest neighbor
distance. The paper [RKV 95] reports advantages for the optimistic estimation. The list
of child nodes is pruned whenever the pessimistic estimation of the nearest neighbor
distance changes. Pruning means to discard all child nodes having a MINDIST larger
than the pessimistic estimation of the nearest neighbor distance. It is guaranteed that

32 Query Processing in High-Dimensional Data Spaces

float pruning_dist/* The current distance for pruning branches*/
= INFINITE;/* Initialization before the start of RKV_algorithm */
Point cpc ; /* The closest point candidate. This variable will contain
the nearest neighbor after RKV_algorithm has completed*/
void RKV_algorithm (Point ¢, Metric m, PageAdr pa) {
inti;floath;
Page p = LoadPage (pa) ;
if (IsDatapage (p))
for (i=0;i<p.num_objects ;i ++) {
h = PointToPointDist (q, p.object [i], m) ;
if (pruning_dist >=h) {
pruning_dist=h;
cpc = p.object [i] ;
P}
if (IsDirectoryPage (p)) {
sort (p, CRITERION) ; /* CRITERION is MINDIST or MINMAXDIST */
for (i=0;i<p.num_objects ;i ++) {
if (MINDIST (g, p.region[i]), m) <= pruning_dist)
RKV_algorithm (g, m, p.childpagel[i]) ;
h = MINMAXDIST (q, p.regionli]), m) ;
if (pruning_dist >= h)
pruning_dist=h;

Figure 17: The RKV Algorithm for Finding the Nearest Neighbor.

these pages do not contain the nearest neighbor because even the closest point in these
pagesisfarther away than an already found point (lower bounding property). The pessi-
mistic estimation is the lowest among all distances to points processed so far and all

results of the MINMAXDIST (g, I) function for all page regions processed so far.

To extend the algorithm to k-nearest neighbor processing is a difficult task. Unfortu-
nately, the authors make it easy by discarding the MINMAXDIST from path pruning,
sacrificing the performance gains obtainable from the MINMAXDIST path pruning.
The k-th lowest among all distances to points found so far must be used. Additionally
required is a buffer for k points (the k closest point candidate list, cpcl) which allows an
efficient deletion of the point with the highest distance and an efficient insertion of a
random point. A suitable data structure for the closest point candidate list is a priority
queue (also known as semi-sorted heap [Knu 75]).

Basic Algorithms 33

Considering the MINMAXDI ST imposes some difficulties, since the algorithm has
to assure that k points are closer to the query than agiven region is. For each region, we
know that at least one point must have a distance less than or equal to MINMAXDIST.
If the k-nearest neighbor algorithm would prune a branch according to MINMAXDIST,
it would assumethat k points must be positioned on the nearest surface hyperplane of the
page region. The MBR property only guarantees one such point. We further know that m
points must have a distance less than or equal to MAXDIST where mis the number of
points stored in the corresponding subtree. The number m could be, for example, stored
in the directory nodes or could be estimated pessimistically by assuming minimal stor-
age utilization if the indexing structure provides storage utilization guarantees. A suit-
able extension of the RKV agorithm could use a semi-sorted heap with k entries. Each
entry is either a cpc or a MAXDIST estimation or a MINMAXDIST estimation. The
heap entry with the greatest distance to the query point g isused for branch pruning. Itis
called the pruning element. Whenever new points or estimations are encountered, they
areinserted into the heap if they are closer to the query point than the pruning element.
Whenever anew page is processed, all estimations based on the according page region
have to be deleted from the heap. They are replaced by the estimations based on the
regions of the child pages (or the contained pointsiif it is a data page). This additional
deletion implies additional complexities because a priority queue does not efficiently
support the del etion of elements other than the pruning element. All these difficultiesare
neglected in the original paper [RKV 95].

TheHSAlgorithm

The problems arising from the need to estimate the nearest neighbor distance are
elegantly avoided in the HS agorithm [HS 95]. The HS algorithm does not access the
pages in an order induced by the hierarchy of the indexing structure such as depth-first
or breadth-first. Rather, all pages of the index are accessed in the order of increasing
distance to the query point. The algorithm is allowed to jump between branches and
levelsfor processing pages.

The a gorithm manages an active page list (APL). A pageiscalled active if its parent
has been processed but not the page itself. Since the parent of an active page has been
loaded, the corresponding region of all active pages is known and the distance between
region and query point can be determined. The APL stores the background storage ad-
dressof the page aswell asthe distanceto the query point. Therepresentation of the page

34 Query Processing in High-Dimensional Data Spaces

APL:
P31 [P312) PSS
P32 [
P311 P2 o
P3 g
P31
Pas ®q P312
P33
P111

P13 P2
Pu P112

P12 P13
P1 P12

Figure 18: The HS Algorithm for Finding the Nearest Neighbor.

region is not needed in the APL. A processing step of the HS agorithm comprises the
following actions:

« Select the pagp with the lowest distance to the query point from the APL.
« Loadp into the main memory.
« Deletep from the APL
« If pis a data page: Determine whether one of the points contained in this page is
closer to the query point than the closest point found so far (calletbdest point
candidate cpc).
« Otherwise: Determine the distances to the query point for the regions of all child
pages op and insert all child pages and the corresponding distances into APL.
The processing step is repeated until the closest point candidate is closer to the query
point than the nearest active page. In this case, no active page is able to contain a point
closer tog thancpc due to the lower bounding property. Likewise, no subtree of any
active page may contain such a point. As all other pages have already been looked upon,
processing can stop. Again, the priority queue is the suitable data structure for APL.

For k-nearest neighbor processing, a second priority queue with fixed Ikngth
required for the closest point candidate list.

Discussion

Now, we compare the two algorithms in terms of their space and time complexity. In the
context of space complexity, we regard the available main memory as the most impor-

Basic Algorithms 35

tant system limitation. We assume that the stack for recursion management and all prior-

ity queues are held in the main memory athough one could a so provide an implemen-

tation of the priority queue data structure suitable for secondary storage usage.

Lemma 1: Wor st case space complexity of the RKV algorithm

The RKYV algorithm has aworst case space complexity O (log n).

Proof (Lemma 1)

0

The only source of dynamic memory assignment in the RKV algorithm are the recur-
sive callsof thefunction RKV_algorithm. The recursion depth isat most equal to the
height of the indexing structure. The height of all high-dimensional index structures
presented in this chapter is of the complexity O (log n). Since a constant amount of
memory (one data or directory page) is alocated in each cal, the claim of Lemma 1
follows.

Asthe RKV agorithm performs a depth-first pass through the index structure, and no

additional dynamic memory is required, the space complexity isO (log n). Lemmalis

also valid for the k-nearest neighbor search if the additional space requirement for the

closest point candidate list with a space complexity of O (k) isallowed for.

Lemma 2: Wor st case space complexity of the HS algorithm

The HS agorithm has a space complexity of O (n) in theworst case.

Proof (Lemma 2)

Thefollowing scenario describes the worst case: Query processing startswith the root
in APL. Theroot isreplaced by its child nodes which areon thelevel h - 1if histhe
height of theindex. All nodeson level h - 1 are replaced by their child-nodes, and so
on, until all datanodesareinthe APL. At thisstate, it is possible that no datapageis
excluded from the APL because no data point was encountered yet. The situation
described above occurs, for example, if al dataobjectsarelocated on asphere around
the query point. Thus, all data pagesarein the APL and the APL is maximal because
the APL growsonly by replacing apage by its descendants. If all datapagesarein the
APL, it hasalength of O (n).

36 Query Processing in High-Dimensional Data Spaces

In spite of the order O (n), the size of the APL isonly avery small fraction of the size of
the data set because the APL contains only the page address and the distance between
page region and query point g. If the size of the data set in bytesis DSS, then we have a
number of DP data pages with

DSS

bP = SUeft data L BIZEOF(DataPage) |

Then, the size of the APL isf timesthe data set size:

sizeof(float) + sizeof (address) Dss
SUgst ot [EiZEOF(DataPage) ’

sizeof(APL) = f[DSS =
where a typical factor for a page size of 4 KBytes isf = 0.3 %, even shrinking with a
growing data page size. Thus, it should be no practical problem to hold 0.3 % of a
database in the main memory, although theoretically unattractive.

The complexity of the algorithm in terms of time is difficult to determine. We will
develop the required methodsin chapter 3. Comparing thetwo algorithms, wewill prove
optimality of the HS algorithm in the sense that it accesses as few pages as theoretically
possiblefor agivenindex. Wewill further show that the RKV algorithm does not gener-
aly reach this optimum.

Lemma 3: Pageregionsintersecting the nearest neighbor sphere

Let nndist be the distance between the query point and its nearest neighbor. All pages
that intersect a sphere around the query point having aradius equal to nndist (the so-
called nearest neighbor sphere) must be accessed for query processing. This condi-
tion is necessary and sufficient.

Proof (Lemma 3)

(1) Sufficiency: If al data pages intersecting the nn-sphere are accessed, then all
points in the database with a distance less than or equal to nndist are known to the
query processor. No closer point than the nearest known point can exist in the data-
base.

(2) Necessity: If a page region intersects with the nearest neighbor sphere but is not
accessed during query processing, the corresponding subtree could include a point

Basic Algorithms 37

that is closer to the query point than the nearest neighbor candidate. Therefore, ac-
cessing all intersecting pagesis necessary.

0

Lemma4: Schedule of theHS algorithm.

The HS agorithm accesses pages in the order of increasing distance to the query
point.

Proof (Lemma4)

Due to the lower bounding property of page regions, the distance between the query
point and a page region is always greater or equa to the distance of the query point
and theregion of the parent of the page. Therefore, the minimum distance between the
query point and any page in the APL can only be increased or remain unchanged,
never be decreased by the processing step of loading a page and replacing the corre-
sponding APL entry. Since always the active page with minimum distance is access-
ed, the pages are accessed in the order of increasing distances to the query point.

0

Lemma5: Optimality of HSalgorithm.

TheHS agorithmisoptimal in terms of the number of page accesses.

Proof (Lemma5)

According to Lemma 4, the HS algorithm accesses pages in the order of increasing
distance to the query point g. Let m be the lowest MINDIST in the APL. Processing
stopsif the distance of g to thecpcislessthan m. Dueto thelower bounding property,
processing of any page in the APL cannot encounter any points with a distance to q
less than m. The distance between the cpc and q cannot fall below m during process-
ing. Therefore, exactly the pages with aMINDIST less or equal to the nearest neigh-
bor distance are processed by the HS algorithm. According to Lemma 3, these pages
must be loaded by any correct nearest neighbor algorithm. Thus, the HS algorithm
yields an optimal number of page accesses.

O
Now, we will demonstrate by an example that the RKV algorithm does not alwaysyield

an optimal number of page accesses. The main reason isthat once a branch of the index
has been selected, it hasto be completely processed before anew branch can start. Inthe

38 Query Processing in High-Dimensional Data Spaces

pra;

—» MINDIST

--- - MINMAXDIST

O NN-sphere

Py | P

Figure 19: Schedules of RKV and HS Algorithm.

example of figure 19, both algorithms choose pr to load first. Some important MIND-
ISTsand MINMAXDISTsare marked in the figure with solid and dotted arrows, respec-
tively. While the HS algorithm loads pr, and pr,4, the RKV algorithm has first to load
pr 11 and pr 4o, because no MINMAXDIST estimate can prune the according branches. If
pr 1, and prq, are not data pages, but represent further subtreeswith larger heights, many
of the pagesin the subtrees will have to be accessed.

We have to summarize that the HS algorithm for nearest neighbor search is superior
to the RKV agorithm when counting the page accesses. On the other side, it has the
disadvantage of dynamically alocating main memory of the order O (n), athough with
avery small factor less than 1% of the database size. Additionally, the extension to the
RKYV agorithm for ak-nearest neighbor search is difficult to implement.

An open question iswhether minimizing the number of page accesses will minimize
thetime needed for the page accesses, too. Wewill observelater that statically construct-
ed indexesyield an inter-page clustering, meaning that all pagesin abranch of theindex
arelaid out contiguously on the background storage. Therefore, the depth-first search of
the RKV algorithm could yield fewer disk-head movements than the distance-driven
search of the HS algorithm. A new challenge could be to develop an algorithm for the
nearest neighbor search directly optimizing the processing time rather than the number
of page accesses.

2.3.5 Ranking Query

Ranking queries can be seen as generalized k-nearest neighbor querieswith apreviously
unknown result set size k. A typical application of aranking query requests the nearest
neighbor first, then the second closest point, the third and so on. The requests stop ac-

Previous Approaches to High-Dimensional Indexing 39

cording to a criterion which is external to the index-based query processing. Therefore,
neither a limited query range nor a limited result set size can be assumed before the
application terminates the ranking query.

In contrast to the k-nearest neighbor algorithm, a ranking query algorithm needs an
unlimited priority queue for the candidate list of closest points (cpcl). A further differ-
enceisthat each request of the next closest point is regarded as a phase that ends report-
ing the next resulting point. The phases are optimized independently. In contrast, the k-
nearest neighbor algorithm searches all k pointsin a single phase and reports the com-
plete set.

In each phase of aranking query algorithm, all points encountered during the data
page accesses are stored in the cpcl. The phase endsiif it is guaranteed that unprocessed
index pages cannot contain a point closer than the first point in cpcl (the corresponding
criterion of the k-nearest neighbor algorithm isbased on thelast element of cpcl). Before
beginning the next phase, the leading element is deleted from the cpcl.

It does not appear very attractiveto extend the RKV agorithm for processing ranking
queries due to the fact that effective branch pruning can be performed neither based on
MINMAXDIST or MAXDIST estimates nor based on the points encountered during the
data page accesses.

In contrast, the HS algorithm for nearest neighbor processing needs only the modifi-
cations described aboveto be applied as aranking query algorithm. The original propos-
a [HS 95] contains these extensions.

The major limitation of the HS algorithm for ranking queries is the cpcl. It can be
proven, similarly asin Lemma 2, that the length of the cpcl is of the order O (n). In
contrast to the APL, the cpcl contains the full information of possibly all data objects
stored in the index. Thus, its size is bounded only by the database size questioning the
applicability not only theoretically, but also practically. From our point of view, a prior-
ity queue implementation suitable for background storageis required for this purpose.

2.4 Previous Approachesto High-Dimensional I ndexing

In this section, wewill introduce and briefly discussthe most important index structures
for high-dimensional data spaces. First, we will describe index structures using mini-
mum bounding rectangles as page regions such asthe R-tree, the R"-tree, and the X-tree.

40 Query Processing in High-Dimensional Data Spaces

We continue with the structures using bounding spheres such asthe SS-tree and the TV-
tree and conclude with two structures using combined regions. The SR-tree uses the
intersection solid of MBR and bounding sphere as page region. The page region of a
space filling curveisthe union of not necessarily connected hypercubes.

Multidimensional access methods which have not been investigated for query pro-
cessing in high-dimensional data spaces such as the R*-tree [SSH 86, SRF 87], the hB-
tree [LS 89, LS 90, Eva 94] or hashing-based methods [KS 86, KS 87, KS 88, Oto 84,
NHS 84, Hin 85, HSW 88a, HSW 88b, KW 85, KS 88, Ouk 85, Fre 87] are excluded
from our discussion. Inthe VAM Split R-tree [JW 96] and in the Hilbert-R-tree [KF 94],
methods for statically constructing R-trees are presented. Since these approaches are
rather construction methods than indexing structures of its own, the presentation is de-
layed to chapter 6 where several construction methods are investigated.

24.1 R-tree

The R-tree [Gut 84] uses solid minimum bounding rectangles (MBR) as page regions.
An MBRisamultidimensional interval of the data space, i.e. axis-parallel multidimen-
sional rectangles. MBRs are minimal approximations of the enclosed point set. There
existsno smaller axis-parallel rectangle al so enclosing the compl ete point set. Therefore,
every (d—1)-dimensional surface areamust contain at least one data point. Space par-
titioning is neither complete nor digjoint. Parts of the data space may be not covered at
al by data page regions. Overlapping between regions in different branchesis allowed,
although overlaps deteriorate the search performance especially for high-dimensional
data spaces[BKK 96]. The region description of an MBR comprises for each dimension
alower and an upper bound. Thus, 2 d floating point val ues are required. This descrip-
tion alows an efficient determination of MINDIST, MINMAXDIST and MAXDIST
using any L, metric.

R-trees have originally been designed for spatial databases, i.e. for the management
of 2-dimensional objects with a spatial extension (e.g., polygons). In the index, these
objects are represented by the corresponding MBR. In contrast to point objects, it is
possible that no overlap-free partition for a set of such objects exists at all. The same
problem occurs a so when R-trees are used to index data points but only in the directory
part of theindex. Pageregions are treated like spatially extended, atomic objectsin their

Previous Approaches to High-Dimensional Indexing 41

parent nodes (no forced split). Therefore, it is possible that a directory page cannot be
split without creating an overlap among the newly created pages [BKK 96].

According to our framework of high-dimensional index structures, two heuristics
have to be defined to handle the insert operation: The choice of a suitable page to insert
the point and the management of page overflow. When searching for asuitable page, one
out of three cases may occur:

* The point is contained in exactly one page region.
In this case, the corresponding page is used.
* The point is contained in several different page regions.
In this case, the page region with the smallest volume is used.
« No region contains the point.
In this case, the region is chosen which yields the smallest volume enlargement. If
several such regions yield a minimum enlargement, the region with the smallest
volume among them is chosen.
The insert algorithm starts with the root and chooses in each step a child node by apply-
ing the rules above. Therefore, the suitable data page for the object is found imP (log
time by examining a single path of the index.

Page overflows are generally handled by splitting the page. Four different algorithms
have been published for the purpose of finding the right split dimension (also called split
axis) and the split hyperplane. They are distinguished according to their time complexity
with varying page capaci:

¢ The exponential algorithm [Gut 84]:
This algorithm encounters alfistributions and determines the distribution with
the lowest volume.

« The quadratic algorithm [Gut 84]:
Here, the distribution process starts with the two objects which would waste the
largest volume put in one group (tbeeds). Iteratively, two groups are built by
determining the volume enlargement in group 1 and growe;2a6dve,, respec-
tively) for each object not yet assigned to a group. The element where the differ-
ence betweenme; andve, reaches its maximum is assigned to the group with the
smaller enlargement.

¢ The linear algorithm [Gut 84]:

42 Query Processing in High-Dimensional Data Spaces

The linear algorithm is identical with the quadratic algorithm up to the seed deter-
mination. For each dimension, the rectangle with the smallest lower boundary and
the rectangle with the highest upper boundary are chosen. The distance is normal-
ized by the sum of the extensions of all rectangles. The pair having the largest nor-
malized distance is used as seed.

Greene'’s algorithm [Gre 89]:

First, the split axis is chosen. Then, the objects are distributed into two equally
sized groups by sorting according to the lower boundary of the object in the corre-
sponding dimension. The choice of the split axis is handled similar to the determi-
nation of the seeds in the quadratic algorithm.

While Guttman [Gut 84] reports only slight differences between the linear and the qua-
dratic algorithm, an evaluation study performed by Beckmann, Kriegel, Schneider and
Seeger [BKSS 90] reveals disadvantages for the linear algorithm. The quadratic algo-
rithm and Greene’s algorithm are reported to yield similar search performance.

2.4.2 R'-tree
The R -tree [BKSS 90] is an extension of the R-tree based on a careful study of the R-
tree algorithms under various data distributions. In contrast to Guttman who optimizes
only for a small volume of the created page regions, Beckmann, Kriegel, Schneider and
Seeger identify the following optimization objectives:

* minimize overlap between page regions

* minimize the surface of page regions

* minimize the volume covered by internal nodes

* maximize the storage utilization.

The heuristic for the choice of a suitable page to insert a point is modified in the third
alternative: No page region contains the point. In this case, the distinction is made
whether the child page is a data page or a directory page. If it is a data page, then the
region is taken which yields the smallest enlargement of the overlap. In case of a tie,
further criteria are the volume enlargement and the volume. If the child node is a direc-
tory page, the region with the smallest volume enlargement is taken. In case of doubt, the
volume decides.

Like in Greene’s algorithm, the split heuristic has two phases. In the first phase, the
split dimension is determined as follows:

Previous Approaches to High-Dimensional Indexing 43

« For each dimension, the objects are sorted according to their lower bound and
according to their upper bound.

« A number of partitionings with a controlled degree of asymmetry is encountered.

» For each dimension, the surface areas oMB®&s of all partitionings are summed
up and the least sum determines the split dimension.

In the second phase, the split plane is determined, minimizing the following criteria:
« overlap between the page regions
« in doubt, least coverage of dead space.

Splits can often be avoided by the concegbufed re-insert. If a node overflow occurs,

a defined percentage of the objects with the highest distances from the center of the
region are deleted from the node and inserted into the index again, after the region has
been adapted. By this means, the storage utilization will grow to a factor between 71 %
and 76 %. Additionally, the quality of partitioning improves because unfavorable deci-
sions in the beginning of the index construction can be corrected in this way.

Performance studies report improvements between 10 % and 75 % over the R-tree. In
higher-dimensional data spaces, the split algorithm proposed in [BKSS 90] leads to a
deteriorated directory. Therefore, the®ee is not adequate for these data spaces, rather
it has to load the entire index in order to process most queries. A detailed explanation of
this effect is given in [BKK 96].

2.4.3 X-tree

The R-tree and the'Rree have primarily been designed for the management of spatially
extended 2-dimensional objects, but also been used for high-dimensional point data.
Empirical studies [BKK 96, WJ 96], however, showed a deteriorated performance of the
R-trees for high-dimensional data. The major problem of R-tree-based index structures
in high-dimensional data spaces is the overlap. In contrast to low-dimensional spaces,
there exists only few degrees of freedom for splits in the directory. In fact, in most
situations there exists only a single “good” split axis. An index structure that does not
use this split axis will produce highly overlapping MBRs in the directory and thus show
a deteriorated performance in high-dimensional spaces. Unfortunately, this specific split
axis might lead to unbalanced partitions. In this cases, a split should be avoided in order
to avoid underfilled nodes.

44 Query Processing in High-Dimensional Data Spaces

Split Tree
2\
B] (5) - @
Nodes
‘A HA’B HA’B’C ‘A’ B"C D ‘A”B"C D E

Figure 20: Example for the Split History.

The X-tree [BKK 96] isan extension of the R"-tree which is directly designed for the
management of high-dimensional objects and based on the analysis of problems arising
in high-dimensional data spaces. It extends the R"-tree by two concepts:

« overlap-free split according to a split-history
« supernodes with an enlarged page capacity

If one records the history of data page splits in an R-tree based index structure, this
results in a binary tree: The index starts with a single datafageering almost the
whole data space and inserts data items. If the page overflows, the index splits the page
into two new pageA’ and B. Later on, each of these pages might be split again into new
pages. Thus, the history of all splits may be described as a binary tree, having split
dimensions (and positions) as nodes and having the current data pages as leave nodes.

Figure 20 shows an example for such a process. In the lower half of the figure, the
according directory node is depicted. If the directory node overflows, we have to divide
the set of data pages (the MBRsA”, B”, C, D, E) into two partitions. Therefore, we have
to choose a split axisfirst. Now, what are potential candidatesfor split axisin our exam-
ple? Say, we choose dimension 5 as asplit axis. Then, we had to put A” and E into one
of the partitions. However, A” and E have never been split according to dimension 5.
Thus, they span almost the whol e data space in this dimension. If we put A” and E into
one of the partitions, the MBR of this partition in turn will span the whole data space.
Obviousdly, thisleadsto a high overlap with the other partition, regardless of the shape of
the other partition. If one looks at the example in figure 20, it becomes clear that only

Previous Approaches to High-Dimensional Indexing 45

&%
X
=

Figure 21: The kd-tree.

dimension 2 may be used as a split dimension. The X-tree generalizes this observation

and uses always the split dimension with which the root node of the particular split tree

is labeled. This guarantees an overlap free directory. However, the split tree might be
unbalanced. In this case it is advantageous not to split at all because splitting would

create one underfilled node and another almost overflowing node. Thus, the storage
utilization in the directory would decrease dramatically and the directory would degen-

erate. Inthis casethe X-tree does not split and creates an enlarged directory nodeinstead

— a supernode. The higher the dimensionality, the more supernodes will be created and
the larger the supernodes become. To also operate on lower-dimensional spaces effi-
ciently, the X-tree split algorithm also includes a geometric split algorithm. The whole
split algorithm works as follows: In case of a data page split, the X-tree usesttiee R

split algorithm or any other topological split algorithm. In case of directory nodes, the X-
tree first tries to split the node using a topological split algorithm. If this split would lead

to highly overlapping MBRs, the X-tree applies the overlap-free split algorithm based on
the split history as described above. If this leads to a unbalanced directory, the X-tree
simply creates a supernode.

The X-tree shows a high performance gain compared to ‘tee8s for all query
types in medium-dimensional spaces. For small dimensions, the X-Tree shows a behav-
ior almost identical to the R-trees, for higher dimensions the X-tree also has to visit such
a large number of nodes that a linear scan is less expensive. It is impossible to provide
the exact values here because many factors such as the number of data items, the dimen-
sionality, the distribution, and the query type have a high influence on the performance
of an index structure.

46 Query Processing in High-Dimensional Data Spaces

/

Figure 22: The k-d-B-tree.

2.4.4 k-d-B-tree

Like the R-tree and its variants, the k-d-B-tree [Rob 81] uses hyperrectangle shaped
page regions. An adaptive kd-tree [Ben 75, Ben 79] is used for space partitioning (cf.
figure 21). Therefore, compl ete and disjoint space partitioning is guaranteed. Obviously,
the page regions are (hyper-) rectangles, but not minimum bounding rectangles. The
general advantage of kd-tree based partitioning isthat the decision which subtreeisused
isaways unambiguous. The deletion operation is also supported in a better way thanin
R-tree variants because theleave nodes with acommon parent exactly comprise ahyper-
rectangle of the data space. Thus, they can be merged without violating the conditions of
complete and digjoint space partitioning.

Complete partitioning hasthe disadvantagethat pageregionsaregenerally larger than
necessary. Therefore, these pages are more often accessed during query processing than
minimum bounding page regions. The second problemisthat kd-trees usually are unbal-
anced. Therefore, it is not directly possible to pack contiguous subtrees into directory
pages. The k-d-B-tree approaches this problem by a concept involving forced splits.

If some page has an overflow condition, it is split by an appropriately chosen hyper-
plane. The entries are distributed among the two pages and the split is propagated up the
tree. Unfortunately, regions on lower levels of the tree may be also intersected by the
split plane which must be split (forced split). As every region on the subtree can be
affected, the time complexity of the insert operation is O (n) in the worst case. A mini-
mum storage utilization guarantee cannot be provided. Therefore, theoretical consider-
ations about the index size are difficult.

Previous Approaches to High-Dimensional Indexing 47

P2 8 8 jdrilﬁeercrt]glry
P1
X FraEE)
> Ps Duu data pages

Figure 23: The LSD"-tree.

2.45 LSDM-tree

The directory of the LSDM-tree [Hen 98, HSW 89] is also an adaptive kd-tree
[Ben 75, Ben 79]. In contrast to R-tree variants and k-d-B-tree, the region description is
coded in a sophisticated way leading to reduced space requirement for the region de-
scription. A specialized paging strategy collects parts of the kd-treeinto directory pages.
Somelevelson the top of the kd-tree are assumed to be fixed in the main memory. They
are called internal directory in contrast to the external directory which is subject to
paging. In each node, only the split axis (e.g. 8 bit for up to 256-dimensional data spaces)
and the position where the split-plane intersects the split axis (e.g. 32 bit for a float
number) have to be stored. Two pointers to child nodes require 32 bit each. To describe
k regions, (k—1) nodes are required, leading to atotal amount of 104 [{k—1) bit for
the complete directory. R-tree like structures require for each region description two
float values for each dimension plus the child node pointer. Therefore, only the lowest
level of the directory needs (32 + 64 [d) [k bit for the region description. While the
space requirement of R-tree directory grows linearly with increasing dimension, it is
constant (theoretically logarithmic, for very large dimensionalities) for the LSDM-tree.
For 16-dimensional data spaces, R-tree directories are more than ten times larger than
the corresponding L SDM-tree di rectory.

The rectangle representing the region of adata page can be determined from the split
planesin the directory. It is called the potential data region and not explicitly stored in
the index.

One disadvantage of the kd-tree directory isthat the data space is compl etely covered
with potential dataregions. In cases where major parts of the data space are empty, this
resultsin performance degeneration. To overcomethisdrawback, aconcept called coded

48 Query Processing in High-Dimensional Data Spaces

.7 |apotential dataregion

coded actual dataregion

I actual dataregion (MBR)

Figure 24: Region Approximation Using the LSD"-tree.

actual data regions cadr isintroduced. The cadr is amultidimensional interval conser-
vatively approximating the MBR of the points stored in adatapage. To save spacein the
description of the cadr, the potential data region is quantized into a grid of 2*" cells.
Therefore, only 2 [z (W bitsare additionally required for each cadr. The parameter zcan
be chosen by the user. Good results are achieved by using avalue of z=5.

The most important advantage of the complete partitioning using potential data re-
gionsis that they allow a maintenance guaranteeing no overlap. The description page
regionsin terms of splitting planesforces the regionsto be overlap-free, anyway. When
apoint hasto beinserted into an LSDM-tree, there exists aways aunique potential data
region in which the point hasto be inserted. In contrast, the MBR of an R-tree may have
to be enlarged for an insert operation which causes an overlap between data pages in
some cases. A situation where no overlap-free enlargement is possible, is depicted in
figure 25. The coded actual dataregions may have to be enlarged during an insert oper-
ation. Since they are completely contained in a potential page regions an overlap cannot
arise.

The split strategy for LSDM-treesisrather simple. The split dimension isincreased by
one compared to the parent node in the kd-tree directory. The only exception from this

Figure 25: Situation in R-tree Variants where no Overlap-Free Insert is Possible.

Previous Approaches to High-Dimensional Indexing 49

Figure 26: Situation in the SS-tree where no Overlap-Free Split is Possible.

ruleisthat adimension having too few distinct values for splitting is left out of consid-
eration.

Asreported in [Hen 98], the LSD-tree shows a performance that is very similar to
that of the X-tree, except the fact that inserts are done much faster in an LSDM-tree
because no complex computation takes place. Using a bulk-loading technique to con-
struct theindex, both index structures are equal in the performance. Also from animple-
mentation point of view, both structures are of similar complexity: TheL SDM-treehasa
rather complex directory structure and simple algorithms, whereas the X-tree has arath-
er straightforward directory and complex algorithms.

2.4.6 SS-tree

In contrast to all previously introduced index structures, the SS-tree [WJ96] uses
spheres as page regions. For efficiency, the spheres are not minimum bounding spheres.
Rather, the centroid point (i.e. the average value in each dimension) is used as center for
the sphere and the minimum radius is chosen such that al objects are included in the
sphere. Therefore, the region description comprises the centroid point and the radius.
This allows an efficient determination of the MINDIST and the MAXDIST, but not of
the MINMAXDIST. The authors suggest using the RKV algorithm, but they do not
provide any hints how to prune the branches of the index efficiently.

For insert processing, thetreeis descended choosing the child node whose centroid is
closest to the point, regardless of volume or overlap enlargement. Meanwhile, the new
centroid point and the new radius is determined. When an overflow condition occurs, a
forced reinsert operationisraised, likein the R"-tree. 30% of the objectswith the highest
distances from the centroid are deleted from the node, al region descriptions are updat-
ed, and the objects are reinserted into the index.

50 Query Processing in High-Dimensional Data Spaces

The split determination is merely based on the criterion of variance. First, the split
axisis determined as the dimension yielding the highest variance. Then, the split plane
isdetermined by encountering all possible split positions which fulfill the space utiliza-
tion guarantees. The sum of the variances on each side of the split planeis minimized.

The general problem of spheresisthat they are not amenable to an easy, overlap-free
split as depicted in figure 26. Therefore, the SS-tree outperformsthe R"-tree by afactor
of 2, however, it does not reach the performance of the LSDM-tree and the X-tree.

2.4.7 TV-tree

The TV-tree [LJF 95] is designed especially for real data that are subject to the Kar-
hunen-Loéve-Transform (also known as principal component analysis), a mapping
which preserves distances and eliminates linear correlations. Such data yield a high vari-
ance and therefore, a good selectivity in the first few dimensions while the last few
dimensions are of minor importance for query processing. Indexes storing KL-trans-
formed data tend to have the following properties:

» The last few attributes are never used for cutting branches in query processing.
Therefore, it is not useful to split the data space in the corresponding dimensions.

« Branching according to the first few attributes should be performed as early as pos-
sible, i.e. in the topmost levels of the index. Then, the extension of the regions of
lower levels (especially of data pages) is often zero in these dimensions.

Regions of the TV-tree are described by so-called Telescope Vectors (TV), i.e. vectors
which may be dynamically shortened. A region kasactive dimensions anal active
dimensions. The inactive dimensions form the greatest common prefix of the vectors
stored in the subtree. Therefore, the extension of the region is zero in these dimensions.
Inthea active dimensions, the region has the form ofgsphere wherp may be 1, 2

or o . The region has an infinite extension in the remaining dimensions which are sup-
posed either to be active in the lower levels of the index or to be of minor importance for
query processing. Figure 27 depicts the extension of a telescope vector in space.

The region description comprises floating point values for the coordinates of the
center point in the active dimensions and one float value for the radius. The coordinates
of the inactive dimensions are stored in higher levels of the index (exactly in the level
where a dimension turns from active into inactive). To achieve a uniform capacity of
directory nodes, the number of active dimensions is constant in all pages. The concept

Previous Approaches to High-Dimensional Indexing 51

ol

Ry
g R
0
13
£65
B0
856
SgE
x5 g
)
Rk = Rd{x
Rk+1 = Rd4:>(+1
2
Lo
20
oc
T T
o E
o
Rq
Rd+1
Rn»l
Rn

—

r

Figure 27: Telescope Vectors.

of telescope vectors increases the capacity of the directory pages. It was experimentally
determined that alow number of active dimensions (o = 2) yields the best search per-
formance.
The insert-algorithm of the TV-tree chooses the branch to insert a point according to

the following criteria (with decreasing priority):

* minimum increase of the number of overlapping regions

* minimum decrease of the number of inactive dimensions

* minimum increase of the radius

* minimum distance to the center.

To cope with page overflows, the authors propose to perform a re-insert operation, like
in the R-tree. The split algorithm determines the two seed-points (seed-regions in case
of a directory page) which have the least common prefix or (in case of doubt) the maxi-

52 Query Processing in High-Dimensional Data Spaces

{

Figure 28: Page Regions of an SR-tree.

mum distance. The objects are then inserted into one of the new subtrees using the above
criteria for the subtree choice in insert processing while the storage utilization guaran-
tees are considered.

The authors report a good speed-up in comparison for to the R"-tree when applying
the TV-tree to data that fulfills the precondition stated in the beginning of this section.
Other experiments [BKK 96] however show that the X-tree and the LSDM-tree outper-
form the TV-tree on uniform or other real data (not amenableto the KL transformation).

2.4.8 SR-tree

The SR-tree [KS 97] can be regarded as the combination of the R"-tree and the SS-tree.
It uses the intersection solid between arectangle and a sphere as page region. The rect-
angular part is, like in R-tree variants, the minimum bounding rectangle of all points
stored in the corresponding subtree. The spherical part is, like in the SS-tree, the mini-
mum sphere around the centroid of the stored objects. Figure 28 depicts the resulting
geometric object. Regions of SR-trees have the most complex description among all
index structures presented in this chapter: It comprises 2d floating point values for the
MBR and d + 1 floating point values for the sphere.

The motivation for using a combination of sphere and rectangle as presented by the
authorsisthat according to the analysis presented in [WJ 96], spheres are basically bet-
ter suited for processing nearest neighbor queries and range queries using the L ,-metric.
We will present the theoretical framework for amore careful evaluation of this aspectin
chapter 3. On the other hand, spheres are difficult to maintain and tend to produce much

Previous Approaches to High-Dimensional Indexing 53

q

i

MMBR/MR

Figure 29: Incorrect MINDIST in the SR-tree.

overlapin splitting as depicted previously in figure 26. Theauthors believetherefore that
acombination of R-tree and SS-tree will overcome both disadvantages.

The authors define the following function asthe distance between aquery point g and
aregionR:
MINDIST(q, R) = max(MINDIST (g, RMBR), MINDIST(q, R.Sphere))

This is not the correct minimum distance to the intersection solid, as depicted in
figure 29 (which is drawn slightly too extreme, to make the problem visible): Both dis-
tancesto the M BR and the sphere (meeting the corresponding solids at the points My;gr
and Mgghere, respectively) are smaller than the distance to the intersection solid which is
met in point Mg wherethe sphereintersects the rectangle. However, it can be shown that
the above function MINDIST(q, R) is alower bound of the correct distance function.
Therefore, it is guaranteed that processing of range queries and nearest neighbor queries
produces no false dismissals. But still, the efficiency can be worsened by the incorrect
distancefunction. TheMAXDIST function can be defined to be the minimum among the
MAXDIST functions applied to MBR and sphere although a similar error ismade asin
the definition of MINDIST. Since no MINMAXDIST definition exists for spheres, the
MINMAXDIST function for the MBR must be applied. Thisisalso correct in the sense
that no false dismissals are guaranteed but in this case no knowledge about the sphereis
exploited at all. Some potential for performance increase is wasted.

Using the definitions above, range query processing and nearest neighbor query pro-
cessing using both RKV algorithm and HS algorithm is possible.

Insert processing and split algorithm are taken from the SS-tree and only modified in
afew details of minor importance. Additionally to the agorithms for the SS-tree, the
MBRs have to be updated and determined after inserts and node splits. Information of

54 Query Processing in High-Dimensional Data Spaces

Z-Ordering Hilbert Curve Gray Codes

Figure 30: Examples of Space Filling Curves.

the MBRsis neither considered in the choice of branches nor in the determination of the
split.

The reported performance results, compared to the SS-tree and the R'-tree, suggest
that the SS-tree outperforms both index structures. It is, however, open if the SR-tree
outperformsthe X-treeor the LSDM-tree. No experimental comparison hasbeen doneyet
to the best author’s knowledge. Comparing the index structures indirectly by comparing
both to the performance of thé Ree, we could draw the conclusion that the SR-tree
does not reach the performance of the Ps@e or the X-tree.

2.4.9 SpaceFilling Curves

Space filling curves [Sag 94] like Z-Ordering [Mor 66, FB 74, AS 83, OM 84], Gray
Codes [Fal 85, Fal88] or the Hilbert Curve [FR 89, Jag 90] are mappings fidbm a
dimensional data space (original space) into a one-dimensional data space (embedded
space). Using space filling curves, distances are not exactly preserved but points that are
close to each other in the original space are likely to be close to each other in the embed-
ded space. Therefore, these mappings are called distance-preserving mappings.

Z-Ordering is defined as follows: The data space is first partitioned into two halves of
identical volume perpendicular to ttig-axis.The volume on the side of londggvalues
gets the name <0> (as a bit string), the other volume gets the name <1>. Then, each of
the volumes is partitioned perpendicular to dgexis, and the resulting sub-partitions
of <0> get the names <00> and <01>, the sub-partitions of <1> get the names <10> and
<11>, respectively. When all axis are used for splittilydgs used for a second split, and
so on. The process stops when a user-defined basic resddui®reached. Then, we
have a total number oP2grid cells, each with an individual bit string identified. If only
grid cells with the basic resolutidmr are considered, all bit strings have the same

Previous Approaches to High-Dimensional Indexing 55

=

Figure 31: MINDIST Determination Using Space Filling Curves.

lengths, and can therefore be interpreted as binary representations of integer numbers.
The other space-filling curves are defined similarly but the numbering schemeisslightly
more sophisticated. This has been done in order to achieve that more neighboring cells
get subsequent integer numbers. Some two-dimensional examples of space filling
curves are depicted in figure 30.

Data points are transformed by assigning the number of the grid cell they are located
in. Without presenting the details, we let SFC (p) be the function that assigns p to the
corresponding grid cell number. Vice versa, SFC'l(c) returnsthe corresponding grid cell
as a hyperrectangle. Then, any one-dimensional indexing structure capable of process-
ing range queries can be applied for storing SFC(p) for every point p in the database. We
assumein the following that a B*-tree [Com 79] is used.

Processing of insert and delete operations and exact match queries is very simple
because the points inserted or sought have merely to be transformed by the SFC func-
tion.

In contrast, range queries and nearest neighbor queries are based on distance calcula-
tions of page regionswhich haveto be determined accordingly. In B-trees, before apage
isaccessed, only theinterval | = [Ib .. ub] of valuesin this pageisknown. Therefore, the
page region is the union of all grid cells having a cell number between Ib and ub. The
region of an index based on a space filling curve is a combination of rectangles. Based
on this observation, we can define a corresponding MINDIST and analogously a
MAXDIST function:

MINDIST(q, 1) = MIN {MINDIST(q, SFC™'(0))}

Ib<c<ub

MAXDIST(q,1) = MAX {MAXDIST(q, SFC(c))}

Ib<c<ub

56 Query Processing in High-Dimensional Data Spaces

Again, no MINMAXDIST function can be provided because there is no minimum
bounding property to exploit. The question is, how these functions can be evaluated
efficiently without enumerating all grid cellsintheinterval [Ib .. ub]. Thisispossible by
splitting the interval recursively into two parts[lb .. 5[and [s .. ub] where shasthe form
<p100...00>. Here, p stands for the longest common prefix of Ib and ub. Then, we deter-
minethe MINDIST and the MAXDIST to therectangular blocks numbered with the bit-
strings <p0> and <p1>. Any interval having aMINDIST greater than the MAXDIST of
any other interval or greater than the MINDIST of any terminating interval (see later)
can be excluded from further consideration. The decomposition of an interval stops
when the interval covers exactly one rectangle. Such an interval is called a terminal
interval. MINDIST (q, I) is then the minimum among the MINDISTs of all terminal
intervals. An exampleis presented in figure 31. The shaded areaisthe page region, a set
of contiguous grid cell values|. Inthefirst step, theinterval is split into two parts |, and
I, determining the MINDIST and MAXDIST (not depicted) of the surrounding rectan-
gles. |, isterminal, becauseit comprisesarectangle. In the second step, |, issplitinto |,y
and |, where |, is terminal. Since the MINDIST to |, is smaller than the other two
MINDIST values, I, and |, are discarded. Therefore MINDIST (q, I,;) is equal to
MINDIST (g, I).

A similar algorithm to determine MAXDIST (g, I) would exchange the roles of
MINDIST and MAXDIST.

2.4.10 Summary

Table 1 showsthe index structures described above in an overview. Asthe most impor-
tant propertiesweidentified the shape of the page regions, disjointedness and compl ete-
ness and the most relevant decisions in the construction and maintenance of the index.
As shape of the regions, we have rectangles, spheres and intersections and unions. If the
rectangles are minimum bounding rectangles, thisis marked in the table. Digjointedness
means that the regions are not allowed to overlap. Thisisonly guaranteed in the k-d-B-
tree, the LSDM-treeand in space-filling curves. Completeness means that the whole data
spaceiscovered with pageregions. Also large empty parts of the data space are assigned
to some data page. The LSDy-tree has both, complete covering page regions and addi-
tionally page regionswhich are not extended over empty space. Thecriteriafor choosing
a subtree in performing an insert operation are based on proximity, volume, volume
enlargement etc. The complete, and disjoint coverage of the data space with pageregions

Previous Approaches to High-Dimensional Indexing

57

yields the advantage that the page where the point must be inserted, is always unique.

Therefore, no heuristics must be applied. When more than one criterion is mentioned,

the first has the highest weight, subsequent criteriaare only applied if thefirst criterion

yields atie. The next row in the table summarizes the criteriafor the choice of the split

axis and the split plane. The last information in thetableisif theindex structuretriesto

perform aforced re-insert operation before splitting a page.

Name Region Disjoint | Complete Criteriafor Insert Criteriafor Split Reinsert
R-tree MBR no no volume enlargement (various agorithms) no
volume
overlap enlargement surface area
R’-tree MBR no no volume enlargement overlap yes
volume dead space coverage
overlap enlargement split history
X-tree MBR no no volume enlargement surface/overlap no
volume dead space coverage
kdB- | tangle es es (unique due to com- clic change of dim no
tree d y y plete, disioint part.) & g)
LsDM- kd-tree (unique dueto com- | cyclic change of dim.
tree region yes noyes plete, disoint part.) # of distinct values no
SS-tree sphere no no proximity to centroid variance yes
sphere # _overl.appl r_1g reg! ons seeds with |east com-
with # inactive dimensions .
TV-tree no no) ; mon prefix yes
reduced radius of region) }
) . h maximum distance
dimension distance to center
intersect.
SR-tree sphere/ no no proximity to centroid variance yes
MBR
g)q:e union of (unique due to com- according to space
filling yes yes - - no
curves rectangles plete, disjoint part.) filling curve

Table 1: High-dimensional index structures and their properties

58

Query Processing in High-Dimensional Data Spaces

59

Chapter 3

A Cost Model for Query
Processing in High-Dimensional
Data Spaces

The aim of this chapter isto provide an introduction to the basic principles of cost mod-
eling and to develop a cost model for high-dimensional query processing applicable to
the R-tree like indexing structures. The basic principles presented in this chapter will be
used later for modeling the performance of query processing techniques which are de-
veloped inthisthesis.

There are various factors which have an influence on the performance of index based
query processing. First of all the data set. The efficiency of index-based query process-
ing depends on the dimension of the data space, the number of pointsin the database and
on the data distribution from which the points are taken. Especialy the correlation of
dimensionsisof highimportancefor the efficiency. Correlation meansthat the attributes
of some dimensions are statistically not independent from each other. The value of one
attributeismore or less determined by the val ues of one or more other attributes. In most
cases, thisdependency is not strict, but rather observable by the means of statistics. From
ageometric point of view, correlation means that the data points are not spread over the
complete data space. |nstead, they arelocated on alower-dimensional subset of the data
space which is not necessarily a single linear subspace of the data space. There are
indexing techniqueswhich take profit from the fact that this actual dimension of the data

60 A Cost Model for Query Processing in High-Dimensional Data Spaces

set islower than the dimension of the data space. Other indexing techniques deteriorate
in performance when a high correlation isinherent to the data set.

The metric for measuring the distance between two data points (Euclidean metric,
Manhattan metric, maximum metric) has an important influence on the query perfor-
mance, too.

A second set of influence factors is connected with the index structure. Most impor-
tant is the shape of the page regions: It can be arectangle, a sphere or acomposed page
region. If it is a rectangle, it can be a minimum bounding rectangle or is it part of a
complete decomposition of the data space such asin the k-d-B-tree or in the L SDM-tree.
Most difficult to capture in amodel are the various heuristics which are applied during
insert processing and index construction. The impact of the heuristic on the volume and
extension of pageregionsisvery hard to quantify. A further influence factor isthelayout
of pages on the secondary storage. If the layout is clustered, i.e. pairs of adjacent pages
arelikely to be near by each other on disk, the performance can beimproved if the query
processing algorithm is conscious of this clustering effect.

A third set of influence factorsis due to the choice of the query processing algorithm.
Aswe pointed out in chapter 2, the HS algorithm ayields better performance in terms of
page accesses than the RKV algorithm. Disk clustering effects can be exploited by algo-
rithms considering the rel ative positions of pages on the background storage.

The outline of this chapter is as follows:. After reviewing some related work on cost
models, we start with the introduction of modeling range queries assuming an indepen-
dent and uniform distribution of the data points. Moreover, we assume in the beginning
that queries do not touch the boundary of the data space. Range queries are transformed
into equivalent point queries by accordingly adapting the page regions. The central con-
cept for this compensating adaptation is called Minkowski sum or Minkowski enlarge-
ment. We determine from the Minkowski sum the access probability of pages and use
this access probability to devel op an expectation for the number of page accesses. Inthe
next section, nearest neighbor queries evaluated by the HS algorithm are modeled. This
is conceptually done by areduction step which transforms nearest neighbor queriesinto
an equivalent range query. The corresponding range r can be estimated by a probability
density function p(r) using r as variable.

The simplifying assumptions of auniform and independent data distribution and the
ignorance of data space boundaries will be dropped step by step in the subsequent sec-

61

tions. First, the so-called boundary effects are introduced and shown to be important in
high-dimensional data spaces. Our model is modified to take boundary effects into ac-
count. Then, we consider non-uniform data distributions which are independent in all
dimensions. As the last step, we formalize correlations by the means of the fractal di-
mension and integrate this concept into our cost models for range queries and nearest
neighbor queries.

Inthelast section, we will show, how the number of page accesses correspondsto the
processing time of query processing. For this purpose, we introduce a model for data
accessin large, independent blocks from secondary storage (disk drive modeling).

Due to the high variety of cost estimates we will develop in this chapter the notions
and the identifiers we have to use are complex. There are a few general identifiers for
basic cost measures which will be used throughout this chapter:

\% for somevolume

R for the expected distance between a query point and its nearest neighbor
P for some probability distribution function

X for the access probability of anindividual page

A for the expectation of the number of page accesses.

The boundary conditionsfor the corresponding cost measure such as the distance metric
and basic assumptions such as uniformity or independence in the distribution of data
points are marked by subscripted indices of the general identifiers. For instance,
XnnemIdui Means the access probability for a nearest neighbor query (nn) using the
Euclidean metric (em) on alow-dimensiona data space (Id) under uniformity and inde-
pendence assumption (ui). We distinguish:

- the query type: range query (r), nearest neighbor (nn) and k-nearest neighbor (knn)

- the applied metric: Euclidean metric (em) and maximum metric (mm)

- the assumed dimensionality: low-dimensional (Id) and high-dimensional (hd)

- the data distribution assumption: uniform/independent (ui), correlated (cor).
Especially the metric identifier (em or mm) is sometimes left out if an equation isvalid
for all applied metrics. In this case, al termslacking the metric specification are under-
stood to be substituted by the same metric, of course. Thevolume V is specified by afew
indicesindicating the geometric shape of the volume. Basic shapes are the hyper-sphere
(), the hyper-cube (c) and the hyper-rectangle (r). The Minkowski sum (cf. section 3.2)
of two solids o, and o, ismarked by aplussymbol (o, O 0,). Theclipping operation (cf.
section 3.4) ismarked by the intersection symbol (0, n 0,).

62 A Cost Model for Query Processing in High-Dimensional Data Spaces

3.1 Review of Related Cost Models

Dueto the high practical relevance of nearest neighbor queries, cost models for estimat-
ing the number of necessary page accesses have already been proposed severa years
ago. The first approach is the well-known cost model proposed by Friedman, Bentley
and Finkel [FBF 77] for nearest neighbor query processing using maximum metric. The
original model estimates|eaf accessesin akd-tree, but can be easily extended to estimate
data page accesses of R-treesand related index structures. This extension was published
in 1987 by Faloutsos, Sellis and Roussopoulos [FSR 87] and with slightly different as-
pects by Aref and Samet in 1991 [AS 91], by Pagel, Six, Toben and Widmayer in 1993
[PSTW 93] and by Theodoridis and Sellis in 1996 [TS 96]. The expected number of
page accessesin an R-treeis

g —1- + 1%d.

A
Ceit

nn,mm,FBF =

The assumptions of the model, however, are unrealistic for nearest neighbor queries
on high-dimensional datafor several reasons. First, the number N of objectsin the data-
base is assumed to converge to the infinity. Second, effects of high-dimensional data
spaces and correlations are not considered by the model. Cleary [Cle 79] extends the
model of Friedman, Bentley and Finkel [FBF 77] by alowing non-rectangular page re-
gions, but still does not consider boundary effects and correlations. Eastman [Eas 81]
uses the existing models for optimizing the bucket size of the kd-tree. Sproull [Spr 91]
shows that the number of data points must be exponential in the number of dimensions
for the models to provide accurate estimates. According to Sproull, boundary effects
significantly contribute to the costs unless the following condition holds:

where V((r) isthe volume of a hypersphere with radius r which can be computed as

Jrf

Vs() = Fa/2+ 1)

with the gamma-function "'(x) which is the extension of the faculty operation into the
domain of real numbers: '(x+ 1) = xO'(x),M(1) = 1 and r(%) = Jm.

Review of Related Cost Models 63

20000

15000

—&—X-tree
—— FBF-Model

10000 -

5000 - //
0
2 4 8 16 32
Dimension

Number of Page Accesses

Figure 32: Evaluation of the model of Friedman, Bentley and Finkel.

Unfortunately, Sproull still assumes for his analysis uniformity and independencein
the distribution of data points and queries.

The assumptions made in the existing models do not hold in the high-dimensional
case. The main reason for the problems of the existing modelsisthat they do not consid-
er boundary effects. “Boundary effects”stands for an exceptiona performance behav-
ior, when the query reaches the boundary of the data space. Aswe show later, boundary
effects occur frequently in high-dimensional data spaces and lead to pruning of major
amounts of empty search space which is not considered by the existing models. To ex-
amine these effects, we performed experiments to compare the necessary page accesses
with the model estimates. Figure 32 shows the page accesses versus the estimates of the
model of Friedman, Bentley and Finkel. For high-dimensiona data, the model com-
pletely failsto estimate the number of page accesses.

The basic model of Friedman, Bentley and Finkel has been extended in two different
directions. Thefirst isto take correlation effects into account by using the concept of the
fractal dimension [Man 77, Sch 91]. There are various definitions of the fractal dimen-
sionwhichall capturetherelevant aspect (the correlation), but aredifferent in the detail s,
how the correlation is measured. We will not distinguish between these approaches in
our subsequent work.

Faloutsos and Kamel [FK 94] used the box-counting fractal dimensiofalso known
as the Hausdorff fractal dimensigrfor modeling the performance of R-trees when pro-
cessing range queries using maximum metric. In their model they assume to have a
correlation in the points stored in the database. For the queries, they still assume a uni-
form and independent distribution. The analysis does not take into account effects of

64 A Cost Model for Query Processing in High-Dimensional Data Spaces

high-dimensional spaces and the evaluation is limited to data spaces with dimensions
less or equal to 3. Belussi and Faloutsos [BF 95] used in a subsequent paper the fractal
dimension with adifferent definition (the correlation fractal dimension) for the selectiv-
ity estimation of spatial queries. In this paper, range queries in low-dimensional data
spaces using Manhattan metric, Euclidean metric and maximum metric were modeled.
Unfortunately, the model only allows the estimation of selectivities. It is not possible to
extend the model in a straightforward way to determine expectations of page accesses.

Papadopoulos and Manolopoulos used the results of Faloutsos and Kamel and the
results of Belussi and Faloutsos for a new model published in arecent paper [PM 97].
Their model is capable of estimating data page accesses of R-trees when processing
nearest neighbor queriesin a Euclidean space. They estimate the distance of the nearest
neighbor by using the selectivity estimation of Belussi and Faloutsos [BF 95] in the
reverse way. We will point out in section 3.3 that this approach is problematic from a
statistical point of view. Asit isdifficult to determine accesses to pages with rectangular
regions for spherical queries, they approximate query spheres by minimum bounding
and maximum enclosed cubes and determine upper and lower bounds of the number of
page accesses in this way. This approach makes the model inoperative for high-dimen-
sional data spaces, because the approximation error grows exponentially withincreasing
dimension. A further asset of the model of Papadopoul os and Manolopoulosisthat que-
ries are no longer assumed to be taken from a uniform and independent distribution.
Instead, the authors assume that the query distribution follows the data distribution.

The concept of fractal dimension isaso widely used in the domain of spatial databas-
es, where the complexity of stored polygons is modeled [Gae 95, FG 96]. These ap-
proaches are of minor importance for point databases.

The second direction, where the basic model of Friedman, Bentley and Finkel needs
extension, are the boundary effects occurring when indexing data spaces of higher di-
mensionality.

Arya, Mount and Narayan [AMN 95, Ary 95] presented a new cost model for pro-
cessing nearest neighbor queriesin the context of the application domain of vector quan-
tization. Arya, Mount and Narayan restricted their model to the maximum metric and
neglected correlation effects. Unfortunately, they still assume that the number of points
is exponential with the dimension of the data space. This assumption isjustified in their
application domain, but it is unrealistic for database applications.

Range Query 65

Figure 33: The Minkowski Sum.

Berchtold, B6hm, Keim and Kriegel [BBKK 97] presented in 1997 a cost model for
query processing in high-dimensional data spaces. It provides accurate estimates for
nearest neighbor queries and range queries using the Euclidean metric and considers
boundary effects and avoids the disadvantages. To cope with correlation, the authors
propose to use the fractal dimension without presenting the details. The main limitation
of the model are (1) that no estimate for the maximum metric is presented, (2) that the
number of data pages is assumed to be a power of two and (3) that a complete, overlap-
free coverage of the data space with data pages is assumed. Weber, Schek and Blott
[WSB 98] use the cost model by Berchtold et al. without the extension for correlated
data to show the superiority of the sequential scan in sufficiently high dimensions. They
present the VA-file, an improvement of the sequential scan.

In contrast to previous publications, the goal of this chapter is to present the basic
principles of cost estimation and to derive cost models for various purposes. We derive
models for both query types, range queries and nearest neighbor queries, and we present
all formulas for maximum and Euclidean metric. We show how to cope with boundary
effects, non-uniformity and correlation.

3.2 Range Query

In this section, we assume uniformity and independence in the distribution of both, data
and query points. Moreover, we ignore the existence of a boundary of the data space or
assume at least that page regions and queries are distant enough from the space boundary
that the boundary is not touched. We start with a given page region and a given query
ranger and determine the probability with which the page is accessed, when the query
point is assumed to be uniformly and independently chosen from the data space.

66 A Cost Model for Query Processing in High-Dimensional Data Spaces

3.2.1 TheMinkowski Sum

The corresponding page is accessed, whenever the query sphereintersects with the page
region. To illustrate this, cf. figure 33. In all figures throughout this chapter, we will
symbolize queries by spheres and page regions by rectangles. Also our notions (“query
sphere”,for example) will often reflect this symbolization. We should note that queries
using the maximum metric rather correspond to hypercubes than hyperspheres. We
should further note that not all known index structures use hyperrectangles as page re-
gions. Our concepts presented here are also applicableif the shape of the query iscubical
or the shape of the page region is spherical.

Wetransform the range query into an eguivalent point query by the following consid-
eration: We call the center point of the range query the query anchor. Let us determine
the set of all positionsin the data space, from which the anchor must be taken such that
the page is accessed. It is obvious from the diagram that the page region becomes en-
larged by a sphere of the same radius r whose center point is drawn over the surface of
the pageregion. Asall marked positions are the positions of the query anchor, wherethe
page is accessed, and as all unmarked positions are the positions of the query anchor,
where the page is not accessed, the marked volume divided by the data space volume
directly corresponds to the access probability of the corresponding page. Aswe assume
for simplicity that the unit hypercube [0..1]d is the data space, the data space volume
correspondsto 1.

For the determination of the volume, we have to distinguish various cases. The most
simple case is that both volumes are hyperrectangles with side lengths g and by, for
0<i<d, respectively. In this case, the volume of the Minkowski enlargement corre-
sponds to the volume of the hyperrectangle with side lengths c;, where each ¢; corre-
sponds to the sum of & and b;:

Veor((@g, - 8g_1), (b, ... Bg_1)) = |_| (a+by).
O<i<d

If both volumes, query and region are hypersphereswith radiusrq and r,, the Minkowski
enlargement correspondsto ahyperspherewith radiusr 4+r,,. The corresponding volume
of the hypersphere can be eval uated by the following formula:

d
Tt

d

Vsos(fg p) = Hrg+rp) -
rid. a0
D O

Range Query 67

The evaluation of the volume becomes complex if query and page region are differently
shaped. Inthis case, every vertex of the hyperrectangleis enlarged by apart of a hyper-
sphere. Every edge connecting two vertices of the hyperrectangleisenlarged by acertain
part of a hypercylinder which is spherical in d—1 dimensions. A hyperrectangle has
surfaces of various dimensionalities. Each surface with dimensionality k is enlarged by
a part of a hypercylinder which is spherical in d —k dimensions. In the remaining di-
mensions, the hypercylinder has the shape of the surface segment to which it is connect-
ed.

Before we determine the volume of the Minkowski enlargement in the most complex
case of ahypersphere and a hyperrectangle, let us solve it for the ssimpler case that the
rectangle is a hypercube with side length a. In this case, al k-dimensional surface seg-
ments have the volume aX. Still open is the question, how many such surface segments
exist and what the volume of the assigned part of the hypercylinder is. The number of
surface segments can be determined by a combinatorial consideration. All surface seg-
ments (including the corners and the hyperrectangle itself) can be represented by a d-
dimensional vector over the symbols ‘L, ‘U’ and *’. Here, the symbol ‘L’ stands for the
lower boundary, ‘U’ for theupper boundary and the star stands for the complete edge
connecting the lower and upper boundary. Using this notation, the vertices have no star,
the edges have one star, the 2-dimensional surfaces have two stars in the vector, and so
on. The hyperrectangle itself héistars, no ‘L’ and no ‘U’ in its description vector. The
number ofk-dimensional surface segments corresponds to the number of different de-
scription vectors havingstars. The positions of the stars can be arbitrarily selected from
d positions in the vector, yielding a binomial number of possibilities. The remaitking
positions are filled with the symbols ‘L’ and ‘U’. Therefore, the number of surface seg-
ments SSEGM) equals to:

0 .
sseeMK) = 09 oK.
Ok

Oooo

The fraction of the hypercylinder at each surface segment‘%ﬂﬂerefore, we get the
following formula for the Minkowski sum of a hypersphere with radiasd a hyper-

cube with side length:

68 A Cost Model for Query Processing in High-Dimensional Data Spaces

d—k
at+ S SSEGM(k)DakD%(D"—Dd‘
27" =k, 40
0oz o0

k

Vspo(r, @)
O<k<d

jd—k
EHKD Tt Dd_k.

d—k_ ;0
O<ksd FD 5 +1[|

1
oo
oo

In the most complex case of non-cubical hyperrectangles, the k-dimensional surface
segments must be summed up explicitly, which is a costly operation. Instead of the
binomia multiplied with ak we have to summarize over al k combinations of the side
lengths of the hyperrectangle:

: : N
Verlthd= 3 5y a0
Osksdqilmik}Dz(o.v.d—l)q:l [mn FD > +lB

We should note that in most cases the determination of the Minkowski sum of a hyper-
sphere and a hyperrectangle is an operation which is too costly, because it involves a
number of basi c operations (multiplications), whichisexponential inthedimension. The
explicit determination of the Minkowski sum of areal hyperrectangle and ahypersphere
of high dimensionality must be avoided, even if exactnessis sacrificed.

If the page region isacomposition of rectangles such asin the approaches using space
filling curves, it isa so difficult to determine the volume of the Minkowski enlargement.
It is possible to take the sum of the Minkowski enlargements of the elements of the
composition and to use this sum as an upper bound. If the Minkowski enlargements of
the elements overlap each other, this approach is not a good approximation. It is also
very hard to provide a compensation for the approximation error, especially if the L,
metricisapplied, because the volume of theintersection among several sphereshasto be
estimated.

In both cases, where the determination of aMinkowski sumisdifficult, ausua work-
around isto transform the rectangle or the composition into ahypercube with equivalent
volume. However, exactnessis sacrificed in this approach, because the Minkowski sum
of anon-cubical hyperrectangle islarger than the Minkowski sum of avolume-equiva-
lent hypercube.

Range Query 69

3.2.2 Estimating Rectangular Page Regions

The heuristics of R-tree variants such as the R*-tree and the X-tree strive to create page
regions which yield low overlaps and are hypercube shaped. Therefore, our modeling
approach assumes hypercubes as page regions. As we assume a uniform, independent
data distribution, we can also assume that the volume of an arbitrarily selected regionis
directly proportional to the number of points enclosed in this region. We get the follow-
ing proportionality law for hypercube page regions:

d
Ceff _ VR,nonbound Bnonbound

N Vos 1

It follows that

Ceff

Qnonbound = d N~

In thisformulafor the side length of atypical page region, we assume a complete cover-
age of the data space with page regions. Thisassumption isnot meaningful for minimum
bounding rectangles. Usually, there is a small gap between two neighboring page re-
gions. An expectation for the breadth of this gap under uniformity and independence
assumption can be determined by projecting all points of apage onto the coordinate axis
which is perpendicular to the gap. The average distance between two neighboring pro-
jectionsisobviously 1/ Cy; timesthesidelength of theregion. Thisisalso the expected
value for the breadth of the gap by which the side length of the page region is decreased
compared with angpq,ng. Therefore, the side length of a minimum bounding rectangle
can be estimated as:

1 0 Cer
a= %“ C D nobound - %“ Cefflj[u

The consideration of gaps between page regionsis particularly important if the effective
page capacity is low. Figure 34 shows the impact of the compensation factor on the
volume of the page region. It shows the factor which decreases the volume of a page
region when gaps are considered. The left diagram shows the compensation factor for a
fixed dimension d=16 with varying Cg. The strongest decrease occurs for low capaci-
ties. For a usua capacity between 20 and 40 points per data page, the compensation
factor ranges between 40% and 70%. The right diagram shows the compensation factor

70 A Cost Model for Query Processing in High-Dimensional Data Spaces

:% 08: g 0.8
g ki
E 0.6€ E 06
2 ., g
5 02 5 02
o | o
0 10 20 30 40 50 0 10 20 30 40 50
Capacity Cey Dimensiond

Figure 34: The Compensation Factor for Considering Gaps.

for afixed effective page capacity (30 points) and varying dimension. Most compensa-
tion is necessary for large dimensions.

3.2.3 Expected Number of Page Accesses

By inserting the expected side length a into the formulas for the Minkowski enlarge-
ment, it is possible to determine the access probabilities of typical data pages under
uniformity and independence assumption. Thisis for the maximum metric:

0 1 Corll

- d_ A Oy S
X (r) = (2r+a)” = [2r+ o< -
rmm 0 2 Cad N N

For Euclidean metric, the access probability for range queries with radiusr evaluatesto:

3 OgU_« ok d—k
X () = e[e LS
r.em,ui Ok d—k -
O<ksd r[IT+1EI
0g0 cdﬂ o E
= o~ a C Eﬂ
OsksdeD Eﬁ D rEd k+1D

O

From these access probabilities, the expected number of page accesses can be deter-
mined by multiplying the access probability with the number of datapages N/ C; :

N 1
A mu(r) = %r Oy C—eﬁ +1- C—eij

Nearest Neighbor Query 71

For Euclidean metric, the corresponding result is:

A N gdg Oy ce” D—V ek
r,em,ui(r) - C z C .
ff Ok [I o EI rd Eﬂ KO

Os<ksd
O

3.3 Nearest Neighbor Query

In chapter 2, the optimality of the HS a gorithm for nearest neighbor search was proven.
The HS algorithm yields exactly the same page accesses as an equivalent range query,
i.e. arange query using the distance to the nearest neighbor as query range. Thisprovides
us with a concept to reduce the problem of modeling nearest neighbor queries to the
problem of modeling range queries, which was solved in section 3.2. Therefore, we have
to estimate the nearest neighbor distance.

Like in section 3.2 we start with the assumptions of an independent, uniform data
distribution and we will ignore boundary effects. These effects will be investigated in
depthin section 3.4 and section 3.5.

3.3.1 Coarse Estimation of the Nearest Neighbor Distance

A simple way to estimate the nearest neighbor distance is to choose aspherein the data
space such that an expected value of one data point is contained according to the current
point density and to use the radius of this sphere as an approximation of the actual
nearest neighbor distance. In the case of the maximum metric, we get the following

formula:
1 =V. = (2r)d r = i
N 24/N
For Euclidean metric, the corresponding formulais:
1_y oA e J@T D1
N~ 97 F(d/2+1) ﬁ

Unfortunately, thisapproach is not correct from the point of view of stochastics, because
the operation of building an expectation is not invertible, i.e. the expectation of the
radius cannot be determined from the expectation of the number of pointsin the corre-

72 A Cost Model for Query Processing in High-Dimensional Data Spaces

sponding sphere. The approximation determined by thisformulaisrather coarse and can
be used if afast and simple evaluation is of higher importance than the accuracy of the
model. Thegenera problemisthat even under uniformity and independence assumption
the nearest neighbor distance yields a certain variance, when several range queries are
executed.

3.3.2 Exact Estimation of the Nearest Neighbor Distance
A stochastically correct approach is to determine a distribution function for the nearest
neighbor distance, and to derive an expectation of the nearest neighbor distance fromthe
corresponding probability density function. From this probability density function, the
expectation of the number of page accesses can also be derived.

The distribution function P(r) determines the probability that the nearest neighbor
distance is smaller than the variable r. The nearest neighbor distance is larger thanr if
and only if no data point is contained in the sphere with radiusr. The event ‘distance is
larger than’ is the opposite of the event needed in our distribution function. Therefore,
P(r) is as follows:

P(r) = 1-(1-V(r)".
Due to the convergence of the limit

. kY _ k
ek e

the distribution function can be approximated for a large number of olyjdaysthe
following formula:

P(ry=1-e"0",
This approximation yields negligible relative errors for a I&tgstarting from 100) and
will facilitate the evaluation later.

For maximum metric and Euclidean metric, the probability distribution fun&fon
can be evaluated in the following way:

Pon() = 1-(1—-(2)%",

N
0 Jr ad
Pem(l') = 1—%&—mﬂ B .

Nearest Neighbor Query 73

25

500 d=2 d=8
400 20

Prmm(r)
300 15 Pem(r)
ool | Prm\\Pern) 0
100 5

0 0.001 0.002 0.003 0.004 0.005 0 005 01 015 02 025 03
r r

Figure 35: Probability Density Functions.

From the distribution function P(r) a probability density function p(r) can be derived by
differentiation:

p(r) = 20,

For maximum and Euclidean metric, this evaluates to:

0P (r) dIN N-1
Pan(f) = —5i— = ==0O1-(20%) O2n°,
N
0P (r 0 S a
Ben() = gm()=dENEDl— Jrf e t o
r r g rd2+1) g (d/72+1)

Figure 35 shows some probability density functions for 100,000 uniformly distributed
data pointsin atwo-dimensional and an 8-dimensional data space, respectively.

To determine the expected value of the nearest neighbor distance, the probability
density function multiplied with r must be integrated from O to infinity:
R = J'r Op(r)ar,

0

0

R, = dN DI(l—(Zr)d)N_l[(Zr)dar,
0

74 A Cost Model for Query Processing in High-Dimensional Data Spaces

Ran = dmmf%—

0

N
d d
AT Jd i qd
F/2+D) 5 Tazvn 2

The integration variable is denoted I8y instead of the more usual’‘tb avoid confu-
sion with the identifierd’ standing for the dimension of the data space. The integral is
not easy to evaluate analytically.

3.3.3 Numerical Evaluation

We present two numerical methods to evaluate the integral presented in this chapter
numerically. The first is based on the binomial theorem. Basically, the probability den-
sity functionp(r) is a polynomial of the degreg¢[N . It can be transformed into the
coefficient form p(r) = aordEN+a1rdEN_1+ ... using the binomial theorem. We

demonstrate this for the maximum metric:

1-(nH" " = AN=1 801y qan?.
OsisN—1D ! u
() = TN 2r)?0 AN-1 51y ran)®,
r O i O

This alternating series can be approximated with low error bounds by the first few sum-

mands 0<i <i,,) ifthe absolute value of the summands is monotonically decreasing.

This is possible if the power ofdecreases in a steeper way with increasihgn the

binomial increases. This is guaranteed if the following condition holds:

<1 rs%EﬂJ%; b= 2y’ 5 N1
(2r) 0<i<ipg,

NIZ
oo

%E{—l)i 2r)? ™.
0

Therefore, we approximate our formula for the expected nearest neighbor distance in the
following way:

L /20
5] D’ﬁum

Rmm:dENDI E(zr)dm y oN-t
0

oo

801y t2n
O O

0<i Sl

Nearest Neighbor Query 75

2
oz
ONn-10 i di{i+1)
= dINO 5 O DE(—l)DI (2r)
<2, O i O
ST < ina
0
O O i 3
OsisimaxD ! Di+1+a

The same simplification can be applied for the Euclidean metric. However, an alterna-
tive way based on a histogram-approximation of the probability density function yields
lower approximation errors and causes even alower effort in the evaluation.

To facilitate numerical integration methods such asthe middlebox approximation, the
trapezoid approximation or the combined method according to Simpson’s rule
[PFTV 88], we must determine suitable boundaries, where the probability density func-
tion has values which are substantially greater than 0. If we consider for example figure
35, we observe that fa=8, p,m(r) is very close to 0 in the two rangés r <0.05 and
0.16<r < . Only the range between the lower boupd0.05 and the upper boung,
contributes significantly. The criterion for a sensible choice of lower and upper bounds
is based on the distribution function which corresponds to the area below the density
function. We choose the lower boung such that the area in the ignored range ..
corresponds to a probability less than 0.1% and do the same for the upper goued
get the following two conditions, resulting from the approximation of the distribution

function:
Pr)=1-e"¥">0001 P(r)=1-e"M"<0.999
_\1In0.999 _ \,1In0.001
rzn, =V g—y—0 N T

Integration can therefore be bounded to the interval figto r . The integral can be
approximated by a sum of trapezoids or by a sum of rectangles:

Y

R = J'r Cp(r)or
0

76 A Cost Model for Query Processing in High-Dimensional Data Spaces

j'r Cp(r)or

Tib

n

_Tw="p duw="ib Oe-ub=Tib 0
=&2—Lo 5 GE P opHe—Lorn,S
max 05i<imax max max

Aswe bound the integration to a small interval, a small number of rectangles or trape-
zoids is sufficient for a high accuracy. To achieve a relative error less than 1.0%, an
approximation by ig = 5 rectangles was required in our experiments.

3.3.4 K-Nearest Neighbor Query

The cost model developed in the previous sections can also be extended for estimating
k-nearest neighbor queries. For the coarse model, this is straightforward since the vol-
ume is to choose such that k objects are contained rather than one. Therefore, the term
1/N must be replaced by k/N. For maximum metric, the estimated distanceiis:

1 [k
Rmm(k):étuﬁq.

For Euclidean metric, the result is analogous:

_ kO(d2+1) 1
Rem(K) d/—N DJ—E

For the exact model, the probability distribution must be modeled as a summation of
Bernoulli-chains with lengths ranging from 1 to k. The probability that at least k points
areinside the volume V(r) corresponds to the following formula:

P =1- 3 0" AV Q1-v)"
‘) Osi2<k i o -

For k = 1, the formula corresponds to the distribution function P(r) for nearest neighbor
queries. The probability density function and the expectation of the nearest neighbor
distance are determined anal ogously to section 3.3.2.

We should note that the peak in the probability density function of ak-nearest neigh-
bor query becomes steeper with increasing k (decreasing variance). Therefore, the ap-
proximation by the coarse model which is bad for high, asymmetric variances, becomes

Nearest Neighbor Query 7

better with increasing k. For sufficiently large k> 10 the coarse model and the exact
model yield comparable accuracy.

3.3.5 Expectation of the Number of Page Accesses

Asinitially mentioned, the number of page accesses of anearest neighbor query isequiv-
aent to the number of page accesses of arange query when the nearest neighbor distance
is used for the query range. An obvious approach to modeling is therefore to use the
expectation of the nearest neighbor distance and to insert it into the expectation of the
number of page accesses using range queries:

Ann = Ar(R) .

However, this approach reveals similar statistical problems and leads to similar inac-
curacies asthe approach in section 3.3.1. The problem isthat the number of page access-
esisnot linear inthe query range. Therefore, nearest neighbor distancesover the average
nearest neighbor distance R are not sufficiently considered. Once again, the approach
can be taken if high accuracy is not required or if the variance of the nearest neighbor
distanceislow.

Instead, we have once again to apply the distribution function P(r) to determine an
expectation of the number of page accesses by integration as follows:

[

A, = J'Arange(r) Cp(r)ar.

For maximum and Euclidean metric, this formula evaluates to:
1f d
Ao = [%rth/ +1—— m(a-(20%" " aenar,

0

Auem = ﬁm 09 Euce'fr SR
““'em'J-c C N k
off Ok O et 0 r[pl +1I]

0s<ksd
0 0O

e i

dIN
F(d/2+0) J 9 DI'(o|/2+)

0
=M
r 0

rdar .

78 A Cost Model for Query Processing in High-Dimensional Data Spaces

0.9

=

o

]

g

3

0.1 o
0

0 10 20 30 40

Figure 36: Probability that a Point is Near by the Data Space Boundary.

Thisresult can be simplified by asimilar technique asin section 3.3.3.

3.4 Effectsin High-Dimensional Data Spaces

In this section, we describe some effects occurring in high-dimensional dataspacewhich
are not accordingly considered in our models of the previous sections. We still assume a
uniform and independent distribution of data and query pointsin this section. The mod-
elsdeveloped in the previous sections will be modified to take the described effectsinto
account.

3.4.1 Problems specific to High-Dimensional Data Spaces

The first effect occurring especialy in high-dimensional data spaceis that all data and
query pointsare likely to be near by the boundary of the data space. The probability that
apoint randomly taken from auniform and independent distribution in a d-dimensional
data space has a distance of r or below to the space boundary can be determined by the
following formula:

d
Parface(r) = 1—-(1-20F)".

Asfigure 36 shows, the probability that a point isinside a 10% border of the data space
boundary increases rapidly with increasing dimension. It reaches 97% for a 16-dimen-
sional data space.

A second effect which iseven moreimportant, isthelarge extension of query regions.
If we use our model for determining an expected val ue of the nearest neighbor distance,
we observe that the expectation approaches fast surprisingly high values. Figure 37

Effects in High-Dimensional Data Spaces 79

Euclidean Metric: Maximum Méetric:
0.4+ N= 10,000
1.2 I N 1000000
N=10,000,000
—_ 1
B 7 3
D 08 S
= T
E 0.6 % 0.2
5 ., £ |
0.4]
w uFoll
0.2]
005 10 15 20 25 30 35 40 0" 5 10 15 20 25 30 35 40
dimension dimension

Figure 37: Expected Nearest Neighbor Distance with Varying Dimension.

shows the expected values for the nearest neighbor distance with varying dimension for
the maximum metric and the Euclidean metric for several databases containing between
10,000 and 10,000,000 points. Especialy using the Euclidean metric, at a data space
dimension between 13 and 19, the nearest neighbor distance reaches avalue of 0.5, i.e.
the nearest neighbor sphere has the same diameter as the complete data space. The size
of the database has asmall influence on this effect.

The combination of the two effects described above leads us to the observation that
large parts of atypical nearest neighbor sphere must exceed the boundary of the data
space. The consequences arising from this fact are commonly referred to as boundary
effects. As we will investigate in depth in the subsequent sections, the most important
consequence is that in our models al volume determinations must consider clipping at
the boundary of the data space. On the one hand, the expectation of the nearest neighbor
distanceincreases by boundary effects, but on the other hand, access probabilities of data
pages decrease because |large parts of the Minkowski sum are clipped away.

If dimension further increases, the typical nearest neighbor distance growsto values
by far greater than 1/2. In this case, it becomes very likely that the nearest neighbor
sphere exceeds most of the data space boundary areas.

A similar effect is observable for the page regions. If we assume, following our initial
model, hypercube shaped page regions, the side length of such aregion quickly exceeds
0.5. However, it isimpossibl e that the data space is covered only with pages having side
lengths between 0.5 and 1. Basically, the pagination arises from arecursive decomposi-

80 A Cost Model for Query Processing in High-Dimensional Data Spaces

N= 10,000
08 s
N=10,000,000
< 06
H
— 04
(0]
@
0.2

05 10 15 20 25 30 35 40
dimension

Figure 38: Side Lengths of Page Regions for Cg=30.

tion of the data space into parts of approximately the same volume (for uniformity and
independence assumption). Therefore, each page is in each dimension split severa
times. That means, only the sidelengths 1, 1/2, 1/4, 1/8,... (approximately) can occur. In
high dimensions, it issimply impossible that apage has aside length of 1/2 or smaller in
al dimensions, because if every data page is split at least once in each dimension, we
need a total number of at least 29 data pages to cover the complete data space. For
example, in a30-dimensiona data space, we would need one billion data pagesto reach
such a pagination, resulting in a database size of 4,000 GBytes.

Therefore, we will modify our cost models such that for database sizes N less than
Nsinglesplit With
N < Ngngiesplit = Cet 2

this effect is considered.

3.4.2 Range Query

We still assume uniformity and independence in the distribution of data and query
points. For sufficiently high dimension d (such that the inequation above is accom-
plished), we observe that the data space is only split in anumber d’ < d of dimensions.
The maximum split dimensiadi can be determined by using the following formula:

d = [Iogng—Nef;ﬂ .

Effects in High-Dimensional Data Spaces 81

0.25C4: 111>
0.5(1-1C)
L \
0.5(Cqs. . _|.
0.5(1-1C)
0.25Cq¢: 11 125 . Y
L S STePS S
J J
[re) Ty)
o o

Figure 39: Side Lengths and Positions of Page Regions in the Modified Model.

The data-pages have an average extension agy;; with
= 05— L0
Agiit = Y- EH o

ind’ dimensions and an average extensigy,;; with

1

=1-—- =
ceff

aunspl it

in the remainingl’ —d dimensions. Figure 39 clarifies the position of two typical page
regions in the data space for spjiaixis) and unspliv¢axis) dimensions. The projection

on an axis of a split dimension shows 2 page regions. Between these two regions, there
is a gap of the average breadth Gg/which is caused by the MBR property of the page
region (cf. section 3.2). The distance of 0@&/from the data space boundary is also

due to the MBR property. In contrast, the projection on an axis of an unsplit dimension
shows only one page region with a distance off¢sfrom the lower and from the upper

space boundary, respectively.

Now, we mark the Minkowski sum of the lower page region (cf. figure 40). We ob-
serve that large parts of the Minkowski sum are located outside the data space. The
Minkowski sum is the volume, from which a query point has to be taken such that the
corresponding page is accessed. On the other hand, we assume that only query points
inside the data space boundary are used as query points. Therefore, the Minkowski sum
has to be clipped at the data space boundary in order to determine the probability that a

82 A Cost Model for Query Processing in High-Dimensional Data Spaces

Minkowski sum: Clipped sum: Approximated sum:

Figure 40: Minkowski Sum Outside the Boundary of the Data Space.

randomly selected query point accesses the page. We can express the clipping on the
boundary with the following integral formulawhich summarizesall pointsv in the data
space (i.e. al possible positions of query points) with a distance less or equal the query
ranger from the page region R:

. g
Lifdy(v,R)<r (OVg...0Vq_q -

0
g
00 otherwise O

O%H

1
Xenaui() = Virog npsl) = I
0

Unfortunately, thisintegral isdifficult to evaluate. Therefore, it hasto be simplified. The
first observation usable for this purpose is that the distance between the data space
boundary and the page region (0.5/C; for unsplit dimensions, 0.25/Cg; for split dimen-
sions) issmall compared to atypical radiusr (assuming reasonable selectivities). There-
fore, the corresponding gap is always filled, and unsplit dimensions can be ignored for
the determination of the access probability (cf. figure 40, right side).

For maximum metric, the clipped Minkowski sum can be determined in the following
way (cf. figure 41): We take the side length of the split dimension and fill the small gap

1

Aq---- - - -0.5-0.25/Ceg-+ Lo

EE : 8:?—0.25/ceff

Figure 41: The Modified Minkowski Sum for the Max. (I.) and Euclidean Metric (r.).

Effects in High-Dimensional Data Spaces 83

to the data space boundary. We add the query radius only one time instead of two times
(aswedidin our initial model). The result istaken to the power of the number of dimen-

O o _ O mJ i
. g .0 of
Xr,mm,hd,ui(r) = Elmm [0.5—0'—25 +r, 1] = Omin 50.5—0'—25+ r, 1id .

O Cat m 0O 0 Ceit m

sions split:

For aradius greater than 0.5 + 0.25/ C 4, the Minkowski enlargement reaches also the
data space boundary on the opposite. Thisistaken into account by the application of the
minimum function in the equation above. In this case, the page has an access probability
of 100%.

If we apply the Euclidean metric, an additional complication arises as depicted on the
right side of figure 41. Theradiusr istypicaly by far greater than 0.5 (cf. section 3.4.1
and figure 38). Therefore, the spherical part of the Minkowski sum must be clipped. This
volume cannot be determined analytically. However, we will show, how thisvolume can
be simplified such that a precomputed volume function can be applied to improve the
efficiency of the evaluation.

The basic idea of the precomputation of the clipped sphere volume is to standardize
theclipping processto clip only on the unit hypercube. We scale our clipping region such
that it is mapped to the unit hypercube. Then, we determine the corresponding volume
by looking up in atable of precomputed volumes. After that, we apply the inverse scal-
ing to the volumein the table.

By Vg (d,r) we definethe volume of theintersection of aspherewithradiusr and the
unit hypercube in the d-dimensional space. Welet the origin be the center of the sphere.
Obviously, V4 (d,0) = 0and V(d, 2/d) = 1. Between these points, Vg is monotoni-

Vesi(2:r)

i

0 1

Figure 42: The Volume of the Intersection between Sphere and the Unit Hypercube.

84 A Cost Model for Query Processing in High-Dimensional Data Spaces

1
0.9
0.8 /

0.7 /
/

0.6

0.5 %
!
/

Vg(dir)

0.4

0.3 /
0.2
01 d=2 4 8/ 32

0 T T T 7 T T T T T
00 01 02 03 04 05 06 07 08 09

r/.Jd

Figure 43: The Volume of the Intersection between a Sphere and the Unit Hypercube.

cally increasing. Figure 42 depictstheintersection volume Vg (2, r) inthe 2-dimension-
al data space.

Definition 7: Cube-Sphere I ntersection

V¢4 (d,r) denotes the intersection volume between the unit hypercube [O..l]d and ad-
dimensional sphere with radiusr around the origin:

1 1
1 if|p|<r O
V(d,r) =1...100 = [MVy...0Vy4_q.
o I IEﬂ]O otherwisedl 7%
0 0

Vg(d,r) canbe materialized into an array of all relevant dimensions d (e.g. ranging from
1to 100) and for adiscretization of therelevant r between O and ./d inasufficiently high
number of steps (e.g. 10,000). For the determination of the discretization of Vg(d,r), the
Montecarlo integration [Kal 86] using the integral formulacan be used. Sufficient accu-
racy is achievable with 100,000 points.

Figure 43 depicts Vg(d,r) for various dimensions d.

V¢s(dir) is used to determine the access probability of a page when a range query
using the Euclidean metric is performed. As we pointed out in the previous discussion,
the range query behaves like a range query in the d’-dimensional space, because all

Effects in High-Dimensional Data Spaces 85
dimensions, where the page region hasfull extension, can be projected without affecting
the volume of the Minkowski enlargement.

However, the query sphere is not clipped by the unit hypercube, but rather by the
hypercube representing the empty space between the page region and the opposite
boundary of the data space. The side length of this cube agnyyy is (cf. figures 39-40):

_1, 1
Bemoy = 37 2C

To determine clipping on such a hypercube, we have to scale the radius accordingly
before applying Vg(d,r):
d r
V(d, r,a) = a” Vg(d, 5) .

The resulting formula for the access probability using Euclidean range queriesis:

) Og O 1 1 -k r
Xempaa@.0) = 5 O DE% - 4—Ceﬁg II% + 4—Ceﬁgj WVesk 7—37)-
=+

Ok O
O<ksd > 4ceﬁ

To show the impact of the effects in high-dimensional spaces to the estimation of the
access probability, figure 44 compares our new function X, gy pqui(r) With the low-di-
mensional estimate X; g 1q.i(r) and with an intermediate form, where the volume func-
tion Vg isstill replaced by the normal sphere volume V. In the intermediate form only
hypersphere segments completely lying outside the data space are clipped. The database
containsin this experiment 280,000 pointsin a 16-dimensional data space. Whereas the

c
S
D
o}
5
5
3
o]
£

Access Probability P(r)

02 0.4 0.6 0.8 1
Query Range r

Figure 44: Various Modelsin High-Dimensional Data Spaces.

o

86 A Cost Model for Query Processing in High-Dimensional Data Spaces

4000

3500 I
g 3000 II
(5]
<0(—> 2500 } —— X-tree
& 2000 —=— high-dimensional model
S 1500 / —+— low-dimensional model
% 1000 / /
2 w0 / A//
0 Bl T T
0.1 0.2 0.3 0.4 05

Query' Range

Figure 45: Accuracy of the Modelsin a 16-dimensional Data Space.

cost model for low-dimensional query processing quickly yields unrealistic access prob-
abilities larger than 100%, the intermediate model is accurate for ranges less than
r = 0.6. Theintermediate model issimpler and more efficient to evaluate, becauseit does
not depend on the precomputed discretization of the volume function Vg.

The expected number of page accesses can be easily estimated if the number of data
pages N / Cg; isapower of two. In this case, the number of split dimensionsis equal for
al data pages (although the dimensions, in which the data pages are actually split, may
vary). Otherwise, anumber of data pages not equal to apower of two requires some data
pages to be split once more than the rest. As the number of al data pages is
Ngy = N/ Cg;, the number of data pages split once more than the others ny: is equal to:

10425 |

ng =2 EEFN -2 0.
eff g
Likewise, the number of data pages split one time fewer ngy:_; is equal to:
Ng_1 = Ngp—Ng'-
Then, the expected number of page accessesis equal to:

Ag() = ng D(hd([logz(cﬁeﬂ)] "+ ”d'—lmhd(bogz(cﬂﬁ)J' ",

This equation holds for maximum metric as well as Euclidean metric and for range
queries as well as nearest neighbor queries.

Effects in High-Dimensional Data Spaces 87

Q2 e

a3 e

intersection (1-dim.)

Q1T
| I

0 1 0 r 1-r 1 x (position)

Figure 46: The Intersection Volume for Maximum Metric and Arbitrary Center Point.

The accuracy of the low-dimensional and the high-dimensional cost model for range
query processing was compared by using a database of 100,000 points taken from a
uniform, independent data distribution in the 16-dimensional data space. The query
range was varied from 0.1 to 0.5 using the maximum metric, yielding selectivities be-
tween 6.5 (102 and 11.8%. The results are depicted in figure 45. As expected, the
high-dimensional model yields a reasonable accuracy, whereas the low-dimensional
model completely failsin this case.

3.4.3 Nearest Neighbor Query

Typically, query spheresexceed the data space boundary in high-dimensional query pro-
cessing. For range queries, the consequence is a smaller result set compared with the
expectation when neglecting this boundary effect, because only the part of the sphere
inside the data space is able to contribute to the result set. In contrast, nearest neighbor
queries have afixed result set size (1 point for a 1-nearest neighbor query). The conse-
quence here is that a greater radius is needed to achieve the same result set size in the
presence of boundary effects. The nearest neighbor distance is increased by boundary
effects.

First, we devel op an expectation for the volume V4 4(d,r) of theintersection volume
of the unit hypercube and a sphere with radiusr, whose center isarbitrarily chosenin the
unit hypercube. We notethat thistask issimilar to theintersection volume Vg(d,r) inthe
previous subsection. However, the center of the sphereis now arbitrarily chosen and not
fixed in the origin. Vg 4(d,r) corresponds to the probability that two points arbitrarily
chosen from the unit hypercube have a distance less or equal to r from each other.

88 A Cost Model for Query Processing in High-Dimensional Data Spaces

considering boundary effects
0.35 neglecting boundary effects
03

0.25
0.2
0.15
0.1
0.05

expected distance

0 5 10 15 20 25 30
dimension

Figure 47: The Impact of Boundary Effects on the Nearest Neighbor Distance.

When the maximum metric is used for the query, the expectation for the intersection
volume, which is an intersection of two hypercubes, can be determined analytically.
Figure 46 depictsthree different positions of queriesin the data space. First, we consider
only the projection on the x-axis. The center point of g lies exactly on the lower space
boundary. Therefore, only half of the side length (r) isinside the data space. The center
point of g, has a distance greater than r from the data space boundary. Therefore, the
complete side length of the cube (2r) is inside the data space. Query qz intersects the
right space boundary, but more than half of the side length isinside the data space. The
right diagram of figure 46 depicts the progression of the part of the side length which is
inside the data space with varying position of the query point. It isr at the points 0 and
1, 2r between the positionsr and 1—r. Between 0 and r, the intersection increases
linearly. The average of the intersection over all positionsis:

2
;
VeadL 1) = 20 =5

We can extend this result to the d-dimensional case simply by taking the power of d:
d rZDd
Vegod 1) = Vg o0 = B0 - 50
This result can be used to determine the expectation of the nearest neighbor distance. A

completely analytical solution is possible if we apply our coarse estimation by equaliz-
ing Vg o(d,r) with 1/N:

1 ! 1
S = Veaddi1) = EZD—ED r=2- /4-2[%.

Effects in High-Dimensional Data Spaces 89

09

/)
1
06 W

05 //

04 /4/

/)

01 d= 2/ 4./ 8 1(4/32

Vesi(dir)

Figure 48: The Intersection Volume for Euclidean Metric and Arbitrary Center Point.

The impact of boundary effects on the nearest neighbor distance is shown in figure 47.
Asexpected, boundary effects do not play animportant rolein low dimensionsup to 10.
With increasing dimension, the effect becomes more important. Neglecting boundary
effects, we underestimate the nearest neighbor distance by 10% in the 30-dimensional
space.

The new volume determination Vg (d,r) can also be applied in our exact model for
nearest neighbor estimation. The corresponding probability distribution isin this case:

2

d N
rog
200 -

Pmm,hd(r) =1-(1 _Vcci,a(dv r))N =1- E[l_ DZD’ -
The probability density ppmng(r), the expectation for the nearest neighbor distance

Rmm,ng» @nd the expectation of the number of page accesses Ay, mm hg Can be derived
from the probability distribution as described in section 3.3.

When Euclidean metric is applied, the same problem arises asin section 3.4.2. It is
difficult to determine the intersection volume between the unit hypercube and a sphere
with arbitrary center in an analytical way. To cope with this problem, asimilar precom-
putation of the volume may be used. Again, we define the Cube-Sphere I nter section with
Arbitrary Center, Vg 5(d,r) by amultidimensional integral which can be evaluated by
using the Montecarlo integration [Kal 86]. Theresult can be storedin an array for use by
the model.

90 A Cost Model for Query Processing in High-Dimensional Data Spaces

Definition 8: Cube-Sphere I ntersection with Arbitrary Center
Vesi o(dir) denotestheintersection volume between the unit hypercube[O..l]d and ad-
dimensional sphere with radius r around a point arbitrarily chosen from the unit hy-
percube:

ey

Veadd.1) = J]- .[.[Mo otherW|<r EBV%)W

O

Figure 48 shows V4 4(d,r) for the dimensions 2, 4, 8, 16 and 32. The intersection vol-
umewasdetermined for al dimensionsbetween 1 and 100 for each radius between 0 and
./d in 10,000 intervals using 100,000 steps of the Montecarlo integration [Kal 86]. The
10,000 intervals can be used for an efficient numerical evaluation of the expectation:

The probability distribution of the nearest neighbor distance r considering boundary
effectsisfor the Euclidean metric:

Penna() = 1—(1=Veg(d m)".

The corresponding density functionis:

oP r OV (dr
Pempa(r) = %"() = NO1- Vg, r))N_l[;_CS(;Er()

Provided that Vg J[d,i] is an array with the range [1..0nay.0-.imax] Which contains the
precomputed values of Vg 4(d,r) for r ranging from 0 to Jd with

-}

we are able to replace integral formulas such asthe expected value of the nearest neigh-
bor distance by afinite summation:

=Y

Rempnd = Ir [Pem,na(r)or

0

Jd
AV, (d,
=N I]J'r L —Vegod N D%ar

Effects in High-Dimensional Data Spaces 91

i’“ax Vc5|a[d I] CSIa[d’i_l]
= — d, N-1 .
NOY 5 W 1 - v Jld, 1) TS

I_llmax

ND\/BDZ i [(1 Vcsa[d |]) [(Vcsi,a[d!i]_Vcsi,a[d’i_l])-

i=1

The infinite upper bound of the integral can be replaced by ./d, because the derivative
of Vg o(d,r) isconstantly O for r larger than Jd, whileall other terms havefinite val ues.
The derivativeisreplaced by the local difference.

The expected value of the number of page accesses can be determined in the same

way:

Y

Amentd = [[Aremplr) CPempal1OF
0
_ = i/d \N-1 . .
=N ‘{ Ar,em,hd(i_) Hl_vcsi,a[d! i1 (Vcsi,a[d! i] _Vcsi,a[d' i-1]) .

i=1

The evaluation of these formulasis efficient, because the required volume functions
Vs a(dr) and Veg(d,r) areindependent of any database specific setting such asthe num-
ber of points in the database, the point density or the effective page capacity Cg. The
predetermined discretization of these functions reguires afew megabytes of storage and
can be statically linked with the programs evaluating cost models. Costly Montecarlo
integration processes are run only at compiletime, not at run-time. Further improvement
isachievable if we consider that the probability density only contributesin the interval
betweenr, and ry, (cf. section 3.3.3). Integration and summation can be bounded to this

area
PJ%EW 0/d 4d.1] dd,i-1]
Rem,hd =NO Z Ii . csa[d I]) CS' K/a/ICSIY i
=]

To evaluate the cost formulafor query processing using nearest neighbor queries, we
constructed indexes with varying data space dimensionality. All databases contained

92 A Cost Model for Query Processing in High-Dimensional Data Spaces

10000 10000 /
1000

o
1=
b=

3
<
[0 —— Low-d Model
§ 100 100 A -=— High-d Model
s —— X-Tree
o]
€ 10 10
=]
2 4

[

1 1 : :

4 8 12 16 20 4 8 12 16 20
Dimension Dimension

Figure 49: Accuracy of the Cost Models for Nearest Neighbor Queries.

100,000 points taken from a uniform and independent distribution. The effective capac-
ity of the data pages was 48.8 in al experiments (the block-size was chosen correspond-
ingly). Thedimension varied from 4 to 20. We performed nearest neighbor queriesusing
maximum metric and Euclidean metric on all these indexes and compared the observed
page accesses with the predictions of the low-dimensional and the high-dimensional
model developed in this chapter. The results are depicted in figure 49. The diagram on
the left side shows the results for maximum metric, the right diagram shows the results
for Euclidean Metric. Whereas the cost model for high-dimensional query processing
provides accurate estimates over all dimensions, the low-dimensional model is only
accuratein the low-dimensional areaup to d = 8. Beyond this area, the low-dimensional
model completely fails to predict the number of page accesses. Not even the order of
magnitude is correctly revealed by the low-dimensional model. We should note that the
low-dimensional model ismainly related to the original model of Friedman, Bentley and
Finkel [FBF 77] and the extension of Cleary [Cle 79].

3.5 Data Setsfrom Real-World-Applications

It has been extensively investigated that data sets from real applications consistently
violate the assumptions of uniformity and independence [FK 94, BF 95]. In this section,
we describe the effects and adapt our model sto take non-uniformity and correlation into

account.

Data Sets from Real-World-Applications 93

3.5.1 Independent Non-Uniformity

It was already proven in the well-known cost model by Friedman, Bentley and Finkel
[FBF 77] that non-uniformity has no influence on the cost of nearest neighbor query
processing if no correlation occurs and if the data distribution is smooth. Smoothness
meansin this context that the point density does not vary severely inside the Minkowski
enlargement of a page region. The intuitive reason is the following: Query points are
assumed to be taken from the same distribution as data points. For the access probability
of a page, we have to determine the fraction of query points which are inside the
Minkowski enlargement of the page. If the point density is over the average in some
region (say by afactor c) due to non-uniformity, then both, the average volume of the
page regions and the average volume of the query regions are scaled by the factor 1/c.
This means that the Minkowski sum is scaled by 1/c. But then, the number of points
inside agiven volumeis by afactor of ¢ higher than in the uniform case. Therefore, the
number of pointsin the Minkowski enlargement isthe same asin the uniform case.

Range queries are difficult to model in the case of non-uniformity, because in the
sameway asthe point density changeswith varying location, the size of theresult set and
the number of page accesseswill change.

3.5.2 Correlation

For real data both the assumption of independent non-uniform data distribution is as
unreadlistic as the assumption of independent uniform distribution. One of the most im-
portant properties of real dataisthe correlation.

Correlation means that one or more attribute values are dependent on the values of
one or more other attributes. Typically, the dependence is not strict in the sense that the
depending value can be directly determined from the other attributes. We can observe a
small interval or asmall set of possible values where the depending attribute is located
with high probability.

The geometrical meaning of acorrelation is the following: The d-dimensional space
is not completely covered with data points. Instead, all points are collected on alower-
dimensional area which is embedded in the data space. An example is shown in
figure 50, where all data points are located on a 1-dimensional line which is embedded
inthe 2-dimensional data space. Asdepicted, thelineisnot necessarily astraight line. It
is also possible that there are several lines which are not connected, or that the data
points are located in a cloud around the line.

94 A Cost Model for Query Processing in High-Dimensional Data Spaces

Figure50: Correlations and their Problems.

A concept which is often used to handle correlation is the singular value decomposi-
tion (SVD) [DH 73, Fuk 90, GL 89] or the principal component analysis (PCA) [FL 95,
PFTV 88, Str 80]. These techniques transform the data points directly in alower-dimen-
sional data space by rotation operations and eliminate the correlation in this way. The
point set isindexed in the lower-dimensional space, and query processing can be mod-
eled by using our techniques presented in section 3.2 - 3.5.

However, SVD and PCA can only detect and eliminate linear correlations. A linear
correlation means a single straight line in our example. If there are, for example, two
warped lines where data points are located on, SVD and PCA will completely fail. We
will show later that the performance of query processing anyway takes benefit from the
fact that the actual dimension of the point set is lower than the dimension of the data
space. Therefore, an explicit transformation is not required.

The general problem of correlations is aso depicted in figure 50. If we blow up a
circle around some data point, we observe that the number of pointsis not proportional
to the areaof the circle aswe would expect. Because the actual dimension of the data set
is 1, the number of pointsenclosed in acircle with radiusr is proportional to the radius
r. Thesame observationisvalid if we blow up acube or some other d-dimensional object
which does not prefer single dimensions for the extension.

This provides us with a means to define the actual dimension of the data set. Under
uniformity and independence assumptionsthe number of points enclosed in ahypercube
with side length sis proportional to the volume of the hypercube:

d
Ng = P = pDV.

Data Sets from Real-World-Applications 95

Real data setsform asimilar power law using the fractal dimension Dg of the data set:

D De/d
Nencl = pFESF= pFD‘/F

where pg is the fractal analogue to the point density p. The power law was used by
Faloutsos and Kamel [FK 94] for the ‘box counting’ fractal dimension. We use this
formula directly for the definition of the fractal dimension:

Definition 9: Fractal Dimension

The fractal dimensioB of a point set is the exponent which the following power law
is valid for:

N DF/d.

encl = PF v
Basically, the fractal dimension is not constant over all scales. It is possible that the
fractal dimension changes, depending on the size of the vdlumeractice, the fractal
dimension is often constant over the wide range of the relevant scales. It is also possible
that the fractal dimension is not location-invariant, i.e. a subset of the data set forms a
different fractal dimension than the rest of the data set. Intuitively, a reason for this
behavior can be that our database contains different kinds of objects (e.g. oil paintings

and photos in an image database).

3.5.3 Model Dependence on the Fractal Dimension

Our first consequence to the observation of a fractal dimebgidgmthat it is dependent

on Dg rather than on the embedding dimensiomhich model is to use. Dg is small,

then most data points and most queries are far away from the data space boundary.
Therefore, we need not apply clipping on the data space boundary and we must not
consider clipping in our model. For this case, we have to adapt the cost model for low-
dimensional data spaces (cf. section 3.2-3.3). In contr&3t,iff large, effects of high-
dimensional data spaces occur. Therefore, the model for high-dimensional data spaces
must be adapted for this case (cf. section 3.4). For modegdbeth basic models can

be applied. For reasons of practicability, we assume boundary effects if the fractal di-
mensiorDg is greater or equal to the maximum split dimension

Dexd = [Iogng—Nef;ﬂ.

96 A Cost Model for Query Processing in High-Dimensional Data Spaces

3.5.4 Range Query

First, we want to determine, how the access probability of a page changesin presence of
acorrelation described by the fractal dimension Dg. Let us assume that the fractal point
density pg isconstant throughout the area of the pageregion and its Minkowski enlarge-
ment. In the case of low D, we can estimate the side length a of apage region according
to the power law:

[I
A9 ceff
= Pr ED—D ;g = Def— C
— F eff

%l ceff

In the high-dimensiona case, we have still d’ splits explicitly applied to achieve data
pages with a suitable number of points (Cg). However, we must takeinto account that a
split in some dimension automatically leads to a reduced extension in some correl ated
dimension. We assume the extension

1Q0
it = OSI:BL Ce

(cf. section 3.4.2) inanumber d" of dimensionswith

and full extension (up to MBR effects, cf. section 3.4.2)

Auneiit = 1—1/Cygy

unsplit

intheremaining d — d" dimensions.

TheMinkowski sum of the page region and aquery ranger corresponds to the access
probability of the page under the assumptions that data points are correlated and that
query points are taken from a uniform, independent distribution. Following our discus-
sionin section 3.4.2, we get the following access probabilities for Euclidean metric and
maximum metric and for the high-dimensional and the low-dimensional case, respec-
tively:

c:eff |ﬂ
(n = Emln / +r 10,
rmmIdCIUI Ceff i

Data Sets from Real-World-Applications 97

OoNp| o d
0 O 0.25 EElVlngman EBT:
X (r) = Omin (05— ==2+r, 1M ,
r,mm,hd,c/ui 0 0 Ceff 0

) 040 1q ceﬁff LR
Xr,em,ld,clui(r) = % K E C ED [jj K)
O<ksd e” r + IB
Ogr O 0.25(f 0. 253" r
X n = 0 E% E% OV,).
rem hd el o<kz d,,[l k [I Ceff ceff e } 0.25
sks 2 Cy

Starting from this point, the expectation for the number of page accesses can be easily
determined by multiplication with the number of pages N/ C ;.

For real applications, uniform distribution of the query points is not a realistic as-
sumption. A better alternative is to assume that data points and query points are taken
from the same distribution and yield the samefractal dimension D. Instead of taking the
volume of the Minkowski enlargement for the access probability, we should rather de-
termine the percentage of the query points lying in the Minkowski enlargement. The
power law can be used for this purpose, such as:

De/d
Xr,mm,ld,c(r) = Xr,mm,ld,clui(r) -

/Ceff
[mln[p IIBL Ceﬁ +r 1ETEI

The other equations can be modified in the same way.

3.5.5 Nearest Neighbor Query

Following our coarse model for the estimation of the nearest neighbor distance (cf. sec-
tion 3.3.1), we can easily determine avolume having an expectation of 1 point enclosed.
Likeinthe preceding section, we assume that the distribution of the query pointsfollows
thedistribution of the data points. The volume can then be estimated by using the power
law:

1=p. /P ¢ R

mm,ld,cor ~

1
200/

98 A Cost Model for Query Processing in High-Dimensional Data Spaces

for the maximum metric and

D

1 Ded _ JT D¢ _dr(d/2+1) 1
5‘ =V = Do/d g Remid.cor = L, |~
F r(d/2+1)% Jm Pr

for the Euclidean metric. If Dg is sufficiently large (according to section 3.5.4), bound-
ary effects must be considered. For the maximum metric, we get the following formula:

2 Dp
r 1
1= Pe [%I’ _EB Rmm,hd,cor: 2— |4- 2|jJF p_F

For the Euclidean metric, we need the inverse function of the cube-sphere intersection
with arbitrary center, V;gl-va(d, r) (cf. section 3.4.3). The corresponding discretization of

V;Sll-ya(d, r) can begainedin asingle passof thediscretization of V. (d, r) . The estima-

csi,a(
tion of the nearest neighbor distanceis:

D¢/d -1 ,lfP-
’ Rem,hd,cor = Vcsi,a(%;gj)-

1
5'; = VCS! ’a(l')
For our exact model, we have to adapt our distribution function in a suitable way.
Again, we haveto apply the power law:

where V(r) is the volume of the d-dimensional hypersphere with radiusr in the case of
the Euclidean metric and the volume of the d-dimensional hypercube with side length 2r
in the case of the maximum metric. We have to make a suitable distinction between the
low-dimensional and the high-dimensional case when choosing V(r). The rest is
straightforward and can be handled asin section 3.3-3.4: An expectation for the nearest
neighbor distance can again be gained by integrating r multiplied with the derivative of
P(r). The new distribution function must be multiplied with the Minkowski sum asin
section 3.3-3.4. For the maximum metric, we get the following formulas for the low-
dimensional and the high-dimensional case, respectively:

_ N M0 0O /Ceff 1 D+ lﬂF% Pr DFDN
Ann,mm,ld,c - c_effj-%mn 5[3; p_F [%l_c_eﬁ[l r, 1% I’%_%l__N- Eﬂ2r) 0 r,
0

Data Sets from Real-World-Applications 99

N . 0.2 Eé
Annmmhdc = C_eﬁj’%mn %—C_eﬁ% r 1%
0

For the Euclidean metric, the corresponding result is

gu O
_ N D _ OgO 1n Ceﬁd(/ -« .0
Ann m,ldc ~ o oo - ED b——0 g
EMIGE " C Ok O Cai- 0 O
0%}51(5(1 +1D 0
D
00 O pe S 0.0
e O Ly b R L S
SO -- 5730 0 Coor,
o 0O r(d/2+1) 0

N

A =
nn,em,hd,c
ceff

O by 8
HHHREHE

) 1
<ksd 2

9 Bfo @005
-M-—= r r.
o o N Vesd 0o

Rules facilitating the evaluation of these formulas were presented in section 3.3-3.4.

To evaluate our model extension, indexes on several data sets from real-world appli-

cations (cf. chapter 1) were constructed. Our first application is a similarity search sys-

tem for CAD drawings provided by a subcontractor of the automobile industry [BK 97].

The drawings were transformed into 16-dimensional fourier vectors. Our second appli-

cation is a content based image retrieval using color histograms with 16 histogram bins

[Sei 97]. Both databases contained 50,000 objects. Our third application contained 9-

dimensional vectors from weather observations. The fractal dimensions of our data sets

are 7.0 (CAD), 8.5 (Color Histograms) and 7.3 (Clouds). We performed nearest neigh-

bor queries using the Euclidean and the maximum metric and compared the results ob-

tained with the predictions of the following 3 cost models:

e The original models by Friedman, Bentley and Finkel [FBF 77] and Cleary

[Cle 79], cf. section 3.3

« our extension to high-dimensional query processing (cf. section 3.4)

100 A Cost Model for Query Processing in High-Dimensional Data Spaces

1000 A
g 900
8 800 1
< ;gg X-tree
% oo0 @ low-d model
400 o high-d model
s]
5 30 m new model
Re!]
E o
z 7l o

Color Clouds

Figure51: Accuracy for Data Sets from Real-World Applications.

« our extension to non-uniformity and correlation

The results are depicted in figure 51. In contrast to the low-dimensional and the high-
dimensional model, the new model considering correlation yields sufficient accuracy in
all performed experiments.

3.6 Modeling the Storage System

The physical structure of a disk drive [PH 90, Sie 90, SPG 91] is depicted in figure 52:
The disk drive consists of a row of magnetic disks which are fixed above each other on
a common axis. The disks rotate with high speed. Data stored on the disk is accessed by
a set of disk heads fixed on a common disk arm which can be moved orthogonally to the
rotation direction (i.e. in radial direction).

If some data is requested from a random position on the disk drive, the following
single actions are performed: First, the disk head is moved to the corresponding track
(positioning time). Then, the system waits until the requested data is positioned below
the disk headrétational delay time). Finally, the data is transferred to the main memory
(transfer time). The unit of transfer between the disk drive and the main memory is a
sector or physical page. There is no positioning delay if the disk head is already posi-
tioned at the right track of the right disk. This case happens if contiguous blocks are read
in separate reading actions from disk. If the access is switched from one magnetic disk
to a different one, the disk heads have to be repositioned, because the tracks of different
disks are not exactly aligned.

Modeling the Storage System 101

track ¢

||

rotation

Figure 52: Structure of a Disk Drive [SPG 91].

For indexes which are dynamically constructed and which do not consider relative
positions of pageson disksintheir construction algorithmsand in their query processing
agorithms (such as all structures presented in chapter 2), we can make the following

simplifying assumptions:

All accesses have a constant logical blocksize which is not identical to the physical
page size. According to the author’s experience, it is not even important that logical
blocks are correctly aligned to physical blocks, because the additional time for contigu-
ously reading a superfluous sector is negligible comparpdsttioning time anddelay

time.

Every access is independent of the preceding access. Therefore, the disk arm is repo-
sitioned for almost every access. We summariz@dhi¢ioning time and therotational
delay time to theseek time. To determine typical values feeek time andtransfer time
for nowaday'’s disk drives, we performed the following experiment: We measured block
accesses with varying block size and random position in a large file. The result is pre-
sented in figure 53 (access time plus/minus standard deviation). Obviously, the access
time is perfectly linear in the logical block size. We observe the following law for the

access timey.:

tECCEE$ = tseek +b Dtransfer’

102 A Cost Model for Query Processing in High-Dimensional Data Spaces

0.9 A
0.8 -
0.7 -
0.6
0.5
0.4 -
0.3
0.2
0.1 4
0 T T T T]
0 200000 400000 600000 800000 1000000
Logical Blocksize [Bytes]

Access Time[Seconds]

Figure 53: Access Time of Disk Drive with Varying Logical Blocksize.

where b isthe size of the block in bytes.

We can determine seek time and transfer time by linear regression. In our example,
we get the following values:
teeek = 20msec,
ttranster = 975 nsec/Byte.

In these values, the overhead of the file system and the basic load of disk drivesin a
typical UNIX system is considered. Neglecting the basic load leads to a seek time of
12 msec and atransfer time of 200 nsec/Byte.

103

Chapter 4
Dynamic Optimization
of the Logical Block Size

The first application of our cost model presented in chapter 3 is the optimization of the
logical block size used in the index. For this purpose, we propose a special new index
structure which is capable of adapting the logical block size dynamically and indepen-
dently in different pages of the index.

4.1 Motivation

In recent years, a general criticism on high-dimensional indexing has come up. Most
multidimensional index structures have an exponential dependency (with respect to the
time for processing range queries and nearest neighbor queries) upon the number of
dimensions. To illustrate this, figure 54 shows our model prediction of the processing
time of the X-tree for a uniform and independent data distribution (constant database
size 400 KBytes). With increasing dimension d, the processing time grows exponential -
ly until saturation comesinto effect, i.e. asubstantia ratio of all index pagesisaccessed.
Invery highdimensions d = 25, virtually all pages are accessed, and the processing time
approaches thus an upper limit.

In recognition of this fact, an aternative approach is simply to perform a sequential
scan over the entire data set. The sequential scan causes substantially fewer effort than

104 Dynamic Optimization of the Logical Block Size

o
w

g 2

@ 15

£

oy — X-tree

g Sequential Scan
w

8

s

0 5 10 15 20 25 30 35 40
Dimension

Figure 54: Performance of Query Processing With Varying Dimension.

processing all pages of an index, because the reading operationsin the index cause ran-
dom seek operations whereas the scan reads sequentially. The sequential scan causes
seldom disk arm movementsor rotational delayswhich are of no consequence compared
to the transfer cost. Assuming alogical block size of 4 KBytes, contiguous reading of a
large file is by a factor >12 faster than reading the same amount of data from random
positions (cf. section 3.6).

A second advantage of the sequential scan over index-based query processing is its
storage utilization of 100%. In contrast, index pages have a storage utilization between
60% and 70% which causes a further performance advantage of about 50% for the se-
quential scan when reading the same amount of data. The constant cost of the sequential
scan is also depicted in figure 54. The third advantage of the sequentia scan is the
lacking overhead of processing the directory. We can summarize that the index must not
access more than 5% of the pages in order to remain competitive with the sequential
scan.

Infigure 54, the break-even point of thetwo techniquesisreached at d = 7. Thetrade-
off between the two techniques, however, isnot simply expressed in termsof the number
of dimensions. For instance when data sets are highly skewed (as real data sets often
are), index technigues remain more efficient than a scan up to afairly high dimension.
Similarly, when there are correlations between dimensions, index techniques tend to
benefit compared with scanning. Obviously, the number of data objects currently stored
in the database plays an important role since the sequential scanis linear in the number
of objects whereas query processing based on indexes is sub-linear.

Basic Idea 105

&)
> 250 4
E 200 -
150 —— X-tree
1 — Sequential Scan
50 i

Total Elapsed T
=
8

f' i‘r % <¥r % = = = = = 0O
N N
Block-Sze

Figure 55: Block Size Optimization.

Figure 55 shows the model predictions of the X-tree for 10,000,000 points uniformly
and independently chosen from a 20-dimensional data space with varying block size
from 1 KByte to 1 GByte. In this setting, the performance is relatively bad for usual
block sizes between 1 KBytes and 4 KBytes, fast improving when increasing the block
size. A broad and stable optimum is reached between 64 KBytes and 256 KBytes. Be-
yond this optimum, the performance deteriorates again. Due to the storage utilization
below 100%, the sequential scan outperformsthe X-treefor very large block sizes. This
result shows that block size optimization is the most important advice to improve high-
dimensional indexes.

Therest of this chapter is organized as follows: Section 4.2 explains the general idea
and an overview of our technique. Section 4.3 shows the architectural structure of the
DABS-tree. The following sections show how operations such as insert, deletion and
search are handled. In section 4.7 we show how our model developed in chapter 3 can be
applied for adynamic and independent optimization of thelogical block size. Finally, we
present an experimental evaluation of our technique.

4.2 Basic |dea

As we pointed out in section 4.1, there are three disadvantages for query processing
based on index structures compared to the sequential scan:

 data is read in too small portions

106 Dynamic Optimization of the Logical Block Size

« index structures have a substantially lower storage utilization
 processing of the directory causes overhead

In this chapter, we will present the DABS-tree (Dynamic Adaptation of the Block Size)
which tackles all three problems. We propose a new index structure claiming to outper-
form the sequential scan in virtually every case. In dimensions where index-based tech-
nigues are superior to the sequential scan, the efficiency of these techniques is retained
unchanged. In an area of moderate dimensionality, both approaches, conventional in-

dexes as well as the scan, are outperformed.

Thefirst problem is solved by a suitable page-size optimization. Asweface the prob-
lem that the actual optimum of the logical block size is dependent on the number of
objects currently stored in the database and on the data distribution (which may also
change over time), the block size has to be adapted dynamically. After a page has been
affected by a certain number of inserts or deletions, the page is checked whether the
number of pointscurrently storedin the pageisclose enough to the optimum. Otherwise,

the page is split or a suitable partner is sought for balancing or merging.

This means that pages with different logical block size are at the same time stored in
the index. Although a constant block size facilitates management, no principal problem
ariseswhen sacrificing thisfacilitation. To solve the second problem, storage utilization,
we propose to allow continuously growing block sizes, i.e. we also give up the require-
ment that the logical block size is a multiple of some physical block size or a power of
two or the demand that the block size is only changed by doubling or division by two.
Instead, every page hasexactly the size whichisneeded to storeits current entries. When
an entry is inserted to a page, the block size increases, and the page must usually be
stored to anew position intheindex file. To avoid fragmentation of the file, we propose

garbage collection.

The third problem, directory overhead, cannot be completely avoided by our tech-
nigue since we do not want to cancel the directory. The directory overhead, however, is
weakened, because we simplify thedirectory. Instead of ahierarchical directory, we only
maintain a linear single-level directory which is sequentially scanned. The block size
optimization a so helpsto reduce the directory overhead, because this overhead istaken

into account by the optimization.

Structure of the DABS-Tree 107

page region mbr mbry | mbry| mbrg
number of entr. ng | Ny Ny n3 Directory
reference to page
Pl (1 \\v
Po Pn,
P1 pn0+1
5y Data Pages
Prg1

Figure 56: Structure of the DABS-Tree.

4.3 Structure of the DABS-Tree

The structure of the DABS-tree is depicted in figure 56. Each directory entry contains
the following information: The page region in form of a minimum bounding rectangle,
thereference (i.e. the background storage address) to the page and additionally the num-
ber of entries currently stored in the page. The number of entriesis also used to deter-
mine the corresponding block size of adata page before loading.

The directory consists simply of alinear array of directory entries. We intentionally
cancel the hierarchically organized directory, because the efficiency of query processing
isnotincreased by hierarchiesbut rather decreased. We confirm this effect by thefollow-
ing consideration:

In our experiment presented in section 4.1 (cf. figure 55, too), we determined an
optimum block size of 64 KBytes. For 10,000,000 data pointsin a20-dimensional space,
we need 20,000 data pagesto storethe points. Using ahierarchical directory, weneed 78
index pages at the first directory level and the root-page. Even if we assume no overlap
among the directory pages, query processing requires an average of 44 directory page
accesses. The cost for these accesses are 1.14 seconds of 1/0 time. A sequential scan of

108 Dynamic Optimization of the Logical Block Size

alinear directory, however, requires 0.71 seconds. Both kinds of directory cost are neg-
ligible compared to 49 seconds of cost for accessing the data pages. Even though, the
sequential scan of a linear directory causes fewer effort than a hierarchical directory.
This observation even holds for fairly low dimensions.

The data pages contain only data-specific information. Besides the point data and
eventually some additional application-specific information, no management informa-
tionisrequired. The data pages are stored in random order in the index file. Convention-
a index structures usually do not utilize the space in the data pages to 100% in order to
leave empty spacefor futureinsert operations. In contrast, the DABS-tree storesthe data
pages generally without any empty position inside a data page and without any gap
between different pages. Whenever a new entry is inserted to a data page, the page is
stored at a new position. The empty space in the file where the data page formerly used
to beis passed to a free memory management. A garbage collection strategy is applied
to build larger blocks of free memory, and, thus to avoid fragmentation (cf. section 4.5).
Temporarily, the free blocks decrease the storage utilization of theindex structure below
100%. The free blocks, however, are never subject to a reading operation during insert
processing. Therefore, the performance of query processing cannot be negatively affect-
ed.

In order to guarantee overlap-free page regions, we hold additionally to the linear
directory akd-tree [Ben 75, Ben 79]. As we explained in section 2.4.4, akd-tree parti-
tions the data space in adigjoint and overlap-free way. The page regions of the DABS-
tree are always located inside a single kd-tree region. The kd-tree facilitates insert pro-
cessing, because it offers unambiguously adatapage for theinsert operation. In contrast,
the heuristics for choosing a suitable page in the X-tree cannot guarantee that no overlap
occurs. The kd-treeis also used for the merging operation which may be necessary due
to delete operations, or because the optimal page size has increased on the basis of a
changed data distribution. The kd-treeis not used for search.

4.4 Search in the DABS-Tree

Point queriesand range queriesare handled in astraightforward way. First, the directory
issequentially scanned. All datapages qualifying for the query (i.e. containing the query
point or intersecting with the query range, respectively) are determined, loaded and pro-
cessed.

Search inthe DABS-Tree 109

Point DABS_nearest_neighbor_query (Point qg) {
typedef struct {float distance, int pageno, int num_objects} AplEntry ;
AplEntry apl [number_of_pages]
int i, f;
Point cpc;
float pruning_dist = +infinity ;

/I First Phase
DIRECTORY dir = read_directory () ;
for (/=0 ; i<number_of_pages;i++){
apl[i] . distance = mindist (q, dir[i] . mbr) ;
apl[i] . pageno = dir[i] . pageno ;
apl[i] . num_objects = dir[i] . num_objects ;
}
gsort (apl, number_of_pages, sizeof (AplEntry), cmp_float) ;

/I Second Phase
for (i=0; i<number_of_pages && apl[i] . distance < pruning_dist; i ++) {
Page p = LoadData (apl/[/] . pageno, ap/[i] .num_objects) ;
for (j=0;j< apl[i] . num_objects ; j ++)
if (dist (g, p . object [j] . point) < pruning_dist) {
cpc=p.object[] . point;
pruning_dist = dist (g, p . object [j] . point) ;

}

return cpc;

Figure 57: Algorithm for Exact Match Queries.

Nearest neighbor queries and k-nearest neighbor queries are processed by a variant
of the HS algorithm (cf. section 2.3.4, [HS 95]). As the directory is flat, the algorithm
can even be simplified, because the active page list (APL) is static in absence of a hier-
archy. For hierarchically organized directories, query processing requires permanent in-
sert operationsto the APL, becausein each processing step the pivot page isreplaced by
its child pages. Therefore, the APL must be re-sorted after processing a page.

In our case, the nearest neighbor algorithm worksin two phases: Thefirst phase scans
the directory sequentially. During the scan, the distance between the query point and
each page region is determined and stored in an array. Finally the distancesin the array
are sorted by the Quicksort algorithm, for instance [Hoa 62, Sed 78]. In the second

110 Dynamic Optimization of the Logical Block Size

kd-tree:

a

b/\c
AN A
1 2 3 4

Figure 58: The Additional kd-tree.

phase, the data pages are |oaded and processed in the order of increasing distances. The
closest point candidate determines the pruning distance. Query processing stops when
the current page region isfarther away from the query point than the closest point candi-
date. Figure 57 depicts the agorithm for nearest neighbor queries. The k-nearest neigh-
bor algorithm works analogously with the only difference that a closest point candidate
list consisting of k entriesis maintained and that the last entry in thislist determinesthe
pruning distance.

4.5Handling Insert Operations

4.5.1 Searching the Data Page

To handle an insert operation, we search in the kd-tree, which is held in addition to the
linear directory, for a suitable data page. The kd-tree has the advantage to partition the
data spacein acomplete and digjoint fashion which makes the choice of the correspond-
ing page unambiguous. Eventually, the MBR in the linear directory which is aways
located inside the corresponding kd-treeregion (cf. figure 58) must be slightly enlarged.

The page is loaded to the main memory, and the point is inserted. Usually, the page
cannot be stored at its old position since we enforce a 100% storage utilization of pages.
Therefore, it is appended to the end of the index file. The empty block at the former
position of the page is passed to afree storage manager which performs garbage collec-

Handling Insert Operations 111

tionsif the overall storage utilization of theindex file decreases below a certain thresh-
old value (e.g. 90%).

Note that in contrast to conventional index structures, the overall storage utilization
can never decrease the efficiency of query processing, because empty parts of the index
file are not subject to reading operations. By a low storage utilization, we only waste
storage memory, but not processing time.

4.5.2 Free Storage M anagement

The free storage manager currently observes the storage utilization of the index file.
When the storage utilization reaches some threshold value sup,i,, the next new page is
not appended to the end of the index file. Instead, a local garbage collection is raised
which performslocal restructuring of the file to collect empty pages as follows:

Let the size of the next page to be stored be s. The storage manager searches for the
shortest interval of subsequent pagesin the index file covering s Bytes of empty space.
With a suitable data structure to organi ze the empty space, this search can be performed
in O (log n) time for the average case. Once the shortest interval with s Bytes of empty
space is found, we load all pagesin thisinterval to the main memory and restore them
densely, thus creating a contiguous empty space of at least s Bytes. We store the new
page to this space.

Now we will claim an important property of the restructuring action: Locality. We
show that the size of theinterval in thefile which isto be restructured is bounded by the
size s of the new page multiplied with some factor depending on the storage utilization
SUmin-

Lemma 6: L ocality of Restructuring

In anindex file with a storage utilization su < su,,,;, , there exists an interval with the
length

containing at least s Bytes of free storage.

Proof (Lemma 6)

Assume that al intervals of the length | have less than s Bytes of free storage. Then,
the number e of free Bytesin the file with length f is bounded by:

112 Dynamic Optimization of the Logical Block Size

By the definition of the storage utilization, we get the following inequation

su = 1_§>1_§ =

f | SUmin

which contradicts theinitial condition su < suy, -

0

If we choose, for instance, a storage utilization of Suy,,, = 50%, Lemma 6 tells us that
restructuring is bounded to an interval twice aslarge asthe size s of the page we want to
store. For a storage utilization of Suy,, = 90%, the interval is at most ten times as large
asthe new page.

As there are no specific overflow conditions in our index structure, the pages are
periodically checked by using a cost estimation whether they must be split. For the
details, cf. section 4.7.

4.6 Handling Delete Operations

Deleting inthe DABS-treeis straightforward. The point is deleted from the correspond-
ing page and asmall block is passed to the free storage manager. If the storage utilization
fallsbelow thethreshold su,,;,, alocal restructuring action israised for the |ast data page
inthefile.

Since there is no clear underflow condition in the DABS-tree, the pages are periodi-
cally tested by using a cost model whether they are to merge.

4.7 Dynamic Adaptation of the Block Size
In this section, we will first show the dynamic adaptation from an algorithmic point of

view. Then, we will show how the cost model developed in chapter 3 is modified and
applied to take split and merging decisions, respectively.

Dynamic Adaptation of the Block Size 113

4.7.1 Split and M er ge M anagement

Basicaly, it is possible to evaluate the cost model after every insert or delete operation
and to determine whether a page must be split or merged with some neighbor. Thisis,
however, not very economic, because the optimum is generally broad. Therefore, we
have to check rather seldom if the current page size still is close to the optimum.

We choose the following strategy: For each page, we have an update counter variable
which isincreased in each insert or delete operation the page is subject to. We perform
our model evaluations when the value of the update counter reaches some user defined
threshold which may be defined as afixed number (e.g. 20 operations) or asaratio of the
current page capacity (e.g. 25% of the pointsin the page).

Note that it is theoretically possible (although not very likely) that pages must be
merged after performing insert operations or that pages must be split after performing
delete operations. This is not intuitive, as conventional index structures with a fixed
block size know to split only after inserts and to merge after deletions. In our dynamic
optimization, however, any of these operations can change the distribution of the data
points and thus change the page size optimum into each direction.

Whenever the threshold of update operations is reached, a cost estimate for the cur-
rent page with respect to query processing is determined. Then, some split algorithm is
run tentatively. The page regions of the created pages are determined, and the query
processing cost for the new pages is estimated. If the performance has decreased, the
split isundone, and merging is tested in the same way.

A merging operation can only be performed if asuitable partner isavailable. In order
to maintain overlap-free page regions, only two leaf pages with a common parent node
in the kd-tree are eligible for merging. If the current page does not have such a counter-
part, merging is not considered. Otherwise, the cost estimates for the two single pages
and for the resulting page are determined and compared. If the performance estimate
improves, the merge is performed.

Finally, the relevant update counters are reset to 0.

4.7.2 Model Based Local Cost Estimation

For our local cost optimization, we must estimate how cost of query processing changes
when performing some split or merge operation. Generally, we assume as reference
query the nearest neighbor query with the maximum metric, because this assumption
causesthe lowest effort in the model computation. Practically, the differencein the page

114 Dynamic Optimization of the Logical Block Size

size optimum is low when changing the reference query to the Euclidean metric or to
some k-nearest neighbor query.

In both cases, when taking a split or amerge decision, we compare the cost caused by
one page with the cost caused by two pages with the half capacity. At the one hand, this
action changes the accessing cost, because the transfer cost decreases with decreasing
capacity. The access probability is also decreased by splitting. At the other hand, it is
unpredictable whether the sum of the costs caused by the two smaller pages is really
lower than the cost of the larger page.

Therefore, it is reasonable, to draw the following balance for the split decision:

A7 = (tgey + Cp Dpgind) DXy + (tgee + Co Mpging) DXy = (tseac + Co Cpging) KXo,

where Cq and X, are the capacity and the access probability of the larger page, and C,
and C, (X; and X,) the capacities (access probabilities) of the two smaller pages. The
time tpgine i the transfer time for apoint, i.e. tpy = tyanser (51Z€OF (Point) . If the cost
balance A+ is positive, the larger page causes fewer cost than the two smaller pages. In
this case, asplit should be avoided and amerge should be performed.

It is possible to estimate the access probability according to our formulas for
Xnnmmiid,c @d Xpn mm ha,c Presented in chapter 3. This approach, however, assumes no
knowledge about the regions of the pages currently stored in theindex. In our local cost
optimization, the exact coordinates of the relevant page regions are known. Therefore,
we can achieve higher accuracy if this information is considered. Additionally, it is
possibleto take into account the local exceptionsin the data distribution.

First, we determine the local point density according to the volume and the capacity
of the larger page:

c:0

PF = J(MBR DS

From the local point density, we can derive an estimation of the nearest neighbor dis-
tance:

=1 /1
r = 2EbF
Herewe apply here the simple model, because in this context, efficiency of evaluationis

of higher importance than accuracy. Now, we are able to determine the Minkowski sum
of the nearest neighbor query and the pageregion. If MBR isgiven by avector of lower

Dynamic Adaptation of the Block Size 115

bounds (Iby, ... 1by.1) and upper bounds (uby, ... uby.1), the Minkowski sumisdetermined
by:

Vroc(MBRy, 2r) = |‘| (ub; —1b; + 2r)
O0<i<d

This Minkowski sum can be explicitly clipped at the data space boundary (here for
simplicity assumed to be the unit hypercube):

Vroc) n psMBRy, 2r) = |‘| (min{ub; +r, 1} —max{lb; —r, 0})
O<i<d

Weassumethat the query distribution followsthe datadistribution. Therefore, the access
probability Xq corresponds to the ratio of points in the Minkowski sum with respect to
al pointsin the database:

Pr De/d
Xo = N VR0 ¢y n psMBRy, 2r)
Analogously, the access probabilities for the smaller pages X; and X, are determined by
their page regions MBR; and MBR,,. The access probabilities are used in the cost bal-

ance for taking split or merge decisions.

4.7.3 Monotonicity Properties of Splitting and Merging

The most important precondition for the correctness of alocal optimization isthe mono-
tonicity of thefirst derivative of the cost function with respect to the page capacity. If the
first derivative isnot monotonically increasing, the cost function may have various|ocal
optimawhere the optimization easily could get caught in.

Asdepictedin figure 55, the cost function indeed formsasinglelocal optimum which
isalso the global optimum. Cost are very high for block sizes which are either too small
or too large. Minimum cost arisein arelatively broad area between these extremes.

Under several simplifying assumptions, it is also possibleto prove that the derivative
of the cost function is monotonically increasing. From this monotonicity, we can con-
clude that there is at most one local minimum. The assumptions required for this proof
are uniformity and independence as well as neglecting boundary effects. For thissimpli-
fied model

d
= G/l 40 —C O
e = %[c * 15 Hses * zantcpoin) oo

116 Dynamic Optimization of the Logical Block Size

250000 250000
7 200000 /, T 200000 o
< S\ —
& 150000 3. 150000 \\

€
§ 100000 2 100000 (
& 50000 & s00m |
0 +—o—1 0
0 4 8 12 16 0 25000 50000 75000 100000
Dimension Number of Points

Figure 59: Optimal block size for Uniform Data.

it is possible to show that the second derivative of the cost function is positive:

a2
—T(C) 2 0.
aC

Theintermediate resultsin this proof, however, are very complex and thus not presented
here.

4.8 Experimental Evaluation

To demonstrate the applicability and the practical relevance of our technique, we per-
formed an experimental evaluation on both, synthetic and real data. The improvement
potential was aready shown in figure 55 where a clear optimum for page sizes was
found at 64 KBytes outperforming the X-tree with a standard page of 4K by afactor of
2.7 and the sequential scan by afactor of 3.6.

The intention of our next experiment is to show that the optimum is not merely a
hardware constant but to a large extent dependent on the data to be indexed. For this
purpose, we constructed a DABS-tree on severa data files containing uniformly and
independently distributed points of varying dimension. The number of objectswasfixed
in this experiment to 12,000. We observed the block size which was generated by the
local optimization. The results are depicted on the left side of figure 59. In the two-
dimensional case, quiteausual block size of 3,000 Byteswasfound to be optimal. Inthe
high-dimensiona case, however, the optimum block size reaches values up to 192
KBytes with even increasing tendency.

Experimental Evauation 117

60 1000
— 900 1
50 — 800 4|
700 +—
600 -
500 —
400 1—|
300 1
0| | N 200 1

i M SRR

X-tree DABStree Sequentia X-tree DABS-tree Sequential

30 -

20 1| — -

Processing Time [msec]
Processing Time [msec]

Figure 60: Performance for 4-Dimensional (left) and 16-Dimensional (right) Data.

I'n our next experiment, depicted on theright side of figure 59, we show the useful ness
of dynamic optimization. We used the 16-dimensional index of the preceding experi-
ments and increased the number of objects to 100,000. Hereby, the optimum page size
decreased from 192 KBytesto 112 KBytes.

In our next experiment, depicted in figure 60, we compared the DABS-tree with the
X-tree and the sequential scan. As expected, the performance in low-dimensional cases
issimilar to the X-tree; in high-dimensional casesit is similar to the sequential scan. In
any case, both approaches are clearly outperformed. In the 4-dimensiona example, the
DABS-treeis43% faster than the X-tree and 157% faster than the sequential scan. Inthe
16-dimensional example, the DABS-tree outperforms the sequential scan by 17% and
the X-tree by 462%.

In case of amoderate dimensionality, and provided that the number of points stored
in the databases is high, both techniques, the X-tree as well as the sequential scan, are
clearly outperformed. Thisis demonstrated in the example of our 16-dimensional data-
base with 100,000 points. Here, the improvement factor over the X-tree is 2.78. The
improvement over the sequentia scan iswith 2.44 in the same order of magnitude.

118

1800

Dynamic Optimization of the Logical Block Size

1600 +—

1400 +—

1200 +—

1000 +—

800 +—

600 |
400 {—]

Processing Time [msec]

200 +—
0 T

X-tree

Figure 61: Sequential Scan and X-tree are Outperformed.

The intention of our last experiment is to confirm that our optimization technique is
also applicable to real data and that high performance gains are reachable. For this pur-
pose, we constructed a DABS-tree with 50,000 points from our CAD application (cf.
section 1.1.1). We measured again the performance of nearest neighbor queries. As que-
ry points, we also used points from the same application which were not stored in the
database. The dataspace dimension was 16 in this example. We outperformed the X -tree

DABS-tree Sequentia

by afactor of 2.8 and the sequential scan by 6.6.

800

700

600
500

400

300

200 +—

Processing Time [msec]

100 —

0 .

L]

X-tree

Figure 62: Query Processing Using CAD Data.

DABStree Sequential

119

Chapter 5
Optimizing the Dimension
Assignment

5.1 Introduction

One of the simplest techniques for multidimensional indexing is the inverted-list-ap-
proach. The basic idea of inverted listsisto use aone-dimensional index such as the B-
tree [BM 72] or one of its variants for each attribute. In order to answer a given range
query with sattributes specified, it is necessary to access s one-dimensional indexes and
to perform acostly merge of the partial results obtained from the one-dimensional index-
es. Inverted listsare availablein most commercial database systems and thusare widely
applied. For queriesinvolving many attributes, however, the merging step is prohibitive-
ly expensive and is the major drawback of the inverted-lists approach.

Itiswell-known that multidimensional index structures arevery efficient for databas-
eswith asmall number of attributes and outperform inverted lists if the query involves
multiple attributes [Kri 84]. In many real-life database applications, however, we have
to handle databaseswith alarge number of attributes. For databases with alarger number
of attributes, the performance of traditional multidimensional index structures rapidly
deteriorates. Therefore, specific index structures for high-dimensional data have been
proposed. For high dimensions (larger than 12), however, even the performance of spe-
cialized high-dimensional index structures decreases.

120 Optimizing the Dimension Assignment

Inthischapter, we propose anew approach, called tree striping, for an efficient multi-
attribute retrieval. The basic idea of tree striping isto divide the data space into digoint
subspaces of lower dimensionality such that the cross-product of the subspaces is the
original dataspace. The subspaces are organized by using an arbitrary multidimensional
index structure. Treestriping isageneralization of theinverted listsand multidimension-
al indexing approaches.

Therest of this chapter is organized as follows: Section 5.2 introduces the basic idea
of tree striping including the algorithm necessary for query processing. Then in
section 5.3, we provide a theoretical analysis of our technique and show that optimal
query processing is obtained for tree striping. We also show that optimal tree striping
outperforms the traditional inverted lists and multidimensional indexing methods. In
section 5.4, wethen discussthe more elaborate query processing algorithmswhich make
use of the specific advantages of “striped” trees and therefore further improve the per-
formance. Section 5.5 provides the details of our experimental evaluation which in-
cludes comparisons of tree striping to inverted lists and two multidimensional index
structures, namely the R-tree and the X-tree. The results of our experimental analysis
confirm the theoretical results and show substantial improvements over the multidimen-
sional indexing and the inverted-lists approaches.

5.2 Tree Striping

Our new idea presented in this chapter is to use the benefits of both the inverted lists and
high-dimensional indexing approaches in order to achieve an optimal multidimensional
query processing. Our approach, caltege-striping, generalizes both previous ap-
proaches. A first experiment on uniformly distributed 16-dimensional data presented in
figure 63 shows significant improvement factors of our method over the inverted lists
and multidimensional indexing approaches. Our comprehensive experimental evalua-
tion in section 5.5 will partly yield even more impressive improvement factors.

5.2.1 Basic ldea

The basic idea of tree-striping is to divide the data space into disjoint subspaces of lower
dimensionality such that the cross-product of the subspaces is the original data space.
(Note that a division of the data space into disjoint subspaces is different from a parti-
tioning of the data space where the partitions have the same dimensionality as the origi-

Tree Striping

Improvement (%)

Figure 63:

121

2000

1800

1600

1400

1200 .
W Inverted List

77 | Mult. Index

1000

800

600

400

200

u | iZ73

N=100000 N=1000000

o
|

Improvement over Inverted Lists and Multidimensional Indexing

nal data space whereas subspaces have a lower dimensionality.) This means that each

subspace contains a number of attributes (dimensions) and each object of the database

occurs in all subspaces. For example, the three-dimensional data space (customer_no,

discount, turnover) may be divided into the one-dimensional subspace (customer_no)

and the two-dimensional subspace (discount, turnover). Obviously, the dimensionality

of the subspacesis smaller than the dimensionality of the data space, and hence, we are

ableto index the subspaces more efficiently using any multidimensional index structure.

Query
(ap, @y, -1 89_1)

Subquery
(bg by, ..., bdu_l) eee (CuCyrenny cdH_l)

| Merge of Results |

(ap, @y, - a9_1)

Figure 64: Tree Striping

122 Optimizing the Dimension Assignment

To insert an object, we divide the object into subobjects according to the division of
the data space. Then, we insert the subobjects in the multidimensional index structure
managing the corresponding subspace. To process a query, we divide the query accord-
ing to the division of the data space and i ssue the subqueries to the relevant multidimen-
sional indexes. In a second step, we merge the results which have been produced by the
indexes using an external sorting algorithm such as merge sort. The general idea and
query processing strategy of tree striping is presented in figure 64.

Note that, in contrast to inverted lists, in general, the selectivity of subspace indexes
is relatively high because each index manages information about more than one at-
tribute. Therefore, the amount of partial results produced in the first step is rather small
which means that the cost for the merging step are not significant. Our formal model
which will be presented in section 5.3, confirms thisfact.

Itisclear that the number and dimensionality of the data space divisionsareimportant
parameters for the performance of our technique. The optimal division mainly depends
on the dimension, the number of data items, and the data distribution. The parameters
have to be chosen adeguately to achieve an optimal performance. For a uniform data
distribution, the parametersfor an optimal division into subspaces can be obtai ned easily
from the theoretical analysis (cf. section 5.3).

5.2.2 Déefinition of Tree Striping

In this section, we formally define the tree striping technique. In the following, we con-
sider objects as vectors in a vector space and attributes as components of the vectors.
Given is adata space of dimension d and extension [0..1] d N vectorsv havi ng the com-
ponents vy ... Vg.1 and an arbitrary multidimensional index structure MIS supporting the
relevant query types. First, we need a mapping which assigns the dimensions to the
different subtrees.

Definition 10: Dimension Assignment
The dimension assignment DA isamapping R — (Rd", Rd“) of ad-dimension-
al vector vto avector of k dj-dimensional vectorsw!, 0 < | <k, suchthat thefollowing
conditions hold:
k-1
1) z d=d

=0

Tree Striping 123

2)0j 0<j<d, O O<l<k L0si<d: v =w

30 0<l<k O O<i<d, Josgj<d: W::Vj

Note that w! denotes the i-th component in the I-th index. To clarify the definition of
dimension assignment, we provide asimple example: Given a5-dimensional data space
(d=5). We may define adimension assignment DAyqy even SUCh that k=2, dg =3, and d;
=2,i.e. DAgqq_even dividesthe data space into two subspaces of dimensionality 3 and 2.
Explicitly, DAygq_even Maps even dimensions to the first subspace and odd dimensions
to the second subspace, more formally, DAgyq even(V) = (Wo, W1), Wo = (Vg, Vi, V), Wy =
(1, v3). Thus, avector v= (0, 4, 6, 5, 1) ismapped to DAgyq even((0, 4, 6,5, 1)) =((0, 6,
1), (4,5)). Obviously, DAyyq even Meetsthe conditions specified in definition 10 because
al dimensions of the data space have been mapped to a subspace and vice versa.

Using the definition of dimension assignment, we are now able to formally define
tree-striping:

Definition 11: Tree Striping
Given a database DB of N d-dimensional vectors and a dimension assignment DA.
Then, atree-striping TSis defined asavector of k d-dimensional indexes

MIS = {w'},0<I<k,
withw' = DA'(v), vOI DB.

Tree striping as defined in definition 11 is a generalization of the previous approaches.
For the special case of k = d, tree striping corresponds to inverted lists because the
dimension assignment produces d one-dimensional data objects; and for the special case
of k=1, tree striping corresponds to the traditional multidimensional indexing approach
because we have one d-dimensional index. The most important questioniswhether there
exists a tree striping which provides better results than the extremes (the well-known
inverted lists and multidimensional indexing approaches). In particular, we have to de-
termine whether there exists ak (1 < k < d) such that tree striping outperforms the other
approaches. In the next section, we introduce a theoretical model showing that an opti-
mal k exists. Our experimental analysis presented in section 5.5 confirms the results of
our theoretical model and shows performance improvements of up to a factor of 120
times over the inverted lists and up to 280% over the multidimensional indexing ap-
proach. A second open question is how the attributes (dimensions) are assigned to the

124 Optimizing the Dimension Assignment

Set OF Obj ect query(TreeStrip ts, QuerySpec Qs)
{

int i;

Set OF SubObj ect sst[ts.nuni;

SubQuerySpec sqs[ts.nuny;

Set OF Obj ect st;

/1 for all indexes
for (i =0; i < ts.num i++)
{

/1 query i-th index with sub-query
sqgs[i] = ts.opt_dimassign(i, Qs);
sst[i] = ts.index[i].query(sqgs[i]);
/1 sort result by primary key
sst[i].sort();

}

/1 now nerge single results
st = merge(sst, ts.num;
return st;

Figure 65: A First Query Processing Algorithm

different trees such that the performance improvement is optimal. In section 5.4, we
discuss the implications of different dimension assignments and a so introduce opti-
mized algorithms for query processing using striped trees.

Note that tree striping as defined so far isindependent of the multidimensional index
structure used. Any multidimensional index structure such asthe R-tree [Gut 84] and its
variants (R*-tree [SRF 87], R"-tree [BK SS 90], P-tree [Jag 90b]), Buddy-tree [SK 90],
linear quadtrees[Gar 82], z-ordering [Ore 90] or other space-filling curves[Jag 90], and
grid-file based methods [NHS 84, Fre 87] may be used for this purpose.

Before we describe our theoretical model, we first provide a simple agorithm for
processing queries using striped trees. Asthe single indexes do not have all information
about an object, but only about some attributes of the object, in general, we haveto query
al indexesin order to process a query. Therefore, we divide the query specification gs
into sub-query specifications sgs[l] according to the dimension assignment. Then, we
query each singleindex with the sub-query specification sqg[l] and record theresults. In
afina step, we have to merge the results by sorting the single results according to the
primary key of the objects or any object identifier. Figure 65 shows afirst version of a
query processing algorithm. An optimized version for querying striped treesis provided
in section 5.4.

Analytical Model 125

5.3 Analytical M odel

As already mentioned, most of the multidimensional indexing approaches efficiently
solve the multi-attribute retrieval problem on low-dimensional data. From our experi-
ence in real-life database projects, we have learned that even for relational database
systems handling relatively high numbers of attributes (more than 10) is necessary, for
which the performance of traditional index structures deteriorates. To process arbitrary
queries (e.g., point, range, and partial match queries) efficiently on those databases, we
have to equally index all the attributes which means that we have to deal with a high-
dimensional data space.

Unfortunately, some mathematical problems arise in high-dimensional spaceswhich
are usually summarized by the term ‘curse of dimensionality.” A basic effect in high-
dimensional space is the exponential growth of the volume: Let us assume a database of
1,000,000 uniformly distributed objects consisting of 20 numerical attributes in the
range [0...1]. Let us further assume that we are interested in a query which provides 10
result objects located around the midpoint of the data space (0.5, 0.5, 0.5, ..., 0.5). Which
range do we have to query in order to obtain 10 result objects? Obviously, we have to
assure that the volume of our query range is equal to

10 a5
1,000,000 10,

as the volume of the data space is equal to 1. This leads to a query range of
29/10°=0.56

in each attribute. So we have to query the range (0.22-0.78, 0.22-0.78, ..., 0.22-0.78).
That means a query with a selectivity of°Leads to a query range of 0.56 in each
attribute in a 20-dimensional data space.

Considering these effects, we are able to provide a concise cost model of processing
range queries in a high-dimensional data space using the tree striping technique. For the
following, we assume a uniformly distributed sef\Nofectors in a-dimensional space
of extension [O..ﬂ Note that even if we assume a uniform distribution of the data, our
model can be applied to real data as well (cf. section 5.5). We will use the cost model to
determine the optimal number of trees and accordingly the dimensions of the trees for a
given data set, i.e. the optimal dimension assignment.

126 Optimizing the Dimension Assignment

Our cost model is divided into two parts: First, the cost arising from querying the
striped trees, and second, the cost for merging the results of the striped trees into one
final result.

Both cost functions are highly influenced by the dimensions of the striped trees. The
lookup cost in the index is growing superlinearly with growing tree dimension. The
merging cost, however, is growing superlinearly with the size of the result whichis, in
turn, falling with the dimension of the trees. This fact implies the assumption that the
total cost could form aminimum where both costs are moderate. This minimum should
belocated anywhere between thed-dimensional index and theinverted-lists approaches.

We assume that the multidimensional index structure aggregates a fixed number of
Ceff Vectors into a data page such that the bounding box containing the vectors forms a
square-shaped hyperrectangle with the (hyper-) volume

Cert(d)
Ves = — -

Thus, Cg denotes the actual fan-out of the index. From that, the edge length o of a

Ces(d)
=d = eff
o VBB d N

Analogously, we computethe edgelength g of Vyasq = f{/\Tq . The expected number of

typica bounding box is

page accesses Ajqex(d,N,0) is determined according to our cost model in chapter 3:

Cei(d) 1 [Cerr(d)
Pince(d N, @) = == CRY ==+ a5

_ N_f
- Ell+qmjceff(d)D

The number C; of data vectors in a data page also depends on the dimension d of the
vectors. Assuming that each coordinate value is stored as a 32-bit floating point value
and that there is an additional unique object identifier which also requires 32 bit, we
determine Cg; as:

C. = pagesize [Btorageutilization
eff = 40d+1)

The cost for combining the results of the multidimensional index accesses mostly de-
pend on the selectivities of theindexes. If |FRS| isthe size of the final result set of query

Analytical Model 127

Q then |IRS;| isthe intermediate result set produced by the i-th index having dimension
d;. Thus:

d

IRS| _ dFRS| _ o
—~N " ONnoO ~ 4

Note that we have to sort each intermediate result set according to the object identifiers
in order to be able to merge them into the final result set. We have to apply an external
sorting algorithm since, for larger g or minor d;, the result set will exceed the available
main memory. According to Ullman [UI1189], the cost for performing multi-way merge-
sort on arelation of B blocks is 2B Oogy,(B) where M is the number of cache pages
available to the sorting process. We can store the object identifiersin a densely packed
fashion such that ||RS;| object identifiersrequire

4 II]IRSi|

page-size

pages. From that, the cost for sorting the result set of asingleindex are:

SENEqd‘ ((4ENEq),

Asor(d N, @) = page—size page-size

To determine the total cost, Agyt and Ajpgex have to be summed up for all striped trees.
For merging the result sets, each of them has to be scanned once more. Total cost is:

k
A(d,N. Q) = z[%t I (d)Dd

di
AN 5 0, (AN
page-size page-size

In the following, we assume that the d dimensions of our data space are striped into k
divisions:

For dj, ..., dy.1, only whole numbers are meaningful. This effect is handled later, but is
of minor importance for our cost model. In this case, our cost function can be simplified
to:

128 Optimizing the Dimension Assignment

50000

yd
yd

\ d

40000

30000

20000

Page Accesses

10000

o] T T T T T T T T T
8 12 16
Number of Indexes k

(=]
S

Figure 66: Total Cost for Query Processing

d—d/k
Ak = kiffead ot
d/k

4N’ BIND
" pageszelz%l ZDOQMngge-gzeED}

Figure 66 shows the total cost over kin atypical setting with a database of 1,000,000
uniformly distributed objectsin a 15-dimensional data space. The selectivity of the que-
ry is0.01%. Thereisaclear minimum between k=2 and k=3.

Thus, we are able to determine an optimal k by solving the following equation:

9 - «
Ak NG =0 ()

The analytic evaluation of this equation yields a rather large formula which is omitted
due to space limitations. A function in the C language automatically generated by some
math program (MATHEMATICA, MAPLE) determining the derivative can be used to
calculate the optimum.

Unfortunately, the cost model presented so far isaccurate only inthelow-dimensional
case. This is caused by the fact that in high-dimensiona data spaces the data pages
cannot be split in each dimension. If we split a 20-dimensional data space once per
dimension, we obtain 22°=1,000,000 data pages. Obviously, the number of data objects
would have to grow exponentialy with the dimension in order to allow one split per
dimension. Therefore, we provide a specia high-dimensional adaptation of our cost

Analytical Model 129

(Vor -+ V0 Va ~s Vg-1)

opt opt +

|Optimal Dimension Assignment

;oror X

0 0 1 1 K K
(Wor s Wg) (Woy -y Wy 1) (Wo™, .., Wd::(—l)

Figure 67: Optimal Dimension Assignment

model. Our extension assumes that data pages are split only in the first d’ dimensions

whered' is the logarithm of the number of data pages to the basis of two:

|092()

eff(d)
The data pages have the average extension tYadimensions and extension 1 in all
remaining dimensiong{d’). When determining the Minkowski sum, we additionally
have to consider that only a part of the volume is located inside the data space because
in the dimensions which have not been split, the extension of the Minkowski sum is
still 1 rather than (16):
arf -

g X

HiDiMink(Vgg, Vo) = 3

(=Y

Thus, the expected number of data pages accessed in the high-dimensional case is:
) |092(ff(d))

|ndex H|D|(d N, Q) ﬁ(d) % ZD
Adding the sort cost we obtain the following total cost for high-dimensional data spaces:

1995

N
Praor (16N kE[ceff(di) 5+ 3

d/k d/k
+ ANEE (B 4 5 (og, AN e)D]

page-size page-siz

130 Optimizing the Dimension Assignment

5.4 Query processing

For optimal response times, we have to make two decision: We first have to choose an
adequate dimension assignment and second, we have to choose the right strategy for
processing queries.

Asaresult of thetheoretical analysis presented in section 5.3, there exists an optimal
number k of striped trees which can be determined according to our cost model (cf.
equation (*)). Sincek isareal number, however, we cannot directly use k as a parameter
for our query processor. I nstead, we use the floor of k

Kopt = LK

and then determine the optimal dimensionality of our trees given by
dopt = Ld7K].

Sincein general, (Kqp; Loy, issmaller than d, we have to distribute the remaining
drem =d- (kopt |:dopt)

attributes to our trees. Thus, we obtain d,, trees with dimensionality (d,, + 1) and

(kopt -
between two cases: Thefirst caseisthat we have additional information about the selec-

d,ey) trees with dimensionality d In the following, we have to distinguish

opt *
tivity of the attributes which usually occurs for relational databases. The second caseis
that we have no additional information which usually occurs in indexing multimedia
datausing feature vectors. Let usfirst consider the more general casethat we do not have
any additional information and therefore assume that al attributes have the same selec-
tivity. Inthis case, the optimal dimensionality dg,; of our trees may be used to define the
following Optimal Dimension Assignment.

Definition 12: Optimal Dimension Assignment
The dimension assignment DAy is a dimension assignment according to definition
10 such that:

OVi(dgp + 1) +i ifl<d
DAl(V)i = W: =0 (Gop + 1) +1 .rem
EVG, (g + 1) + (1 = Gy o) oy + otherwise

Ddopt + 1 If I < drem

where 0< | <kyy, d| = ,and 0<i <d,.

Eﬂom otherwise

Query processing 131

void insert(TreeStrip ts, object t)
{ int I;
SubObj ect st[ts.nuni;

/1 for all indexes

for (I =0; | <ts.num |++)

{ // determ ne sub-objects
st[I] = ts.opt_dimassign(l, t);
/'l insert sub-objects into |-th index
ts.index[I].insert(st[l]);

}

}

Figure 68: Insertion Algorithm

Intuitively, the optimal dimension assignment assigns the i-th component of the original
vector vto acomponent of one of the vectors w such that thefirst vector wP receivesthe
first dy components (vj... Vg, - 1), the second vector w! accommodates the components
(vdu...vdu+dl_1) and so on.

Using the optimal dimension assignment according to definition 12, now we are able
to present the insert algorithm of our tree striping technique as depicted in figure 68. In
order to insert an object t, wesimply dividet into aset of kyp sub-objectsstl] (using the
optimal dimension assignment) and insert them into the according striped treets.index[|]
(01 <Kgpy) -

A more complex algorithm isrequired for processing queries on striped trees. A rath-
er simple query processing algorithm has already been presented in section 5.2. The
agorithm depicted in figure 65, however, has amajor drawback: L et us assume that we
have to process a partial range query PRQ which specifiesthe attributes a, b and c:

PRQ = {**[a, a,],**.[b, b,], **,[c,cl. **}.

Let us further assume that all these three attributes are located in the first of the striped
trees. Obvioudly, it does not make senseto query any tree other than thefirst tree because
al other treesdo not have any selectivity. The algorithm presented infigure 65, however,
executes queries on all trees ignoring the expected selectivity of the trees. In order to
process queries efficiently, we have to take the selectivity of a tree into account and
query atreeonly if the expected gain in selectivity isworth the cost of querying thetree.

Another potentia improvement of the query processing algorithm can be exemplified
by the following situation: Assume that the three specified attributes a, b and c in the

132 Optimizing the Dimension Assignment

Setf (bj ect query(TreeStrip ts, QuerySpec gs)
{

int i, cost_index, cost_linear;

Set O SubChj ect sst[ts.nunj;

SubQuer ySpec sgs[ts.nunj;

Set 0f hj ect st; // set of candidates

/1 sort indexes according to selectivity
ts.sort_index(gs);

/1 determ ne sub-queries

for (i =0; i <ts.num i++)
sgs[i] = ts.opt_dimassign(i, gs);
i =0

/] estimate cost
cost _i ndex = cost_nodel | (sgs[0]);
cost_|inear = cost_|inear_scan(sgs[0]);
while (i < ts.num &
cost _index < cost_|inear)
{ /1 query index
sst[i] = ts.index[i].query(sgs[i]);
/1 sorted merge of result
sst[i].sort();
nerge(st, sst, ts.num;

/] estimate cost

if (i <ts.nun

{ cost_index = cost_nodel |l (st, sqgs[i+1]);
cost_linear = cost_linear(st);

}

if (i <ts.nun

{ /! load attributes
dat abase. | oad(st);
renove_fal se_hits(st, gs);

}

return st;

Figure 69: Query Processing Using Tree Striping

above example are spread over two striped trees (To managing attributesa and b, and T,
managing attribute c). After querying tree Ty, we will typically receive a set of answers
(candidates) which may contain some false hits. This assumption holds because the se-
lectivity of Tgismuch higher than the selectivity of T,. If wefurthermore assumeto have
meaningful queries, i.e. queries having agood selectivity on al attributes, in general the
set of candidates will be small. In this case, the cost for loading the candidate objects

Query processing 133

from the secondary storage and checking if the objects fulfill the query specification
may be lower than the cost of querying additional trees.

Let us now consider the second case where we do have some additional information
about the selectivity of the attributes. A different selectivity of the attributes may be
induced by the attributes of different data types (e.g., a Boolean attribute usualy has a
selectivity of 50%) and by different data distributions. We can use this information to
adapt the optimal dimension assignment. If we are able to query the tree containing the
attributes with the highest selectivity first, the resulting set of candidates will be rather
small and will contain only afew false hits. Therefore, query processing can be finished
without querying the other trees. Thismeansthat if we have information about the selec-
tivity of attributes, we should sort the attributes according to their selectivity before
applying the dimension assignment. Note that this operation does not only involve query
processing but also the dimension assignment since we have to ensure that the attributes
with the best selectivity are assigned to the first trees. In some cases, a non-uniform
division may lead to better results. For example, let us assume that we have objects with
9 attributes (a, b, ... i) that Koy is equal to 3, and that the attributes a to d have a high
selectivity whereas the selectivity of attributesetoi israther low. Then, it is beneficial
todividethe objectsinto sub-objects(a, b, ¢, d), (e, f), and (g, h, i) which would be a sub-
optimal division assuming no a priori knowledge about the selectivity of attributes.

Considering all these effects, we are now able to provide a more sophisticated algo-
rithm for query processing on striped trees. The algorithm (cf. figure 69) first determines
whether alinear search of the databaseis expected to be cheaper than asearch using trees
which may be the case for very large queries. The algorithm then sorts the striped trees
according to their selectivity, i.e. the tree which probably provides the smallest set of
candidates is queried first. If the querying of the first tree leads to a small set of candi-
dates, we determine whether loading these candidates from the secondary storage is
cheaper than querying the second tree. If this is the case, we load the attributes and
output all candidates fulfilling the query specification. Otherwise, we query the second
tree. This process iterates until all trees have been queried or the candidates are |oaded
and processed.

As the implementation of multidimensional index structures is complex, the assign-
ment of different data types such as strings and floating humbers into one tree is not
practicable. The division of aobject may therefore be induced not only by the expected
performance improvement but also by other considerations. Obviously, this can lead to

134 Optimizing the Dimension Assignment

W Cost Model
Measured

w

hv]

-

Optimal Index Dimension d

o

Figure 70: Comparison of Measured Optimum and Model Prediction

sub-optimal dimension assignments. Our practical experience, however, shows that a
dlightly sub-optimal dimension assignment performs nearly as well as the optimal di-
mension assignment.

5.5 Experimental Analysis

To show the practical relevance of our method, we performed an extensive experimental
evaluation of tree striping and compared it to theinverted lists and the multidimensional
indexing approach. All experimental results have been computed on an HP9000/780
workstation with several GBytes of secondary storage. For the experiments, we used an
object-oriented implementation (C++) of the R*-tree [BKSS90] and the X-tree
[BKK 96].

The test data used for the experiments are real data consisting of text data describing
substrings of alarge database of texts, and synthetic data consisting of uniformly distrib-
uted points in high-dimensional space. The block size used for our experiments is
4 KByte, and all query processing techniques were allowed to use the same amount of
cache. For areadlistic evaluation, we used very large amounts of data (up to 80 MBytes)
in our experiments. The total amount of disk space occupied by the created indexes
(inverted lists, multidimensional indexes and tree-striped indexes) is about 2 GByte and
the CPU-time for inserting the data adds up to about one week.

Experimental Analysis 135

Inafirst experiment, we confirmed our theoretical result (cf. section 5.3) that thetree
striping technique as a generalization of the lists and multidimensional indexing ap-
proaches outperforms both other techniques. For the experiment, we used 1,000,000
uniformly distributed data objects of varying dimensionality (d = 2..16). We built the
according indexes (R*-tree) and queried the indexes with a selectivity of 10 which
correspondsto an expected result of about 10 hits. In order to avoid statistical effects, we
used the average cost of 100 uniformly distributed query windows. The observed vari-
ance was rather small. We compared different tree stripings (varying the value of k) and
determined the optimal dimension assignment (optimal value of k). The tested dimen-
sion assignments for the 16-dimensional dataset are (16), (8, 8), (6, 5, 5), (4, 4, 4, 4), (2,
2,2,2,2,2,2,2),and (1, 1, ..., 1, 1). The data sets of other dimensionality have been

20000 7
.]
< .
< 15000
‘s’]
§ 10000] N
3] / \
S 5000 ™
E] \
] [——
0 (S — T L —
o} 4 8 12 16
Dimension d
a Improvement over Inverted Lists
200 E /
o 175 f
S
e 150 7
@ 7
% 125 - /
> |
2 100]
e 1
- 75 B
50 T T ‘ ‘

o
o~
[e]
X
>

Dimensiond

b. Improvement over Multidimensional Indexing

Figure 71: Improvement of Tree Striping for a Varying Dimension of the Data Space

136 Optimizing the Dimension Assignment

tested analogously. In figure 70, we show the optimal dimensionality (dp) of striped
trees depending on the dimensionality of the data. For d=2 and d=4, the optimal dimen-
sion assignment of tree striping provides one d-dimensional index, i.e. it isidentical to
multidimensional indexing. As expected according to our theoretical analysis, for higher
dimensions the optimal dimension assignment of tree striping is between the extreme
cases: For d=12, we obtain two 6-dimensional indexes and for d=16, we obtain adivi-
sioninto 3indexeswith dimensionality (6, 5, 5). Notethat in all experiments, the optimal
dimension assignment estimated by our cost model exactly matches the measured opti-
mum. For our experiments, we use the optimal dimension assignment as determined by

our cost model.

2000

\

1500 e

1000 /
/

500 /

0 L — L — L — — T T
o] 200000 400000 600000 800000 1000000
Number of Data ltems

Improvement (%)

a. Improvement over Inverted Lists

240

220

200

180

160

140

Improvement (%)

120

N

100 I — T T T T I — ——
200000 400000 600000 800000 1000000
Number of Data ltems

[=]

b. Improvement over Multidimensional Indexing

Figure 72: Improvement of Tree Striping for an Increasing Number of Data Items

Experimental Analysis 137

2000

1500

W Inverted List
Mult. Index

1000

L L1

0.1% 0.01% 0.001%

Improvement (%)

Figure 73: Performance for Varying

In the next experiment, we determined theimprovement achieved by the tree striping
technique. Again, we used 1,000,000 uniformly distributed data objects of varying di-
mensionality (d=2..16) and a query selectivity of 10°°. Figure 71 depicts the results of
this experiment. As expected, the improvement factor achieved over theinverted listsis
much higher than the improvement over multidimensional indexing. The maximum im-
provement 12,300% (i.e., tree striping is 123 times faster than inverted lists) occurs for
a dimensionality of 4. The tree striping technique is at least 10 times faster than the
inverted lists for any experiment. The improvement over the multidimensional indexing
increased with increasing dimensionality of the data space. For dimensions smaller than
8 there was no or only anegligible improvement. This meansthat for low dimensionali-
ty, tree striping corresponds to multidimensional indexing. For higher dimensions, how-
ever, theimprovement rapidly increases and reaches about 200% for adimensionality of
16. Thus, for high-dimensional datathe tree striping techniqueis more than twice asfast
as multidimensional indexing.

Another important criterion for the evaluation of indexing techniquesistheir scalabil-
ity, i.e. thebehavior of thetechnique for anincreasing size of thedatabase. Therefore, we
performed an experiment using a fixed dimensionality (d=16) and a fixed query selec-
tivity of 10 and varied the number of dataitems from 10,000 to 1,000,000. Again, we
used our cost model to determine the optimal dimension assignment. The improvement
over multidimensional indexing starts with a moderate value of 107% for a small data-
base but, as the size of the database increases, the improvement also increases up to
230% over multidimensional indexing for the largest database of 1,000,000 objects (cf.

138 Optimizing the Dimension Assignment

4000
3500 -
3 ‘/'
ﬁ 3000
2500
Q] — Measured
< 200 \ 7 Cost Model
Q1500 S / =
§ 1000 = <
500 =
N
0 4 8 12 16
Dimension

Figure 74: Optimal Dimension Assignment for Real Data (Text Data)

figure 72). Theimprovement over theinverted list approach starts with 228% and reach-
esitsmaximum by 2,000% (20 timesfaster) for thelargest database of 1,000,000 objects
(cf. figure 72).

Theintention of the experiment depicted in figure 73 isto show that the highimprove-
ments are independent from the selectivity of the queries. We repeated the previous
experiments for different dimensionality (shown are the experiment for d=12 and d=16)
using selectivities between 10 and 10°°. Again, we obtained an improvement factor of
210% to 220% over the multidimensional index and an improvement factor of 4 to 20
over theinverted lists.

6000

5000

4 .
000 B Inverted List

Tree Striping
E Mult. Index

3000

Page Accesses

2000

1000

s=6 s=8

Figure 75: Performance of Partial Range Queries

Experimental Analysis 139

To show the practical relevance of our technique, we a so evaluated the performance
of tree striping for other important query types. One of the most important query typesis
the partial range query. In our experiments with partial range queries, again we used
1,000,000 uniformly distributed objects (d=15). We randomly generated partial range
queries specifying a query range on 6 attributes for the first experiment and 8 attributes
for the second experiment. All queries have a selectivity of 10° leading to an average
result of 10 objects. For the tree striping technique, we determined an optimal dimension
assignment of three 5-dimensiona indexes. The results presented in figure 75 show that
the tree striping technique outperforms the inverted lists and the multidimensional in-
dex. The achieved improvement was 345% (for the partial range queries on 6 attributes)
and 303% (for the partial range queries on 8 attributes) over theinverted lists, and 166%
(6 attributes) and 160% (8 attributes) for the multidimensional indexing approach.

Inalast series of experiments, we evaluated the tree striping technique using real data
which consists of text datadescribing substrings of alarge database of texts. Infigure 74,
we compare the measured performancefor range querieswith aselectivity of 0.2%tothe
performance determined by our model (cf. section 5.3). The minima of the two curves
correspond to the optimal dimension assignment (dgy,). Note that the model estimates
the optimal dimension assignment correctly (d,,; = 5), athough it assumes a uniform
distribution of the data. The difference between model and measurements for large di-
mensions (i.e. small k), however, may be explained by the non-uniform distribution of
thereal data.

400 3

350
S 300 f LA —
S] 7
*S- 250 — _
£ 200 || EInverted List
:]] Mult. Index
5 150] —
e]
- 100 —

0 4
s=4 s=6 s=8

Figure 76: Improvement for Partial Range Queries

140 Optimizing the Dimension Assignment

300
] [7
250 —
Q]
< 200 —
= 1 .
%] M Inverted List
150 —]
=] Mult. Index
g 100 - —
50 —
0.05% 0.01% 0.005%

Figure 77: Performance of Partial Range Queries with Varying Selectivities (Text Data)

Infigure 76, we present the improvement of tree striping over inverted lists and mul-
tidimensional indexing for partial range queries with a varying number of specified at-
tributes (s=4..8). It isinteresting that for apartial range query with 4 specified attributes,
tree striping degenerates to inverted lists. If more than 4 attributes are specified, tree
striping becomes better than both, inverted lists and multidimensional indexing. Note
that for s=6, inverted lists are better than multidimensional indexing whereas for s=8,
multidimensional indexing is better than inverted lists.

In alast experiment with real data, we varied the selectivity of the partial range que-
ries. Figure 77 shows three different selectivities (0.05%, 0.01%, 0.005%) of partial
range queries each having six attributes specified (s=6). Note that tree striping is consis-
tently better than the inverted lists and multidimensional indexing approaches, and the
improvement factor increases with a decreasing selectivity of the partial range queries.

141

Chapter 6

Optimizing the Geometry of
Regions Using Bulk-L oad
Operations

In this chapter, we will exploit the potential for optimizing the shape of the bounding
boxes. The classical approaches for low-dimensional query processing [BKSS 90] tend
to optimize for cube-like bounding boxes forcing all side lengthsto be in the same order
of magnitude. Thisis achieved by dynamically inserting the data vectors into the data
pages, splitting the data pages whenever an overflow occurs. From our model presented
in chapter 3 it can be derived that optimization for cubes is appropriate in low dimen-
sions. However, wewill show in section 6.4 that this optimization leadsto adeteriorated
performance behavior in high-dimensional query processing. We will derive from our
model that range searchesin high-dimensional data spaces become more efficient when
thin pages are cut from the borders of the data space. It is difficult to achieve such space
partitioning in adynamic index construction. Therefore, we describe our geometry opti-
mization in the context of a bulk-loading technique for high-dimensional indexes.

Thebenefit of thischapter isthereforetwo-fold: Additionally to the performance gain
for the search operation, we present a sophisticated new agorithm for the index con-
struction improving the efficiency of this operation by orders of magnitude. This im-
provement will be shown both analytically aswell as experimentally. Parts of the mate-
rial presented in this chapter were published [BBK 98].

142 Optimizing the Geometry of Regions Using Bulk-Load Operations

6.1 Introduction

A typical database application starts with an empty database which will grow continu-
ously by multiple insert operations. It is not appropriate to use an index structurein the
beginning of this process because having only arelatively small amount of high-dimen-
sional feature vectors, a sequentia scan of the data will be much faster than an index
based search. Therefore, we are supposed to simply store the feature vectors on the disk
and scan the whol e database for query processing. When the size of the database reaches
a certain value, the use of an index structure is required. We may use a cost model as
discussed in chapter 3 to determine this break-even point for a given dimensionality of
the feature vectors. At this point, we face the problem to build an index file from alarge
amount of data, i.e. to bulk-load the index. Asthe process of inserting data does not stop
at that time, we cannot use a static index structure but have to use a dynamic index
structure and additionally supply it with an efficient bulk-load operation. As the X-tree
outperforms the TV-tree and the R -tree regarding the search performance, we decided
to use the X-tree as an index structure.

On the other hand, we may draw some advantage from the fact that we do not only
know asingle dataitem - asin case of anormal insertion operation - but alarge amount
of dataitems. It isacommon knowledge that we can achieve ahigher fanout and storage
utilization using bulk-load operations resulting in a lightly better search performance.
But do we exhaust al the potential of thisinformation by increasing the storage utiliza-
tion? Aswe will see later in this chapter, we do not. Thisis due to the fact that a priori
knowing all data allows us to choose an alternate data space partitioning. As we will
show analytically, space partitioning caused by asplit strategy splitting the data spacein
two equally-sized portions performs poor in contrast to an unbalanced split. An experi-
mental evaluation of our bulk-loading technique provesthis result.

Therest of this chapter is organized asfollows: In section 6.3, we introduce the gen-
eral idea of bulk-loading an index structure. We then give an overview over existing
bulk-loading techniques and analyze their behavior especially concerning effects occur-
ring in high-dimensional spaces. In section 6.3.3, we theoretically analyze the perfor-
mance of various split strategies in high-dimensional data spaces. In section 6.4, we
propose our new technique which allows not only a fast bulk-load operation but also
results in a better space partitioning than we can achieve using a dynamic index struc-
ture. In section 6.3.7, we analytically show that our bulk-load operation can be donein

Related Work 143

T
i

Peano (Z-Order) Hilbert Gray-Codes U-Index

Figure 78: Space Filling Curves

O(n log n) time. The chapter is concluded by a variety of experimental results which
demonstrate the advantage of our technique compared to dynamic indexing and other
bulk-loading techniques.

6.2 Related Work

6.2.1 General |dea of bulk-loading

Building an index from agiven large set of high-dimensional vectors, we haveto divide

the data set into rather small portions which fit into asingle datapage. Thus, we haveto

assign each vector of the data set to a data page and additionally build an appropriate
directory. Therearetwo known techniquesto assign dataitemsto data pages: We can use

a function0%~ O which provides a one-dimensional order of the data space, and —
after sorting the data items — sequentially assign them to data pages. Usually, a space
filling curve such as the Hilbert curve or Z-ordering is used as an assigning function.
Figure 78 shows some two-dimensional examples of space filling curves. Space filling
curves can also be directly applied for multidimensional indexing, cf. chapter 2.

As an alternative, we can divide the data space into partitions which correspond to
data pages. This partitioning of the data space can be done in a top-down fashion which
means that we hierarchically divide thalimensional space using«1)-dimensional
hyperplanes as borderlines between the partitions. More formally, we dividedthe
mensional spaces, into ny partitionsds ...dsp no- These partitiondsy; are then split
into partitionsdsy o...dsyj n1 @and so on. In addition, however, we have to assure that a
directory can be built on top of this space patrtitioning, i.e. we have to meet some restric-
tions with respect to the values

Frequently, bulk-loading an index is also called bottom-up construction of the index.
This is due to the fact that we first construct the data pages which are at the “bottom” of

144 Optimizing the Geometry of Regions Using Bulk-Load Operations

the index structure and then construct the directory pages. As this term is misleading
because we actually partition the data spacein atop-down fashion, we omit thisterm and
use bulk-loading or simply index construction instead.

6.2.2 Hilbert R-Trees

For both of the general techniques, some research has been done. From the class of space
filling curves, also known asfractals, the Hilbert curve seemsto be the most appropriate
technique for multidimensional indexing. The relevant property hereby isthe preserva-
tion of neighborhood which means that objects which are close in the d-dimensional
space should be close in the 1-dimensional space, too. As experiments show, in case of
the Hilbert curve this property holds for most of the points. This leads to the develop-
ment of the Hilbert R-tree [KF 94]. A Hilbert R-treeis created by externally sorting all
the data vectors according to their Hilbert value. Then, we divide the resulting sorted
array of vectors into equally sized portions such that every portion fits into one data
page. We store the corresponding vectorsinto data pages. In the next step, we divide the
resulting array of data pages which is still sorted according to the Hilbert value into
equally sized portions and determine the corresponding minimum bounding boxes
(MBR). We findly store the MBRs in directory pages clustering these directory pages
recursively until wereach asingleroot node. The costsfor bulk-loading aHilbert R-tree
are obviously in O(n log n) time due to external sorting. The Hilbert R-tree performs
very well for low-dimensional spaces. In these spaces, it outperforms the Z-order space
filling curve and is competitive to dynamic R-trees. However, we are not able to predict
the behavior of an index structure in high-dimensional spaces from the behavior in low-
dimensional spaces. As we will seein section 6.5, the Hilbert ordering degenerates in
higher dimensions |leading to a bad query performance. The reason for this behavior is
the resulting overlap when creating data pages from sorted Hilbert values. Obviously, a
range in the 1-dimensional Hilbert space does not correspond to arectangular regionin
thed-dimensional space. Thisintroducesan overlap into theindex whichincreaseswhen
going to higher dimensions. Additionally, we do not have the choice of adapting the
space partitioning to the data distribution.

6.2.3 VAM-Split R-Trees

The VAM-Split trees which have been proposed by White and Jain use the concept of
hierarchica space partitioning. VAM-Split trees are R-trees or KDB-trees which are

Related Work 145

bulk-loaded by creating a kd-tree-like structure. The data vectors are initially stored in
an array. Then, the algorithm determines a split dimension and a split value within this
dimension. The value is determined such that the variance from each point to the split
valuein maximized. According to the authors, this can be donein O(n) time. In the next
step, all datavectors are transferred to the upper or the lower half of the array depending
on thevalue of the vector in the split dimension. From that, the algorithm has partitioned
the data space into two portionswhich are separated by a (d-1)-dimensional hyperplane.
The split dimension is the normal vector of the hyperplane. The agorithm recursively
repeats the partitioning process until portions of the space exist which fit into asingle
data page. Except the fact that the split condition was maximizing the variance instead
of using the median, this technique is very similar to building a kd-tree. The disadvan-
tage of thealgorithmisthat it does neither take advantage of the knowledge that we have
from the fact that the whole amount of datais present during the bulk-load operation nor
effects occurring in high-dimensional spaces have been taken into account. As we will
see, this resultsin an inadequate data space partitioning.

6.2.4 Buffer Trees

In [BSW 97], van den Bercken, Seeger and Widmayer propose a new technique called

buffer trees. Buffer trees are a generalized technique which potentially works on all
multidimensional index structures. The buffer treeisaderivative of the data structureto

be constructed (called the ‘target’ index structure) with two major modifications: First,
an additional buffer is assigned to each directory page, and second, the capacity of a
directory page may differ from the capacity of the target data structure. The buffer of
each directory page is partially held in the main memory and partially laid out on the
secondary storage. During the bulk-load operation, each tuple is inserted into the buffer
of the root node. If the buffer of the root node is full, all objects in the buffer are dis-
patched to the next deeper index level. This process continues until the data level is
reached. If the last object has been inserted into the buffer tree, all buffers are emptied by
propagating the contained points down the tree. The data pages of the buffer tree can be
taken as data pages of the target index while the directory of the buffer tree has to be
discarded due to incorrect capacity. The various directory levels of the target index are
created by inserting the bounding boxes into further buffer trees. Number, capacity and
buffer size of the directory nodes are limited by the available main memory and have to
be optimized accordingly. Although avoiding a complete sorting of the data set, the

146 Optimizing the Geometry of Regions Using Bulk-Load Operations

authors prove that the lower bound of page accesses in externa sorting is achieved by
their algorithm. A significant performance improvement over dynamic index construc-
tion is shown experimentally for R-trees. The general advantage of the buffer tree ap-
proach is that, algorithms designed for tuning the query performance of the target index
structure can be applied without modification. Obviously, the resulting index has the
same properties as a dynamically constructed index. On the other hand, no specific ad-
vantage istaken from knowing the complete data set apriori. Additionally, an overlapin
the target directory is not avoided.

6.3 Our New Technique

In this section, we present our new bulk-loading technique. Although applicableto most
R-tree-like index structures, we decided to use the X -tree as an exampl e because accord-

ing to [BKK 96], the X-tree outperforms other high-dimensional index structures. In

contrast to dynamically constructed X -trees, our algorithm exploits a priori knowledge

of the compl ete data set to create an overl ap-free directory, al so avoiding supernodes. An

arbitrary storage utilization can be achieved, including a near-100% utilization. As we

will see later, “near 100%” means 100% up to round-off effects. Furthermore, if we
choose a storage utilization lower than 100%, we use the gained freedom for an acceler-
ation of the construction.

6.3.1 Basic ldea

During the bulk-load operation, the complete data is held on the secondary storage.
Although only a small cache in the main memory is required, cost intensive disk opera-
tions such as random seeks are minimized. In our algorithms, we strictly separated the
split strategy from the core of the construction algorithm. Therefore, we can easily re-
place the split strategy and thus, create an arbitrary overlap-free partition with the given
storage utilization. Various criteria for the choice of direction and position of split hyper-
planes can be applied. Especially, we have implemented various kinds of asymmetric
split strategies which are not applicable in a dynamic index construction.

The index construction is a recursive algorithm containing the following subtasks:

« determining the tree topology (height, fanout of the directory nodes, etc.)

» the split strategy,

Our New Technique 147

g

8 9|3 E F

o _g 1,000| 2,000 2,000

B 5

— £

= B K G H

8. 1,000{ 2,000 2,000

5 dimension 0

‘g’ [unsor ted data |
5 | A [B

©

8 [A] — 5 |
Jo :

g L3 k] E] F ¢ | H

Figure 79: Basic Idea of Our Technique

» external bisection of the data set according to tree topology and split strategy
» construction of the index directory.

Although al these subtasks run in a nested fashion, we will present them separately
to maintain clarity. However, we cannot isolate the split strategy and the bipartitioning
agorithm from the tree topol ogy. For example, in order to achieve an overlap-freedirec-
tory, both the split strategy and the partitioning algorithm have to consider the fanout of
an individual directory node as provided by the tree topology (Note that, at least in the
highest levels of the tree, the fanout can be much smaller than the page capacity, aswe
will show later). Viceversa, the exact topology of asubtree can only be determined if the
exact number of data objects stored in this subtreeis known. Thisexact number, howev-
er, depends on theresults of previous splits and bisections. Thus, although we separately
describe the parts of the algorithms, we have to keep in mind the special requirements

and prerequisites of the other parts.

An example will clarify the idea of our algorithm: Let us assume that we have given
10,000 two-dimensional data items and we can take from several properties our index
structure that 10,000 items will fill atree of height 3 having 6 entries in the root node
(determination of tree topology). Thus, wefirst call the recursive partitioning algorithm
which applies the split strategy to our 10,000 dataitems and gets the following back:

“The 10,000 items should be first split according to dimension 0 such that partition A
contains 2,000 items and partition B contains 8,000 items. Then we should split partition
B according to dimension 1 such that partition C and D each contain 4,000 items. Again,

148 Optimizing the Geometry of Regions Using Bulk-Load Operations

we should split C and D according to dimension 0 that each of the partitionsE, F, G, and
H each contain 2,000. Finally, we should split partition A according to dimension 1 into
partitions J and K such that J and K contain each 1,000 data items.”

Note that this information could also be seen as a binary tree (split tree) having split
dimensions as nodes and amounts of data as denotations of edges. The upper part of
figure 79 depicts the result of the split strategy and the corresponding split tree. As next
step, the top-down partitioning algorithm calls the external bisection algorithm (“Exter-
nal” means that the data to be bisected is located on the secondary storage and the algo-
rithm also operates on disk) which divides the previously unsorted data into the six
desired portions (E, F, ..., J, K). This is depicted in the lower part of figure 79. At this
point, we have partitioned our root node into the six subtrees. Note that the data inside
the partitions (J, K, ..., G, H) remains unsorted during the bisection, i.e. there exists no
ordering inside of J. As last step, we recursively apply our algorithm to the six partitions
until we reach the data pages and write the corresponding directory to the secondary
storage.

6.3.2 Determination of the Tree Topology

The first prerequisite of our algorithm is to determine the topology of the tree resulting
from our bulk-load operation. The topology of a tree includes the height of the tree, the
fanout of the directory nodes on the various tree levels, the capacity of data pages, and
the number of objects stored in each subtree. However, we do not regard the exact num-
ber of objects stored in a tree, but a range between a maximum and a minimum number.
The topology of the tree only depends on static information which is invariant during the
construction such as the number of objects, the dimension of the data space, the page
capacity and the storage utilization.

Let Crax data € the maximum number of data objects in a data page where

C - pagesize J
e, deta {sizeo(dataobjed

Crnax dir @nalogously the maximum fanout of a directory page,GfQiaa andCet g
the average capacity of a data/directory page with

Cett data = StorageutilizationiC, ., qza-

Our New Technique 149

The maximum number of data objects stored in atree with height h isthen:
h-1 h-1
Cmax,tree(h) = Cmax,data[cmax,dir Ceff,tree(h) = Ceﬁ,data[ceff,dir'
Therefore, the height of thetree must initially be determined such that Cey 10 IS greater
than the actual number of objectsn. More formally:

n
h=|log .(—)}1
’V Camu Ceff,daia

Note that we have to evauate this formula only once in order to determine the level
of the root node of the index. Asthe X-tree and other R-tree related index structures are
aways height-balanced, we can easily determine the level of subtrees by decrementing
the level of the parent node of the subtree. Now, we have to determine the fanout of the
root node of atree T with height h when filled with n data objects. Let us assume that
every subtree of height (h-1) is filled according to its average capacity C; yee(N—1).
Thus, the fanout is the quotient of n and the average capacity of the subtrees:

fanout(h, n) = min([#], Crraair) = min((#], Conaeci) -
Cettree1—1) Ceft data [Cgf;fiir
The minimum is required due to round-off effects.

Obviously, a 100% storage utilization in every node can be achieved only for certain
values of n. Usually, the number of nodes in each level must be rounded-up. Thus, the
data nodes and their parents are utilized best according to the desired storage utilization
while the worst utilization typically occurs in the top levels of the tree. In general, our
algorithm creates the highest possible average storage utilization below the chosen one.

6.3.3 The Split Strategy

Oncewe laid down the fanout f of a specific directory page P, the split strategy hasto be
applied to determine f subsets of the current data. Aswe regard the split strategy as an
replaceable part of our algorithm, we only describe the requirements of a split strategy
in this section. A detailed description of our optimized split strategy will be given in
section 6.4.

Assuming that the data set is bisected repeatedly, the split strategy determines the
binary split treefor adirectory page which hasf |eaf nodesand may be arbitrarily unbal-
anced. Each non-leaf nodein the split tree represents ahyperplane (the split plane) split-
ting the data set into two subsets. The split plane can be described by the split dimension

150 Optimizing the Geometry of Regions Using Bulk-Load Operations

@ X; 50,000 @

50,000 : 50,000

Oy OFELy 33,3§Q:>16,667 16,6692\&333
cfjuliufic

@ y; 16,666
@ y; 33,333 16,667 : 16,666 16,666 : 16,667

Figure 80: The Split Tree

and the numbers of data objects (NDO) on each side of the split plane. Thus, a split
strategy has to determine the split dimension and the ratio between the two NDOs. Fur-
thermore, we allow the split strategy to produce not only constant ratio but ainterval of
acceptable ratios. We will use this freedom later to accelerate the bisection algorithm.
Note that the split strategy does not provide the position of the split plane in terms of
attribute values. We determine this position using the bisection algorithm.

In every subtree of the split tree, the number of data objects NDO is proportional to
the number of leaf nodesin the split tree:

NDO = nﬁeafnod&s

f

Figure 80 shows an example of a subtree containing 100,000 data objects to be orga-
nized in adirectory node of fanout 6. When applying asymmetric split strategy, thefirst
split has to be in the middle of the data set dividing it into two subsets with
NDO;,=50,000 elements according to the x-axis. Then, we have to divide each of the
subsets into 3 parts. This is done by a 2:1 split into NDO,=33,333 and NDO3=16,667
objects according to the y-axis (node 2). The rectangle containing 33,333 elements is
then again partitioned into two approximately equally sized subsets. An alternate split
strategy, for example, cuts NDO,=16,666 objects out of the 100,000 in the first step,
then again NDO,=16,666 from the rest, and so on. In this case, the split tree degenerates
toalinear list.

In order to determine the split dimension, we have to consider two cases: If the data
subset fitsinto the main memory, the split strategy can determinethe split dimension and
the subset size by computing selectivities or variances from the complete data subset.

Our New Technique 151

Otherwise, decisions are based on a sample of the subset which fitsinto the main mem-
ory and can be loaded without causing too many random seek operations. We use a
simple heuristic to sample the data subset which loads subsequent blocks from three
different placesin the data set.

6.3.4 Recursive Top-Down Partitioning
Now, we are able to define arecursive algorithm for partitioning the data set. The algo-
rithm consists of two procedures which are nested recursively (both procedures call one
another). Thefirst, partition(), is called once for each directory page. Itsduties are:
« call the topology module to determine the fanout of the current directory page
» call the split-strategy module to determine a split tree for the current directory page
» call the second procedurggrtition_acc to_split_tree()
The second function partitions the data set according to the split dimensions and the
proportions given in the split tree. However, the proportions are not regarded as fixed
values. Instead, we will determine lower and upper bounds for the number of objectson
each side of the split plane. Thiswill help usto improvethe performance of the next step,
external bipartitioning. Let us assume that the number of leaf nodes on each side of the
current nodeinthe split treeisl : r, and that we are currently dealing with N data objects.
An exact split plane would exploit the proportions

| r
Nigrt = NEi’+_r and Nygy = NEi’+_r = N—Nig;-

Instead of using the exact values, we compute an upper limit for Ny such that Nyg; iS
not too large to be placed in | subtrees with height h—1 and alower limit for Ny such
that Nyign is not too large for r subtrees:

Nmax,left =1 mmax,tree(h_l) Nmin,left = N_Nmax,right =N-r [Cmax,tree(h_l)

An overview over the algorithm is depicted in C-like pseudocode in figure 81. For the
presentation of the algorithm, we assume that the data vectors are stored in an array on
the secondary storage and the current data subset is referred to by the parameters start
and n, where n is the number of data objects and start represents the address of the first
object.

The procedure index_construction(n) determines the height of the tree and calls par-
tition() which isresponsible for the generation of acomplete data or directory page. The
details of the page generation are provided in section 6.3.6. Thefunction partition() first

152

Optimizing the Geometry of Regions Using Bulk-Load Operations

i ndex_construction (int n)

{
int h=(int)(log (n/Ceffdata) / log (Ceffdir) + 1)
partition (0, n, h) ;
}
partition (int start, int n, int height)
{
if (height == 0) {
/1 wite data page, propagate info to parent
return ;
int f = fanout (height, n) ;
SplitTree st = split_strategy (start, n, f) ;
partition_acc_to_splittree (start, n, height, st) ;
/1 wite directory page, propagate info to parent
}

partition_acc_to_splittree (int start, int n, int height,

{
if (is_leaf (st)) {
partition (start, n, height - 1) ;
return ;
}
int ntc = max_tree_capacity (height - 1) ;
n_maxl eft = st->| _|eaves * ntc ;
n_mnleft = N- st->r_|leaves * ntc ;
n_real = external _bipartition (start, n, st->splitdim
n_mnleft, n_nmaxleft) ;
partition_acc_to_splittree (start, n_real,
st->leftchild, height) ;
partition_acc_to_splittree (start + n_real, n - n_real,
st->rightchild, height) ;
}

SplitTree st)

Figure 81: Recursive Top-Down Data Set Partitioning

determines the fanout of the current page and calls split_strategy() to construct an ade-

quate split tree. It then calls partition_acc_to_splittree() to get the data set partitioned

according to the split tree. After partitioning the data, partition_acc_to_splittree() calls

partition(), in order to create the next deeper index level. The height of the current sub-

treeisdecremented in thisindirect recursivecall. Therefore, the dataset is partitionedin

atop-down manner, i.e. the data set isfirst partitioned with respect to the highest direc-

tory level below the root node.

Our New Technique 153

6.3.5 External Bipartitioning of the Data Set

Our bipartitioning algorithm is comparable to the well-known Quicksort algorithm

[Hoa 62, Sed 78]. Bipartitioning means to split the data set or a subset thereof into two

portions according to the val ue of one specific dimension, the split dimension. After the
bipartitioning, the “lower” part of the data set contains values in the split dimension
which are lower than a threshold value (the split value), the values in the “higher” part
will be higher than the split value. The split value is initially unknown and is determined
during the run of the bipartitioning algorithm. Note that the actual goal of the bipartition-
ing algorithm is to divide the array such that a specific proportion in the number of
objects results where the term “proportion” is fuzzily defined as an interval. For exam-
ple, we may have an array of 10,000 data vectors which we want to bipartition such that
one partition contains between 3,000 and 3,500 data vectors whereas the other partition
contains the rest of the data vectors, i.e. between 6,500 and 7,000 data vectors. As we do
not know a priori which values are located in the interval from object 3,000 to object
3,500, we do not initially know the split value.

Bipartitioning is closely related to sorting the data set according to the split dimen-
sion. In fact, if the data is already sorted, bipartitioning of any proportion can easily be
achieved by cutting the sorted data set into two subsets. However, sorting has a complex-
ity of o(n log n), and a complete sort-order is not required for our purpose. Instead, we
will present a bipartitioning algorithm with an average-case complexity of @fe
basic idea of our algorithm is to adapt Quicksort as follows: Quicksort makes a bisection
of the data according to a heuristically chosen pivot value and then recursively calls
Quicksort for both subsets. Our first modification is to make only one recursive call for
the subset which contains the split interval. We are able to do that because the objects on
the other subsets are on the correct side of the split interval anyway and need no further
sorting. Figure 82 depicts this modification. In the example, there is no need to continue
sorting on the left partition (2, 1) because all elements in the left partition are already
below the final split interval. The second modification is to stop the recursion if the
position of the pivot value is inside the split interval (inside the grey area in figure 82).
The third modification is to choose the pivot values according to the proportion rather
than trying to reach the middle.

Our bipartitioning algorithm works on the secondary storage. It is well-known that
the Mergesort algorithm is better suited for external sorting than Quicksort. However,
Mergesort does not facilitate our modifications leading to ar @{mplexity and was

154 Optimizing the Geometry of Regions Using Bulk-Load Operations

pivot element

split interval
ntalaray [8 [7 [1 2 | 5’ o |
s | 7 | 1 2 |5 o |
Gitneagoritm__ 2 | 1 [s | 7 [8 [o |
P - |
already bipartitioned to be bipartitioned recursively

Figure 82: Adapted Quicksort

not further investigated for this reason. In our implementation, we use a sophisticated
scheme reducing disk 1/0 and especially random seek operations much more than a
normal caching algorithm would be able to.

The algorithm runsin two modes: in an internal mode if the data set to be partitioned
fitsin the main memory cache, and in an external modeif it doesnot. Theinternal mode
isquite similar to Quicksort: The middle of three split attribute valuesin the databaseis
taken as pivot value. The first object in the left side having a split attribute value larger
than the pivot value is exchanged with the last element in the right side lower than the
pivot value until |eft and right object pointers meet at the bisection point. The algorithm
stopsif the bisection point isinsidethe goal interval. Otherwise, the algorithm continues
recursively with the data subset containing the goal interval.

Theexternal modeis more sophisticated: First, the pivot value isdetermined from the
sample which is taken in the same way as described in section 6.3.3 and can often be
reused. A completeinternal bipartition runs on the sample data set to determine the pivot
value as well as possible. In the following external bisection (cf. figure 83), transfers
from and to the cache are always processed with a blocksize haf of the cache size. The
cache, however, does not exactly represent two blocks on disk. Figure 83a shows the
initialization of the cache from the first and last block in the disk file. Then the datain
the cache is processed by internal bisection with respect to the pivot value. If the bisec-
tion point is in the lower part of the cache (figure 83c), the right side contains more
objectsthanfit in one block. One block, starting from the bisection point, iswritten back

Our New Technique 155

(@) Initializing the cache from file:
L T T T T I TR T A

==/

(NN cache

(b) Internal bisection of the cache:
T TR cache
[

(c) Writing thelarger half back to disk:
(T T T T T T T T TN T i |

[coche

(d) Loading one further block to cache:
O A T T T T T T T file

=2

C NI cache

(e) Writing thelarger half back to disk:
T T T T i |

T ccche

Figure 83: External Bisection

to the file and the next block is read and internally bisected again. Usually, objects re-
main on the lower and higher ends of the cache. These objects are used later to make
transfer blocks complete. All remaining datais written back in the very last step in the
middle of the file where additionally a fraction of ablock has to be processed. Finally,
wetest if the bisection point of the external bisection isin the split interval. If the point
isoutside, another recursion is reguired.

156 Optimizing the Geometry of Regions Using Bulk-Load Operations

6.3.6 Constructing the Index Directory

As the data partitioning is done by a recursive agorithm, the structure of the index is
represented by the recursion tree. Therefore, we are able to create a directory node after
the completion of the recursive callsfor the child nodes. These recursive callsreturn the
bounding boxes and the corresponding secondary storage addresses to the caller, where
the informations are collected. There, the directory node is written, the bounding boxes
are combined to a single bounding box comprising of al boxes of child nodes, and the
result isagain propagated to the next higher level.

Thus, a depth-first post-order sequentialization of the index is written to disk. The
sequentialization starts with a sequence of data pages, followed by the directory page
which isthe common parent of these data pages. A sequence of such blocksisfollowed
by asecond-level directory page, and so on. Theroot page of thedirectory isthelast page
in the index file. As geometrically neighboring data pages are also likely to be in the
same hierarchical branch, they are well clustered.

6.3.7 Analytical Evaluation of the Construction Algorithm

In this section, we will show that our bottom-up construction algorithm has an average
complexity of the order O(n log n). Moreover, we will regard disk accesses in a more
exact way, and thus provide an analytically derived improvement factor over the dynam-
ic index construction. For thefile 1/0O, we determine two measure numbers: The number
of random seek operations and the amount of dataread or written from or to disk. Unless
no further caching is performed (which istrue for our application, but cannot be guaran-
teed for the operating system) and provided that seeks are really random, the I/O pro-
cessing time can be determined as

tijo = tepa [36EK_0OPS+ ty e AMOUNE .

In the following, we denote by the cache capacity Cqoone the number of objectsfitting in
the cache:

c _ _ cachesize
cache ™ g zeof (object)

Lemma 7: Complexity of bisection
The bisection algorithm has the complexity O(n).

Our New Technique 157

Proof (Lemma7)

We assumethat the pivot element israndomly chosen from the data set. After thefirst

run of the algorithm, the pivot element is located with uniform probability at one of

the n positionsin thefile. Therefore, the next run of the algorithm will have the length

k with aprobability 1/n for each 1<k<n. Therefore, the cost function C(n) encom-

passes the cost for the algorithm, n+1 comparison operations plus a probability

weighted sum of the cost for processing the algorithm with length k—1, C(k) . We get
the following recursive equation:

n
C(n)=n+1+ z
k=1

C(k-1)
0

which can be solved by multiplying with n and subtracting the same equation for
n-1:

n n-1
nC(n)—(n-1)[C(n-1) =nn+1)—-nn-1)+ Z C(k-1)— z C(k-1)
k=1 k=1

This can be simplified to
C(n) =2+C(n-1),

and,as C(1) =1,
C(n) =2M=0(n),

0

Lemma 8: Cost Bounds of Recursion
(1) The amount of dataread or written during one recursion of our technique does not
exceed four times the file-size.
(2) The number of seek operations required is bounded by

8[h
C

seek_ops(n) < +2[og,(n)

cache

Proof (Lemma 8)

(1) follows directly from Lemma 1 because every compared element has to be trans-
ferred at most once from disk to main memory and at most once back to disk.

158 Optimizing the Geometry of Regions Using Bulk-Load Operations

(2) In each run of the external bisection algorithm, file 1/0 is processed with a block-
size of cachesize/2. The number of blocksread in each runistherefore

blocks_read,; o) = CLM/Z +1
cacl

because one extraread isrequired in thefinal step. The number of write operationsis
the same such that

interval

r
seek_ops(n) = 200 blocks_read (i) < —
ccache

+2ogy(n),

i=0
O

Lemma 9: Average Case Complexity of Our Technique

Our technique has an average case complexity O(n log n) unlessthe split strategy has
acomplexity worse than O(n).

Proof (Lemma9)

For each level of the tree, the complete data set has to be bisectioned as often as the
height of the split tree. Asthe height of the split treeis limited by the directory page
capacity, there are at most

h(n) [C ax i = O(log 1)
bisection runs necessary. Our technique has therefore the complexity O(n log n),

0

Lemma 10: Cost of Symmetric Partitioning

For symmetric splitting, the partition() procedure has an amount of file 1/O data of
n n I
00,(=—) *+100c (=——)HAilesize
B 2 Ccache Con it Coache H]

and requires

8[h
cache

QOQZ(C;

n
)+loge_, (=)t +20log,(n)H
’ cache

he

random seek operations.

Our New Technique 159

Proof (Lemma 10)

The height of the cumulated partition tree (i.e. the binary tree which is formed by
replacing al directory nodes of the index by the corresponding split trees) does not
exceed the following bound:

heum(n) <logy(n) +loge . (n)

max,dir

Basically, the cumulated split treeisacomplete binary tree with the exception that the
last split tree level in each index level is incomplete. Therefore, the height of the
cumulated split tree increases in each index level at most by one compared to the
complete binary tree. In the lowest levels of the cumulated split tree, no 1/0 transfers
are necessary, because the corresponding subsets fit into the cache. These levels are
not considered. The number of levels, where 1/0 processing is necessary, is bounded

by:

NorocesseeT) < 105(0)+100c. (M) ~1005(Cogne) 100, (Coacnd)
n n
= logy()+loge (=)
z Ccache G ccache

For each level of the cumulated split tree, the complete fileisat most once completely
processed. In combination with lemma 7, the formulas are proven.

0

Lemma 11: Cost of Dynamic Index Construction

Dynamic X-tree construction requires 2 n seek operations. The transferred amount of
datais 2 [pagesize.

Proof (Lemma 11)

For the X-tree, it is generally assumed that the directory is completely held in the
main memory. Data pages are not cached at all. For each insert, the corresponding
data page has to be loaded and written back after completing the operation.

O
Moreover, no better caching strategy for datapages can be applied, sincewithout prepro-

cessing of the input data set, no locality can be exploited to establish a working set of
pages. From theresults of lemmata 10 and 11 we can derive an estimate for theimprove-

160 Optimizing the Geometry of Regions Using Bulk-Load Operations

1e+06; n= 1,000,000
G 1e+05 n= 10,000,000
Eﬁ n = 100,000,000
+ 100004
o
§ 1000.
(@]
S
£ 100

10.7000. 70d0o0. Te+05 Te+06
Cache Capacity C.gche

Figure 84: Improvement Factor for the Index Construction According to Lemma 7-11

ment factor of the bottom-up construction over dynamic index construction. The im-
provement factor for the number of seek operationsis approximately:

C

cache

n n 0
4[Hogy()tloge (=)
I:% 2 Ccache C e dir cca:he 0O

Improvement=

Itisamost (up to thelogarithmic factor in the denominator) linear in the cache capacity.
Figure 84 depicts theimprovement factor (number of random seek operations) for vary-
ing cache sizes and varying database sizes.

6.4 Improving the Query Performance

In the dynamic index construction, the most important decision in split processing isthe
choice of the split axis whereas the split value is rather limited. Heavily unbalanced
splits, such as a 10:1 proportion are commonly regarded as undesired because storage
utilization guarantees would become impossible if pages with deliberately low filling
degree are generated in an uncontrolled manner. Moreover, for low-dimensional spaces,
itisbeneficia to minimize the perimeter of the bounding boxes, i.e. to shape the bound-
ing boxes such that all sides have approximately the same length [BKSS 90]. But, there

Improving the Query Performance 161

are some effects in high-dimensional data spaces leading to performance deterioration
when minimizing the perimeter.

The first observation is that at least when applying balanced partitioning on a uni-
formly distributed data set, the data space cannot be split in each dimension. Assuming
for example a 20-dimensional data space which has been split exactly once in each
dimension would require 22° = 1,000,000 data pages or 30,000,000 objects if the effec-
tive page capacity is 30 objects. Therefore, the data space is usualy split once in a
number d’ of dimensions. In the remaining ¢ d’) dimensions it has not been split and
the bounding boxes include almost the whole data space in these dimensions. As we
assume the-dimensional unit hypercube as data space, the bounding boxes have ap-
proximately side length 1/2 i dimensions and approximately side length 1dn ¢)
dimensions. The maximum split dimensiircan be determined from the numiéof
objects stored in the database:

' N
d =l0g,(5).

The second observation is that a similar property holds for typical range queries. If we
assume that the range query is a hypercube and should have a sefthigitythe side
lengthq is thed™ root ofs: q=19/s. For a 20-dimensional range query with selectivity
0.01% we get a side lenglitr 0.63 which is larger than half of the extension of the data
space in this direction

It becomes intuitively clear that a query with side length larger than 1/2 must intersect
with every bounding box having at least side length 0.5 in each dimension. However, we
are also able to model this effect more accurate: We adapt our model to take window
queries into account. Our first modification for window queries is that we assume always
the window to be entirely contained in the data space. In contrast to range queries, the
event space, from which the query anchor is taken, is not the complete data space but
rather a subspace.
min(ubiyj,l—q)—max(l bi'j—q, 0)

1-q

Pboundfeff(q) = Z |_|

i 0sj<d
The minimum and maximum is required to cut the parts of the Minkowski sum ex-
ceeding the data space. The denominatogjisrequired because the stochastic “event

space” of the query anchor is not [0 ... 1] but rather [0). s an example, the results
of three different sets of partitions for 6 pages id @ace and their expected page

162 Optimizing the Geometry of Regions Using Bulk-Load Operations

1 1 1
5/6 | 5/6 5/p——9LL2 5/6— 212
23 oo [15/16 o 1 e

1)1 N 1 V25 B
U3 5/16/~|— 1

5/6 | 5/6 25/32 Vo7
o 1z 1 0I5 7115 0 T4 1
P,(0.6) = 533 P,(0.6) = 4.64 P4(0.6) = 4.08

Figure 85: Examples for Balanced and Unbalanced Split Strategiesin 2-d Space

accesses for arange query with side length 0.6 areillustrated in figure 85. All bounding
boxeshavean areaof 1/6. Theindividual access probability isdepicted inside the boxes.
The first partitioning corresponds to a balanced split strategy optimized for square-like
bounding boxes. The second corresponds to a strategy cutting aslice with area 1/6 from
the lower part of the remaining space. The dimensions arein this case changed periodi-
cally. Thethird strategy is similar to the second with the only exception that slicesare cut
from the lower and the higher end before the dimensions are changed. We can take from
this simple 2-dimensional example that for large queries the performance is slightly
(30%) improved if the pages are split unbalanced. Thisis dueto the fact that closeto the
border of the data space, there arise long pages with alow access probability.

Thus, weimplemented the following unbalanced split strategy: If the current data set
fitsinto main memory, then we determine the dimension ds where the space partition to
be split has maximal extension. Otherwise, we apply the same criterion to a sample of
the current data set which is taken as mentioned in section 6.3.5. Once dg has been
determined, we split the space according to the given ratio. Then, we split the larger
partition on the opposite side using the same ratio and split dimension. Thus, we have
symmetrically split the space into three portions. A large partition in the middle of the
space and two equally sized small partitions at the border of the space. If the remaining
large partition contains more el ements than the capacity of asubtreeis, we again choose
an appropriate split dimension for the remaining partition and split it according to the
given ratio. This process continues until the size of the remaining partition is below the
capacity of asubtree. Note that we do not have the full freedom of splitting anywherein
the last step of this process, unless we produce underfilled pages.

Experimental Evauation 163

6.5 Experimental Evaluation

To show the practical relevance of our bottom-up construction algorithm and of our
techniques for unbalanced splitting, we have performed an extensive experimental eval-
uation by comparing the following index construction techniques:

« Dynamic index construction by repeatedly inserting objects
» Hilbert-R-tree construction by sorting the objects according to their Hilbert values

e our bottom-up construction method using
- balanced (1:1) splitting
- moderately balanced (3:1)
- heavily (9:1) unbalanced splits.

All experiments have been computed on HP9000/780 workstations with several GBytes
of secondary storage. Although our technique is applicable to most R-tree-like index
structures, we decided to use the X -tree asan underlying index structure because accord-
ing to [BKK 96], the X-tree outperforms other high-dimensional index structures. All
programs have been implemented object-oriented in C++.

Our experimental eval uation encompasses both real and synthetic data. Our real data
set consists of text data, describing substrings from alarge text database. We converted
the text descriptors to 300,000 pointsin a 16-dimensional data space (19 MBytes of raw
data). The synthetic data set consists of two million uniformly distributed points normal-
ized in the 16-dimensional unit hypercube. The synthetic raw data has afile size of 128
MBytes. We created various index files using subsets of the original data sets and pro-
jecting the data space to alower dimensional space by omitting some of the attributes.
The page size used for al indexes was 4,096 Bytes. The total amount of disk space
occupied by the created indexesis about 2.8 GBytes. Theindex construction timefor all
our experiments sums up to several weeks.

In our first experiment, we compared the construction timesfor variousindexes. The
external sorting procedure of our construction method was alowed to use only arela
tively small cache (32 kBytes). Notethat, although our implementation does not provide
any further disk 1/0 caching, this cannot be guaranteed for the operating system. In most
experiments (unless otherwise mentioned) the storage utilization was 80%. In contrast,
the Hilbert construction method was implemented in combination with internal sorting
for smplicity. The construction time of the Hilbert method is therefore underestimated

164 Optimizing the Geometry of Regions Using Bulk-Load Operations

1000000 1000000
’
s 100000 + ‘s 100000 —;’””_/« .
3 3 4 —e— dynamic
g 10000 1 P 10000 1 —=— hilbert
= 1000 - [1000 + 1:1-split
c N =
o 1 = | S ——H————K 3:1-split
2 100 g 100
2 P / 2 —%— 9:1-split
@ 10 + @ 10 +
c =
o o
o 1 t o 1 t
0 1000000 2000000 8 12 16
Number of Objects Dimension

Figure 86: Performance of Index Construction Against Database Size and Dimension

by far and would worsen in combination with external sorting when the cache size is
strictly limited. All Hilbert-constructed indexes have a storage utilization near 100%.

Figure 86 shows the construction time of dynamic index construction and the bottom-
up methods. In the left diagram, we fixed the dimension to 16, and varied the database
size from 100,000 to 2,000,000 objects of synthetic data. The resulting speed-up of the
bulk-loading techniques over the dynamic construction was so enormous that we decid-
ed to use alogarithmic scale. In contrast, the bottom-up methods differ only slightly in
performance. The Hilbert technique was the best method having a construction time
between 17 and 429 sec. The construction time of symmetric splitting ranges from 26 to
668 sec., whereas unbal anced splitting required between 21 and 744 sec. inthe moderate
case and between 23 and 858 sec for the 9:1 split. In contrast, the dynamic construction
time ranged from 965 to 393,310 sec (4 days, 13 hours). The improvement factor of our
methods constantly increases with growing index size, starting from 37 to 45 for
100,000 objectsand reaching 458 to 588 for 2,000,000 objects. The Hilbert construction
is up to 915 times faster than dynamic index construction. This enormous factor is not
only due to internal sorting but also to reduced overhead in changing the ordering at-
tribute. In contrast to Hilbert construction, our technique changes the sorting criterion
during the sort process according to the split tree. The more often the sorting criterionis
changed, the more unbalanced the split becomes because the height of the split tree
increases. Therefore, the 9:1-split has the worst improvement factor. But aswe will see
later, slightly higher index construction cost are amortized by far because the Hilbert
construction method is completely out of the question for its poor query performance.

Experimental Evauation

Page Accesses

30000 +
25000 +
20000 +
15000 +
10000 +
5000 +
0+

0 02 04 06 08

Query Range

1

—e— dynamic

—=— hilbert
1:1-split
3:1-split

—%— 9:1-split

165

Figure 87: Performance of Range Queries with Varying Side Length

Theright diagram in figure 86 showsthe construction timewith varying index dimen-
sion. Here, the database size was fixed to 1,000,000 objects. It can be seen that the
improvement factors of the construction methods (between 240 and 320) are rather in-

dependent from the dimension of the data space.

Inthe next series of experiments, we determined the query performance of the various

indexes using varying selectivities on synthetic data. As a query type, we used region

queries because region queries serve as a basisfor more complex queries such as nearest

neighbor queries and, therefore, are fundamental in multimedia databases. Figure 87

shows the performance of a 16-dimensional index filled with 1,000,000 objects, uni-

formly distributed in the unit hypercube. We varied the selectivity of the query from

6.55[10 "% to 18.5%, corresponding to an edge length of the query hypercubevarying

35000

30000 +

Page Accesses

5000 +

25000 +
20000 +
15000 +
10000 +

1000000

Number of Objects

2000000

Page Accesses

2

X

10

12 14

Dimension

16

—e— dynamic

—=— hilbert
1:1-split
3:1-split

—X%— 9:1-split

Figure 88: Performance of Range Queries with Varying Database Size and Dimension

166 Optimizing the Geometry of Regions Using Bulk-Load Operations

from 0.2 to 0.9. First, we determined the number of page accesses because, for range
query evaluation, disk 1/0 is the dominant cost factor. The result of this experiment is
that the Hilbert constructed index has an unsatisfactory performance and therefore is
unsuitable for indexing high-dimensional data spaces. Even very small query windows
revealed a full scan of the complete index. However, dynamically and bottom-up con-
structed indexes with balanced splits had avery similar performance. Due to the sophis-
ticated split strategy of the X-tree, the overlap-free directory of the bottom-up construct-
ed index does not lead to significant performance improvements. The high storage
utilization factor of the Hilbert-constructed X-tree leaded to the astonishing result that
its performance is better than the performance of the dynamic index for very large que-
ries (having an edge length greater than 0.6). The reason simply is that this index is
smaller. The disadvantage of a 100% storage utilization isthat performance deteriorates
whenever new data has to be inserted dynamically after index construction. Although
the balanced bottom-up constructed indexes avoid this disadvantage by choosing a high
but not exact 100% utilization, this effect is responsible for a better efficiency for query
ranges between 0.7 and 0.9.

The benefits of unbalanced splitting can be observed at any query window size. Espe-
cially theheavily unbalanced split leadsto an index yielding very good performance aso
on very large queries. The improvement factor over the balanced split reaches 15.6 at a
query edgelength of 0.6. Itismorethan 15.7 timesfaster than the dynamically construct-
ed index.

In figure 88, we confirmed these results for varying database sizes and for varying
dimensions of the data space. In these experiments, we choose a selectivity of about

18000 =
16000 4@
14000 —@— dynamic
@ 12000 + ¢
& —m— hilbert
9 10000 +)
o 1:1-split
2 8000 f s1cni
:1-split
© 6000 | i
S 4000 L —%— 9:1-split
2000 4
P —
60% 80% 100%

Storage Utilization

Figure 89: Influence of the Storage Utilization on Range Query Performance

Experimental Evauation 167

14 14
12 + 12
101 5 10 —e— dynamic
é‘ sl é‘ s —m— hilbert
[o R
E 64 E 6 1:1-spit
s s 3:1-split
E 41 E 4 /0 . i
S S —%— 9:1-split
2+ 2,
% ¥ X
0 ¥ *: T | oF t =+ t
0 1000000 2000000 8 10 12 14 16
Number of Objects Dimension

Figure 90: CPU-Time for Executing Range Queries

0.03%. The left diagram shows 16-dimensional indexes with between 100,000 and two
million objects while the right diagram shows dimensions varying from 8 to 16 with a
constant number of objects (1,000,000). The highest improvement (16.8) could be mea-
sured in the highest dimension and the largest database.

Next, we evaluated the influence of the storage utilization. Figure 89 shows the page
accesses for adatabase with 1,000,000 pointsin a 16-dimensional data space over vary-
ing storage utilizations. Dynamic construction leads to a storage utilization of about
65%, whereas our implementation of Hilbert construction was limited to the 100%-
factor. In contrast, using our technique, we are able to control the storage utilization and
wevaried it from 60% to 80%. As expected, it turned out that a higher storage utilization
is beneficia. The performance, however, is only improved by low factors up to 30%.
Therefore, the storage utilization isobviously not responsible for our good improvement

factors presented so far.
-
©
1200 400 o 3
‘£ 200
__ 1000 + _ ggg E
I I <
§ 800 8, 250 5 150
[
@ 600t @ 200 g 100
F 400 | £ 150 =
g T 100 2 50
& 200+ & 5o % ° 3
0—4&%—)&(0)‘(%#‘#?4(& 0
0 1000000 2000000 8 10 12 14 16 % § g 5 & o
g 8 2 ¢ 9 9
Number of Objects Dimension % = : ; E;!

Figure 91: Rea Time for Executing Range Queries

168 Optimizing the Geometry of Regions Using Bulk-Load Operations

6000 6000 6000
5000 5000 5000
13 1%} 13
& 4000 @ 4000 2 4000
3 g 3
© 3000 o 3000 © 3000
< < <
o 2000 © 2000 2000
4 2 2
& 1000 & 1000 + & 1000
cE——k—F o — 0
100000 200000 300000 8 10 12 14 16 02 03 04 05 Ot
Number of Objects Dimension Query Side Length
25
2
—_ —_ 2 —e— dynamic
3 15 g)
0 ﬁ 15 —— hilbert
E 1 g 1:1-split
= & £ 1 3:1-split
z 05 2 o
S % 0.5 —%— 9:1-split

0 It P A ——

100000 200000 300000 8 0 12 14 16

Number of Objects . .
Dimension

Figure 92: Experiments on Real Data (Text Descriptors)

Our next aim isto evaluate the performance impact in terms of CPU-time. Figure 90
again shows on the left side fixed dimension (16) and on the right side fixed database
size (1,000,000 objects) with a selectivity of about 0.03%. The diagrams are widely
congruent with the diagrams of figure 88 showing the page accesses. Therefore, we can
assume that the absorbed CPU power is directly proportional with the number of page
accesses. Theimprovement factor for CPU power reaches avalue of 13.6.

Nevertheless, range query evaluation is clearly disk 1/0 bound as can be seen in
figure 91. Herewe measured thereal timefor query execution, encompassing CPU-time
and thetimesfor disk 1/0 which are predominant. It isremarkable that, in contrast to the
experiments counting page accesses, the balanced splitting bottom-up method outper-
forms the dynamic construction, too, and that the improvement factors are one order of
magnitude higher than the improvement factors for the page accesses. Thisisdueto the
much better disc clustering of our construction method. Data pagesin acommon subtree
of the index are laid out contiguously on disk. These pages have often to be loaded
commonly, such that disk head movements are often avoided. In contrast, if adynamic
index structure splits apage, one of the resulting new pages occupies the place of the old

Experimental Evauation 169

page whereasthe second page is appended at the end of thefile. Thus, neighboring pages
arerather declustered than clustered.

In alast series of experiments, we determined the behavior of our technique on real
data, stemming from an information retrieval application. We used 300,000 feature vec-
tors in a 16-dimensional data space which were converted from substring descriptors.
Theresultsconfirm our previousresults on synthetic dataand are presented in figure 92.
Unfortunately, the number of objectsin our database was not high enough to yield simi-
larly impressiveimprovement factors aswith two million synthetic points. Theimprove-
ment factors grow again with increasing dimension and increasing database size and
reach afactor of 5.8.

170 Optimizing the Geometry of Regions Using Bulk-Load Operations

171

Chapter 7

Optimized Declustering for
Parallel Query Processing

In the preceding chapters, we proposed varioustechniquesfor the performanceimprove-
ment of high-dimensional indexes. These techniques accel erate the range search and the
nearest neighbor search in the case of a moderate dimensionality of the data space by
large factors. Moreover, these techniques open the facility of efficiently indexing data
spaces which cannot be managed by conventional indexing structures due to the high
dimension.

Both our experiments and our analytical considerations provided in chapter 3 imply,
however, that there exists adimension for which index structures do not yield satisfacto-
ry performance, even if our improvement techniques from the preceding chapters are
applied. To overcome this problem, we propose to exploit parallelism.

7.1 Introduction

Experiments with specialized high-dimensional index structures such as the TV-tree
[LIF 95] and the X-tree [BKK 96] show significant performance improvements for
point queries, but unfortunately only limited performance improvements for nearest-
neighbor queries (cf. figure 93).

172 Optimized Declustering for Parallel Query Processing

180.00

160.00

140.00 /

120.00

~

100.00

80.00

Search Time [Sec.]

60.00

40.00

S

L~

20.00

™.

0.00 T T T T T T

8 12 16
Dimensiond

o
'S

Figure 93: Nearest-Neighbor Queriesin High Dimensions (X-tree)

In this chapter, we propose a new parallel method for fast nearest-neighbor search in
high-dimensional feature spaces. This technique was published in apreliminary version
[BBB+ 97]. In section 7.2, we first review the relevant literature. The core problem of
designing afast parallel nearest-neighbor algorithm is to find an adequate declustering
a gorithm which distributes the data.onto the disks such that the datawhich hasto be read
when executing aquery are distributed as equally as possible among the disks. Unfortu-
nately, the known declustering methods such asthe Disk Modulo [DS 82], FX [KP 88],
and Hilbert Declustering [FB 93] have been designed to support different query types
(range queries and partial match queries). Therefore, those techniques do not alow an
optimal declustering for nearest-neighbor queries in high-dimensional spaces. In con-
trast, our new declustering method has been optimized based on the special properties of
parallel nearest-neighbor search in high-dimensional spaces (cf. section 7.2.1) and
therefore provides a near-optimal distribution of the data items among the disks (cf.
section 7.2.2). The basic idea of our data declustering technique isto assign the buckets
which correspond to different quadrants of the data space to different disks. We show
that thisproblem isequivalent to aspecial case of the graph coloring problem (cf. section

Parallel Nearest-Neighbor Search 173

7.3.1). Then, we develop asimple but efficient algorithm which solves the special case
of the graph coloring problem and shows that our algorithm - in contrast to other declus-
tering methods - guaranteesthat all buckets corresponding to neighboring quadrants are
assigned to different disks (cf. section 7.3.2). A surprising result is that the number of
disks necessary for the near-optimal declustering is alinearly bound staircase function
which is optimal up to rounding (cf. section 7.3.2). We provide extensions of our algo-
rithm considering an arbitrary number of disks and highly clustered data distributions
(cf. section 7.3.3). Finally, in section 7.4, we evaluate our method using large amounts
of uniformly distributed and real data (up to 40 MBytes) with varying dimension, and
compareit with the best known data declustering method, the Hilbert curve. Our exper-
iments show that our method provides a near-linear speed-up and a constant scale-up,
and it outperformsthe Hilbert approach by afactor of up to 5.

7.2 Parallel Nearest-Neighbor Search

The core problem of parallel nearest-neighbor search is the distribution of data among
theavailablediskswhichisusually called the declustering problem. In thefollowing, we
denote the number of disks by n and thei-th disk by d.

The simplest method for distributing data is round robin where each disk d; gets the
dataitems {v, ‘j mod n =i} . Figure 94 shows the speed-up of a parallel nearest-neigh-
bor search (referred to as NN in all subsequent figures) and a parallel search for 10
nearest neighbors (10-NN) using the round robin data distribution on 1 MByte of uni-

14.00
12,00 /’
10.00 //

o N /

2 800] / .- — 10NN
6.00 = S NN
400 e
00 7 /////,/

2.00 —pF="
0.00 \ : : :
2 4 8 8 10 12 14 18

Number of Disks

Figure 94: Speed-Up of Parallel Nearest-Neighbor Search (Round Robin)

174 Optimized Declustering for Parallel Query Processing

formly distributed 15-dimensional data and uniformly distributed query points. In our
experiment, the speed-up increases nearly linear with the number of disks. This simple
experiment shows that nearest-neighbor search can be improved considerably by using
parallelism.

More complex agorithms solving the declustering problem have been proposed in
the literature. Using an equi-distant grid, all these algorithms divide the data space into
equi-sized buckets b which may be characterized by the position of the bucket in the d-
dimensional grid (cg, ¢, ..., C4.1)- A bucket characterized by b[cy, Cy, ..., C4.1] describes
apartition of the data space having the shape of ahyperrectangle and containing acertain
number of data objects. A declustering algorithm DA can be described as a mapping
from the bucket characterization to adisk number.

A rather simple declustering algorithm is the disk modulo method of Du and Sobo-
lewski [DS 82]. The disk modulo method uses the mapping

o-1 O
DM(cq, Cq, ..., Cq_q) = %z q%mod n.
Q-0 U

Kim and Pramanik [KP 88] improved the disk modulo method and presented the FX
distribution method which has been specifically designed to support partial match que-
ries. Kim and Pramanik distribute the buckets using a bitwise X OR operation. Slightly
simplified, the FX method can be defined as the mapping

d-1
FX(cq €y, -1 Cg_1) = XOR ¢, mod n.
=0

In[FB 93], Faloutsos and Bhagwat apply the Hilbert curve to the declustering prob-
lem. The Hilbert curve maps ad-dimensional space to a 1-dimensional space. For map-
ping apoint in the data space to a disk, the Hilbert value of the point is determined and
the datapoint is stored on the disk corresponding to the Hilbert value. Moreformally, the
i-th disk getsthe bucket

HI(cy, ¢y, ..., C4_1) = Hilbert(cy, ¢4, ..., Cc4_4) mod n.

SincetheHilbert curve preserves spatial neighborhood asfar as possible, the mapping
provides a good declustering. Faloutsos and Bhagwat compared their method to various
methods such as the disk modulo and the FX technique. The experimental results report-
ed in [FB 93] show that the Hilbert approach clearly outperforms the other methods for

Parallel Nearest-Neighbor Search 175

2.50 14.00
S i 12.00
’8' 2.00 7
1 10.00
‘LL" 1.50 8
g 7/ 8.00 - 10-NN
% 1.00 G 6.00 T " T - rrer NN
3 4 i
2 4.00 7
g os0 /
= 4 2.00
0.00 T T T T 0.00
2 4 6 8 10 12 14 16 0 10 20 30 40
Number of Disks Amount of Data [MBytes]

Figure 95: Improvement of Hilbert over Round Robin

range queriesin two-dimensional spaces. However, to our knowledge, none of the meth-
ods has been designed or tested for high-dimensional feature spaces and for nearest-
neighbor queries. Therefore, in our first experiments we used the most promising tech-
nigque, the Hilbert curve. The experiments show that the Hilbert approach provides a
much better declustering for nearest-neighbor queriesin high-dimensional spaces than
the round robin method. Figure 95 depictstheimprovement of the Hilbert approach over
theround robin declustering. Note that the improvement increases, both with an increas-
ing number of disks, and with an increasing amount of data. In section 7.2.2, however,
we show that all the methods described in this section including the Hilbert method do
not provide an adequate data distribution for nearest-neighbor queries in high-dimen-
sional spaces.

7.2.1 Effectsin High-Dimensional Spaces

To find agood declustering algorithm, we have to consider several special effectsoccur-
ring in high-dimensional spaces and their consequences for nearest-neighbor queries. In
this section, wetherefore analyze nearest-neighbor query processing in high-dimension-
al space and derive the requirements for an optimal declustering. For the following con-
siderations, we assume uniformly distributed data and uniformly distributed query
points.

During nearest-neighbor search, any NN-algorithm has to examine all data pages
intersecting the so-called NN-sphere (cf. figure 96). The NN-sphere is a d-dimensional
hypersphere having the query point asthe centre and aradius equal to the distance from
the query point to the nearest-neighbor. Unfortunately, according to [BBKK 97], the
radius of the NN-sphere increases rapidly with increasing dimension of the data space,

176 Optimized Declustering for Parallel Query Processing

nearest

query point/ - neighbor
\C" N

NN-sphere/ .

\
(

Figure 96: NN-Sphere

and therefore, the number of partitions any sequential algorithm has to access also in-
creasesrapidly. Theincrease of the radius depends on the bucket size, the number of data
items and the dimension. However, the dimension is the most important parameter.

Declustering algorithms such as the disk modulo method or the FX method assume a
partitioning of the data space into buckets. In the 2-dimensional case, the data spaceis
partitioned many times in each direction, for example to obtain 10,000 buckets, the
spaceisdivided 100 times in x-direction and 100 times in y-direction. If we consider a
16-dimensional space, a complete binary partitioning of the space would aready pro-
duce 65,536 partitions. Thus, in high-dimensional spaces it is not possible to consider
more than a binary partitioning. In addition, the usage of a finer partitioning would
produce many underfilled buckets. For the following considerations, we therefore as-
sume each dimension of the spaceto be split exactly once. Thus, from our point of view,
the buckets are the quadrants of the data space. The bucket coordinates (cq, €y, ..., Cg.1)
can then be seen as binary values and (cy, ..., C4.1) may be represented as a bit-string.
Notethat (cg, Cq, ..., Cg.1) With ¢; O {0, 1} correspondsto the binary representation of the
corresponding grid partition stored in the bucket. We use this property to define an un-
ambiguous bucket number bn which will be the basis for our algorithm presented in
section 7.3.2.

Definition 13: Bucket Number
Given abucket b characterized by (cq, ¢y, ..., Cg.1) With¢; 0 {0, 1},0<i <d. The
bucket number bnis defined as
d-1
bn(b) = 5 ¢ 2.

i=0

Parallel Nearest-Neighbor Search 177

query point:

NN-sphere (0.4)
NN-sphere (0.6)

Figure 97: Partitions Affected by the Search when Increasing the NN-sphere

7.2.2 Declustering for Nearest-Neighbor Search

The goal of each declustering agorithm is to distribute the buckets which are involved
in an arbitrary search to different disks. For the parallel nearest-neighbor search, this
means that the partitions intersecting the NN-sphere should be distributed to different
disks. If al disksare equally involved in the search, the speed-up is maximal.

Figure 97 illustrates the effects of an increasing NN-sphere using a two-dimensional
example. Let usassumethat the query point islocated in the upper left corner of the data
space. If the radius of the NN-sphere is less than 0.5, only the bucket containing the
query point has to be accessed (the upper left bucket in figure 97). Thus, only the disk
which stores the bucket isinvolved in the search process and any declustering technique
providesthe sameresult. If the radius of the NN-sphereis 0.6, however, two other buck-
ets are involved in the search (the lower left and the upper right bucket in figure 97).
Obviousdly, for obtaining a good speed-up, the three buckets involved in the search
should be distributed to different disks. Note that in high-dimensional space, this obser-
vation holdsfor most queries even if the query point is not located exactly in a corner of
the data space but on a lower-dimensional surface, e.g. atwo-dimensiona surface (cf.
figure5).

Generalizing this result to the d-dimensional case, a good declustering technique
must assure that adjacent buckets are assigned to different disks. From the examplein
figure 97, we can derive that not only directly adjacent buckets (such as the upper left
and upper right bucket) have to be considered, but also indirectly neighboring buckets

(such asthe lower |eft and the upper right bucket). This can be formalized as follows:

178 Optimized Declustering for Parallel Query Processing

Definition 14: Direct and Indirect Neighbors

Given two bucketsb and c.
b and c aredirect neighbors, b ~y ¢, if and only if

g))
DiH bezc,, iff k=i

~ ,where (0<i, k< (d-1)).
0 b, = ¢, otherwise
a

b and c areindirect neighbors, b ~ ¢, if and only if

e, iff k=i or k=]
o), i#j: 5 kG| POTKEL where (0<i,j, ks (d=1)).

by = ¢, , otherwise

o o

Intuitively, two buckets b and c are direct neighbors if their coordinates differ in one
dimension, and the remaining (d-1) coordinates are identical. Note that this definition of
neighborhood implies that applying the binary exclusive-or-function (XOR) to direct
neighboring bucketsb and c resultsin abit-string of theform 0°10". Ana ogously, apply-
ing the XOR function to indirectly neighboring bucketsresultsin abit-string of theform
0°10"10". Note further that considering more than one level of indirection would pro-
duce a huge amount of neighboring buckets. An agorithm considering i levels of indi-
rection in d-dimensional space would have to assure that

1+ Z g%
k=1

buckets are equally distributed over the disks. For two levels of indirection in a 16-
dimensional space, for example, the number of bucketswould be
2 D‘]_G
0 - -
1+ % g, 0= 1+16+120 = 137.
k=1

Therefore, we restricted our definition of neighboring buckets to direct and indirect
neighbors. Another important observation is the following: Direct neighbors share a

common 1-dimensional surface of the data space, whereas indirect neighbors share a 2-
dimensional surface.

Parallel Nearest-Neighbor Search 179

Disk Modulo FX Hilbert Optimal Declustering
2 3 0 1 2 1 1 0
1 2 1 0 3 2 3 2
1 2 1 0 3 0 2 3
0 1 0 1 0 1 0 1

Figure 98: Disk Modulo, FX and Hilbert are not Near-Optimal Declustering Techniques

Using the above definitions, we can define anear-optimal declustering asadecluster-
ing which guarantees that all direct and indirect neighboring buckets are assigned to
different disks. We use the term near-optimal because an optimal declustering technique
would have to guarantee that arbitrary queries are handled by different disks. This how-
ever would require to consider arbitrary neighbors — not only direct and indirect neigh-
bors.

Definition 15: Near-Optimal Declustering
A declustering algorithm DA is near-optimal if and only if for any two buckets b and
c and for any dimension d of the data space:

bc— DA(b) #DA(c) ad bOc— DA(b) # DA(c).

Aswe show in our experimental evaluation, our definition of a near-optimal decluster-
ing agorithm is close to the optimum, i.e. it provides a high speed-up and a nearly
constant scale-up. The following lemma shows that the known declustering techniques
do not provide a near-optimal declustering.

Lemma 12: Sub-Optimality of Disk Modulo, FX and Hilbert Declustering

The disk modulo, the FX, and the Hilbert declustering techniques are not near-opti-
mal declustering algorithms.

Proof (Lemma 12)

Thevalidity of lemma 12 can be shown by asimple three-dimensional counter-exam-
ple (cf. figure 98). The numbersin the corner of each cube denote the disk number the
corresponding bucket isassigned to. Thethick linein each cube showsindirect neigh-
borswhich are assigned to the same disk. The right most portion of figure 98 demon-

180 Optimized Declustering for Parallel Query Processing

strates the existence of a near-optimal declustering. Note that there exist more than
one colliding pair of indirect neighbors, which however are not shown in figure 98.

7.3 Near-optimal Declustering for Nearest-Neighbor Queries

In this section, we present anew declustering technique which is near-optimal according
to definition 15. The basicideaof our techniqueisto transform the declustering problem
into an equivalent graph-coloring problem so that buckets correspond to vertices, neigh-
borhood-relations to edges, and disks to colors. We propose a simple but efficient algo-
rithm for solving the graph-coloring problem. To show that our declustering technique
is near-optimal, we prove that our graph-based algorithm assigns different colors to
connected verticesin the graph. The number of colors (disks) required by our algorithm
isalinearly bounded staircase function which is optimal up to rounding. Furthermore,
we describe some extensions of our method, allowing the method to be used in awide
range of real applications, i.e. on data with various data distributions and dimensionali-
ties, and an arbitrary number of disks.

7.3.1 Declustering asa Graph Coloring Problem

In order to transform the declustering problem into a graph coloring problem, we first
define the disk assignment graph. The disk assignment graph is an undirected graph in
which buckets correspond to vertices. Neighborhood rel ationships between buckets cor-
respond to edges.

Definition 16: Disk Assignment Graph

Thedisk assignment graph G4 = (V, E) for ad-dimensional dataspaceisan undirected
graphwhereV={0, ..., 2d-1} isthe set of bucket numbersand E={ (b, c) |b,c OV and
b ~4corb~c} istheset of direct and indirect neighborhood rel ationships.

Sinceour definition of the edgesincludesboth direct and indirect neighbors, itisobvious
that an algorithm which assigns different colors to connected vertices provides a near-
optimal declustering. Thus, we reduce the declustering problem to an equivalent graph
coloring problem.

Near-optimal Declustering for Nearest-Neighbor Queries 181

DataSpace Disk Assignment Graph Colored Graph Declustered Space

10 4 1,0
z _/_ < _/_
010 T 11 2 1 3| -
| 7 \ 7
- — o0}y | 101 - 13 + L2
o 001 0o 1

Figure 99: Disk Assignment Graph

Figure 99 shows the disk assignment graph Gz for athree-dimensional dataspace. In
theleft partition of thefigure, the data space with the corresponding bucketsis depicted.
Inthe middle of thefigure, the corresponding disk assignment graph is shown with thick
lines denoting direct neighbors and thin lines denoting indirect neighbors. The disk as-
signment graph G3 may be colored using 4 colors. Transforming the graph back, we get
anear-optimal declustering of the space (cf. right part of figure 99). Obviously, alower
bound of d+1 colors is required to color a graph Gy because each vertex has d directly
neighboring vertices and at least all directly neighboring vertices must have pairwise
different colors. It isawell-known fact from graph theory [Big 89] that the graph color-
ing problem for arbitrary graphs (including the determination of the required number of
colors) is ahard problem which has not been solved in polynomial time yet and there-
fore, it isbelieved that the problem is NP-complete. Nevertheless, we are able to exploit
some regularitiesin our graph to develop asimple but efficient coloring algorithm.

7.3.2 The Vertex Coloring Algorithm

In this section, we introduce an algorithm to determine the vertex color (i.e. the disk
number) for agiven vertex (i.e. the bucket number). After describing the algorithm, we
prove that our algorithm assigns different colorsto connected vertices and we provide a
formulafor the number of colors required by our algorithm.

Thebasicideaof our algorithm isto determinefor avertex b all positionsinitsbinary
representation which are equal to 1. Incrementing these positions by 1, each position can
again be interpreted as a binary number. These numbers are combined by the XOR
function. Interpreting the resulting binary number as a decima number, we finaly ob-

182 Optimized Declustering for Parallel Query Processing

int col (int c) {
inti;
intc=0;
for (i=0;i<dimension ; i++)
if (bit_set (i, ¢))
c=c”"(i+1); /I XOR
returnc ;

Figure 100: Vertex Coloring Algorithm

tain the corresponding vertex color. Wewill motivate later why we haveto increment the
positions before combining them using XOR. Intuitively, thereason isthat otherwisethe
information about dimension ‘0’ would not be considered by the vertex coloring func-
tion.

For example, let us assume a given vectes = 103 in a disk assignment gragdy
(representing a 3-dimensional data space). As thedi#tndc, are set, the positions to
be considered are 0 and 2. Incrementing the positions by one, we obtain (2+1)=3 and
(0+1)=1. We combine the binary representations, ¢23) and 003 (=1) by the XOR
function and obtain 031 XOR 001} = 010, Interpreting this binary number as a
decimal number, we get 00 2;4. The color of vertex 5 is therefore 2. Figure 100
shows the vertex coloring algorithm in an algorithmic pseudocode. It is obvious from the
algorithm that the color of an arbitrary vertex may be determiné{(dy time. The
following formal definition provides a very compact form of the algorithm.

Definition 17: Vertex Coloring Function
Given a vertex numberin binary representatiogy_,, ...,Co. The corresponding ver-

tex color is
Od-1 Oj+ ifc = 0
col (¢) = OXOR (DI Lifg=1 a .
Ui=o O 0 othewise U,

In the following, we show that our vertex coloring functamh guarantees that vertices
which are connected in the disk assignment graph are colored differently. Our proof is
divided into three lemmata. First, we prove the distributivitgabfand XOR. Then, we

prove that vertices which are connected by an edge representing direct neighborhood are

Near-optimal Declustering for Nearest-Neighbor Queries 183
colored differently, and finally we prove the same for edges representing indirect neigh-
borhood.

Lemma 13: Distributivity of col and XOR
Ob Oc: col(b) XOR col(c) = col(b XOR c)

Proof (Lemma 13)
col (b) XOR cal (c)

d-1 T[7j ifb = d-1 [i A=
= XOR(DI+1Ifb' 1)XOR XOR(|:|I+1IfC' 1
i=0 0 0 otherwise i=0 O 0 otherwise
D .
H O0XORO ifb=0andc=0
d-1 [j+1XORO0 if by=1and ¢;=0
= XOR(O _)
izo O oXORi+1 ifb=0andc=1
g
g

i+1XORi+1 if =1 and ¢;=1
O

d-1 ; if b .=
XOR(|:|I+lIfb' XOR ¢; =1
i=o 0 O otherwise

)

col (b XOR c).
O

Using lemma 13, we now prove that vertices which are connected by an edge represent-
ing direct neighborhood are colored differently. We make use of some algebraic laws
which are valid for the XOR function, especially the associativity, commutativity and
the following equivalences.

aXORb=0 < a=b

aXORb=a<- b=0

Lemma 14: Coloring of Direct Neighbors
Two vertices b and ¢ which are connected by an edge representing a direct neighbor-
hood are colored differently.

184 Optimized Declustering for Parallel Query Processing

Proof (Lemma 14)

Astheverticesb and c arediffering in exactly onebit, say bitj, b XOR cisof theform
0°10" with only bit j set (cf. definition 14). Therefore, using the definition of the
vertex coloring function, we may derive that col(b XOR c) =j + 1# 0. Thus,

col(c) =
= col(b XORbXORCc) (sinceb XORb=0and 0 XOR c=c)
= col(b) XOR col(b XOR) (accordingto lemma13)
= col(b) XOR(j +1) (sinceonly hitjissetinb XOR c)
#z col(b) (since otherwise, (j +1) must be 0)

O

Lemma 15: Coloring of Indirect Neighbors

Two vertices b and ¢ which are connected by an edge representing an indirect neigh-
borhood are colored differently.

Proof (Lemma 15)
According to definition 14, b XOR ¢ has the form 0°10°10" with a bit set at the
positionsi andj, i # j and col (b XOR c) = (i+1) XOR (j+1) which cannot be zero since
i+1#j+1. Thus,

col(c) col(b) XOR col(bXORc)
col(b) XOR (i +1) XOR (j +1)

col(b)

b

O

Lemma 16: Near-Optimal Declustering by col-Function
The vertex coloring function col for the declustering of ad-dimensional dataspaceis
near-optimal.
Proof (Lemma 16)
According to definition 15, adeclustering algorithm DA isnear-optimal if and only if
b [;c » DA(b) # DA(c)

and
b gic— DA(b) # DA(c).

Near-optimal Declustering for Nearest-Neighbor Queries 185

We proved that our algorithm col assignsdifferent colorsto connected verticesin the
disk assignment graph. As vertices are connected if the corresponding buckets are
direct or indirect neighbors, the function col guarantees that neighboring buckets are
assigned to different disks.

0

So far, we have shown that our algorithm computing the vertex color assigns pairwise
different colorsto all neighbors of any given vertex and therefore provides a near-opti-
mal declustering.

Now, we want to determine how many colors are necessary for ad-dimensional data
space. It seemsto be obvious that any vertex coloring algorithm solving the disk assign-
ment problem must use at least d+1 colors since each vertex and its d direct neighbors
have to be colored differently. This means that no algorithm exists which is better than
linear in the number of dimensions. We show in our next lemma that the number of
colors provided by our algorithm is alinearly bounded staircase function which is opti-
mal up to rounding.

Lemma 17: Number of Colors Required by the Color Assignment Function
The number of colors required by the color assignment functionis [[d + 17|, where
[["...7I denotes the rounding to the next-higher power of two, formally

ral = 292,

Proof (Lemma 17)
First, we prove that our algorithm never generates a vertex corresponding to a color
greater or equal to:
2(logz(d +1)] .

According to col, the color of avertex isa X OR-combination of some numbersfrom
the set {1, ..., d} (cf. definition 17). The binary representation of d has exactly
[log,(d+1)] bits. Therefore, the XOR-combination cannot create a number with
more hits, and the highest possible number with [log,(d + 1)] bitsis

1o+ D]

Next, we prove that all color numbersin theinterval

[0, 2944+ D1y

186 Optimized Declustering for Parallel Query Processing

are generated by the color assignment function. According to col, the vertex of the
origin (0, O, ..., 0) has color number zero (col(0) = 0). For any other vertex color c,
bounded by the interval above, an appropriate bucket number b can easily be con-
structed such that col (b)=c by the following algorithm: If bit j isset in c, then set also
bit 2I-1in b and reset all other bitsin b. The result is avalid bucket number for the d-
dimensiona hypercube as can be seen from the following argumentation: We know
that

i<[logy(d+1)].

Therefore, b has|ess than gl toodd+ 1] -1 bits,
and thus

heo? T jiraeal

Asb hasto be smaller than 29 in order to be alega vertex number for ad-dimensional

hypercube,

2Tl od ird+ 17 < 2d.

Thisis guaranteed since a power of two is aways between anumber and its double:
OdOIN: CkONg: d<2<2d.
[[d+ 17 cannot be rounded up to anything above 2d. If the bits with the numbers

2"~ 1 for somej; are set in b, then according to definition 17, the color number col (b)

is
col(b) = XOR(2),

which combinesto c. Altogether, we have proven that our algorithm uses exactly the
colorswith the numbers

O<c<|[d+17.

Near-optimal Declustering for Nearest-Neighbor Queries 187

40.00
35.00
30.00 /’
B 2500
%] / — upper bound
@ 20.00 — 1 = col
(2]] s
5 1 A - lower bound
5 15.00 —
8] 7
10.00 [
] E
] P
5.00 i%
] =
0.00 — - - o : : o
0 5 10 15 20

Dimension d

Figure 101: Number of Colors Required by col

The number of colors required to solve the vertex coloring problem is a staircase-func-
tion (cf. figure 101) above the line (d + 1) which has aready been identified to be a
lower bound for the number of colors. For lower dimensions, we have verified by enu-
merating all possible color assignments that there is no method which uses fewer colors
than our staircase function. We conjecture that thisis also true for higher dimensions. In
any case, we are ableto givethelinear upper and lower boundsfor the staircase function.
As aready mentioned, the lower bound is d+1. The upper bound is 2d, as may be seen
with the same argument aready used in lemma 17: There is dways a number corre-
sponding to power of two between a number d and its double 2d. Therefore, [[d+ 17|

cannot be higher than 2d for d O N .

7.3.3 Extensions of our Declustering Technique

In this section, we propose two extensions of our declustering technique. First, we de-
scribe an adaptation of our method for supporting an arbitrary number of disks and
second, we describe an extension of our method for highly clustered data.

An important requirement for any parallel approach isto support an arbitrary number
of processing units (disks). For our problem, this means that we have to adapt our algo-
rithm to work with an arbitrary number of disks since our vertex coloring function col
requires the optimal number of 2! disks. We now describe asi mple method for reducing

188 Optimized Declustering for Parallel Query Processing

the number of disksrequired; in afirst step by afactor of 2 (preserving that direct neigh-
bors are assigned to different disks), and in asecond step to an arbitrary number.

Aswe can easily derive from the 3-dimensional examplein figure 99, there exists no
near-optimal declustering algorithm using less than 4 disks for the 3-dimensional case.
As a consequence, reducing the number of colors generated by our function col may
induce that indirectly neighboring buckets are assigned to the same disk. Our extension
of the function col, however, guarantees that most directly neighboring buckets are still
assigned to different disks. The extension reduces the number of required disks by a
factor of 2. Thebasicideaof our extension isto map one half of the colorsto their binary-
complementary color. For example, to decluster an 8-dimensiona data space, the func-
tion col requires C = 16 disks numbered from 0 to 15. In our first reduction step, we
map the colors 8..15 to the colors 0..7 such that 8 is mapped to 7, 9 is mapped to 6, ...,
and 15 is mapped to 0. Obviously, our extended algorithm requires a total number of
(C/2) disks. Note that this mapping guarantees that most directly neighboring buckets
are till assigned to different disks. Intuitively, we map the colors to their complement
because complementary colors have the maximal Hamming distance, i.e. differ in a
maximum number of bits.

In the general case, let us assume that we have n disks available where n< C. If
n< C/ 2, wemap each color cwhichislarger than C/ 2 toitsbinary complement. Thus,
we have only C/ 2 colorsleft. Note that the most significant bit of these C/2 colorsis
the bit 0. If nis smaller than C/4, we again map the colors greater than C/4 to their
complements, while, however, ignoring the most significant bit. This processisrepeated
until n< C/2*. The number of colors required by the algorithm is now C/ 21 n
order to obtain exactly n colors, we again map the highest C/ 2“"1 _n colors to their
complements. Recording the mappings in a table, we are able to determine the disk
number from the color number col by asingle table |ook-up.

Another extension of our declustering techniques focuses on highly clustered data. In
real applications, high-dimensional datais usually not distributed uniformly. If the data
pointsare highly clustered, i.e. most data points arelocated in one quadrant of the hyper-
cube, our technique as described so far would assign most data points to a single disk.
Although in most applications such an extreme case will not occur, we have to consider
data distributions where many points are assigned to afew disks, i.e. the amount of data
stored on the disks differs largely.

Near-optimal Declustering for Nearest-Neighbor Queries 189

[] disko
[] disk1
B dis2
B dis3

Figure 102: Recursive Declustering

A first solution to this problem isto use a statistical measure, the a-quantile, to divide
the buckets. Instead of splitting each dimension in the middle, we determine the
0.5-quantile of each dimension and use the values as split values for determining the
bucket boundaries. One may argue that we do not know the data distribution apriori and
are therefore not able to determine the correct 0.5-quantile in advance. To solve the
problem, we dynamically adapt the 0.5-quantile by recording the distribution according
to the previous 0.5-quantile, i.e. counting the number of data points below and above the
split value. If theratio of these two numbers extends a certain threshold, we reorganize
our datadistribution using the new 0.5-quantile for each dimension.

If the data points are highly correlated, the usage of aone-dimensional quantileis not
sufficient. This situation is detected if the one-dimensional a-quantile does not change
but the disks are loaded unbalanced, nonetheless. Our strategy for this case isto recur-
sively decluster the overloaded buckets of the data space. The optimal declustering
means to decluster all overloaded buckets. This, however, would require an amount of
0(2% of storage space which cannot be handled for higher dimensions. Therefore, our
approach recursively declusters all buckets of a single disk in one step using our col
declustering function (cf. figure 102), which means a transfer of the affected data to
another disk. Note that we may have to apply the recursive declustering more than once
if necessary. As first experiments show, permuting the colors using a simple heuristic
when going to the next level of recursion provides good speed-ups (cf. figure 108).

Note that our parallel nearest-neighbor search is completely dynamical. This means
that we are able to support insertions, updates, and deletions without any a priori knowl-
edge of the data. However, for highly clustered or correlated data, a reorganization may
be necessary.

190 Optimized Declustering for Parallel Query Processing

7.4 Experimental Results

In order to show the efficiency and practical relevance of our declustering technique, we
performed an extensive experimental evaluation of our technique and compared it to the
Hilbert declustering which isthe most promising declustering method designed for low-
dimensional data spaces. All experiments have been computed on aworkstation cluster
of 16 HP710 workstations, each having 32 M Bytes of main memory and several hundred
M Bytesof secondary storage. All programs have been implemented in C++ astemplates
to support different types of data objects. In order to analyze our method, we integrated
our declustering technique and the Hilbert declustering into a parallel version of the X-
tree [BKK 96].

In our experiments, we used three types of data: Fourier points corresponding to
contours of industrial parts (d=8..15), text data corresponding to substrings of alarge set
of texts (d=15), and uniformly distributed points (d=8..15). The total amount of data
used in our experiments was about 800 MBytes. The block size used is 4 KBytes. In
order to measure the performance of our technique, we determined the disk which ac-
cesses most pages during query processing. We used the search time of this disk as the
search time of the whole parallel X-tree. Each experiment has been performed 10 times
and the average of the 10 experiments is used as the reported search time. In order to
compute the speed-up, we compared the search time of the parallel X-tree with asequen-

14.00
12.00 /
10.00 ~
S s] /
. P
-g 7 // rYee ot]'\"O'\-‘NN
- s s
& 8% / s
AT
4.00 7 -
| //////
e
2.00 B
0.00 \ T ‘ ‘
2 4 6 8 10 12 14 1s

Number of Disks

Figure 103: Speed-Up of Our Technique on Uniformly Distributed Data (1 MByte)

Experimental Results 191

Nearest-Neighbor-Query 10-Nearest-Neighbor-Query
12.00 14.00
10.00 1 12.00 : ~
[=R 8.00] 10.00]
2 8.00 = new
§ 6.00 500] . HIL
% 4.00 4.00]
2.00 Y e esest et 8 200 ;/ Domrrinsiheerssecsiorccssosed
0.00 T T T T T T T 0.00 i T T T T T
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of Disks Number of Disks

Figure 104: Speed-Up of Our Technique and Hilbert Declustering (Fourier Points)

tia X-tree using the original implementation of [BKK 96]. In the following figures,

“new” denotes our technigue, whereas “HIL” denotes the Hilbert approach.

Ouir first objective was to show the linear speed-up of our new method. We performed
an experiment on 1 MByte of uniformly distributed datal(5) with varying numbers
of disks (cf. figure 103). In performing a nearest-neighbor query, the speed-up reaches a
value of 8 for 16 disks for a nearest-neighbor query. For 10-nearest-neighbor queries, the
speed-up increases up to a value of 12 for 16 disks. In both experiments, the speed-up

was nearly linear.

Since one cannot assume a uniform data distribution for real life applications, we
used real data for our further experiments. Again, we investigated the speed-up of our
technique and compared it to the Hilbert declustering for a nearest-neighbor query and a
10-nearest-neighbor query. Figure 104 shows the speed-up of our technique and the Hil-
bert curve on 40 MBytes of 15-dimensional Fourier points. Obviously, both techniques
achieve a near-linear speed-up for both query types. However, our technique clearly
outperforms the Hilbert curve which reaches only 19% of the optimal speed-up using 16
disks. Figure 105 shows the improvement of our technique over the Hilbert approach in
the same experiment. The factor linearly increases with the number of disks and ap-
proaches a value of 5 for 16 disks. Note that this is due to the fact that the Hilbert curve

does not provide a near-optimal declustering.

Next, we made experiments to measure the scale-up of our technique, i.e. we in-
creased the number of disks and increased the total amount of data proportionally. In

particular, we increased the number of disks from 2 to 16 while increasing the amount of

192 Optimized Declustering for Parallel Query Processing

5.00
5 400 "
8 / el
(N ot
= 3.00 /’ ey —
g T — 10-NN
.
§ 2.00 Y - NN
s ° =
S e
E 100
000 \ ‘ ‘ ‘
2 4 & 8 10 12 14 16

Number of Disks

Figure 105: Improvement Factor over Hilbert Declustering (Fourier Points)

data from 1 to 8 MBytes. Figure 106 depicts the result of this experiment. The total
search timeis nearly constant for both, nearest-neighbor queries and 10-nearest-neigh-
bor queries. The experiment shows that our technique scales well when increasing the
problem size.

In addition to the Fourier data, we also used text descriptors for our experiments. The
text descriptors are feature vectors characterizing substrings of large sets of various
documents given in ASCII format. Again, we compared our technique to the Hilbert
approach. Figure 107 shows atotal search time of 771 msfor our technique in contrast
to 1683 msfor the Hilbert approach for anearest-neighbor query (improvement of 2.18)
on 1MByte of 15-dimensional text descriptors. For the 10-nearest-neighbor query the
improvement of our technique increased to 2.99.

800.00

700.00

600.00

500.00
400.00
300.00

— 10-NN
-~ NN

Search Time [mg]

200.00

100.00

0.00

n

3 4 5 6 7 8
Amount of Data[MBytes]

Figure 106: Scale-Up on NN Queries and 10-NN Queries (Fourier Points)

Experimental Results

2500.00

2000.00

1500.00

1000.00

Search Time [ms]

500.00

0.00

Our Technique

193

H 10-NN
NN

Figure 107: Total search time of our technique and the Hilbert curve (Text Data)

Insection 7.3.3, we proposed several extensionsof our technique. Thefirst extension,

the adaptation to an arbitrary number of disks, has been used for all experiments present-

ed in this chapter which use a varying number of disks. The second extension of our

technique has also been implemented and tested. Figure 108 depicts the results of these

experiments. The experiments have been performed with 40 MBytes of 15-dimensional

Fourier points. The Fourier pointsrepresent aset of variants of CAD-partsand are highly

clustered. The original technique yielded atotal search time of 537.6 ms for a nearest-

neighbor query, whereas the extension reduced the total search time to 137.7 ms. The

large improvement factor of 3.9 is due to the fact that a large amount of data itemsis

located in the same quadrant of the data space and therefore assigned to a single disk.

Note that only one recursive declustering step was necessary in the experiments.

1600.00

1400.00

1200.00

1000.00

800.00

600.00

Search Time [ms]

400.00

200.00

©
o
[}

Figure 108: Effect of Recursive Declustering

Without Extension

With Extension

W 10-NN
NN

194

Optimized Declustering for Parallel Query Processing

195

Chapter 8

Indexing Ultra-High-Dimensional
Feature Spaces

In the preceding chapters, we proposed various techniques to improve index structures
for high-dimensional query processing. It turned out, however, that sufficient perfor-
manceisonly achieved in cases of amoderate dimensionality. A result of recent research
activities[BBKK 97, BKK 96, WJ 96] isthat basically none of the querying and index-
ing techniques also performs sufficiently well on data spaces which are of a very high
dimension such as 100. The only approach taken to solve this problem for larger queries
was parallelization (cf. chapter 7). In this chapter, however, we will tackle the problems
leading to the so-called curse of dimensionality.

8.1 Introduction

A variety of new index structures[KS 97, LJF 95], cost models[BBKK 97, FBF 77] and
query processing techniques [BEK+ 98, BBK+ 98] have been proposed. Most of the
index structures are extensions of multidimensional index structures adapted to the re-
quirements of high-dimensional indexing. Thus, al these index structures are restricted
with respect to the data space partitioning. Additionally, they suffer from the well-
known drawbacks of multidimensional index structures such as high costsfor insert and
delete operations and a poor support of concurrency control and recovery.

196 Indexing Ultra-High-Dimensional Feature Spaces

Motivated by these disadvantages of state-of-the-art index structures for high-dimen-
sional data spaces, we developed the Pyramid-Technique. The Pyramid-Technique is
based on a special partitioning strategy which is optimized for high-dimensional data
Thebasicideaisto divide the data space such that the resulting partitions are shaped like
peels of an onion. Such partitions cannot efficiently be stored by R-tree-like index struc-
tures. We can achieve such partitions, however, by dividing the d-dimensiona spaceinto
2d pyramids having the center point of the space astheir top. In asecond step, the single
pyramids are cut into slices parallel to the basis of the pyramid to form the data pages.
Aswe will show, both analytically and experimentally, this strategy outperforms other
partitioning strategies when processing range queries. Furthermore, we will analytically
show that range query processing using our method is not affected by the so-called
“curse of dimensionality”, i.e. the performance of the Pyramid-Technique does not dete-
riorate when going to higher dimensions. Instead, the performance improves for increas-
ing dimension. Note that this analytical result is obtained for hypercube shaped queries
and uniform data distribution. Queries which touch the boundary of the data space or
very skewed queries are handled less efficiently. However, as we will show in the exper-
imental section of this paper, even slightly skewed queries can be handled efficiently.

Another advantage of the Pyramid-Technique is the fact that we use a mapping from
the givend-dimensional data space to a 1-dimensional space in order to achieve the
mentioned onion-like partitioning. Therefore, we can usé-&d@ [BM 77, Com 79] to
store the data items and take advantage of all the nice propertiésreB such as fast
insert, update and delete operations, good concurrency control and recovery, easy imple-
mentation and re-usage of existing-Bee implementations. The Pyramid-Technique
can easily be implemented on top of an existing DBMS.

The rest of this chapter is organized as follows: In section 8.2, we introduce the Pyr-
amid-Technique and show how the index construction is performed. In section 8.3 we
describe query processing using the Pyramid-Technique in detail. Then, we analyze in
section 8.4 the benefits of the Pyramid-Technique. To improve the performance of the
Pyramid-Technique in case of real data, we propose some extensions of the Pyramid-
Technique in section 8.5. Finally, we present a variety of experiments demonstrating the
practical impact of our technique. A discussion of the weaknesses and limitations of the
Pyramid-Technique will conclude the chapter. The material presented in this paper has
partly been previously published [BBK 98b].

The Pyramid-Technique 197

d-dimensional point d-dimensional range

1-dimensional point 2d 1-dimensional ranges
B*-tree B*-tree

a) insert b) range query

Figure 109: Operations on Indexes

8.2 The Pyramid-Technique

The basic idea of the Pyramid-Technique is to transform the d-dimensional data points
into 1-dimensional values. For storing and accessing the values, we use an efficient
index structure such as the B*-tree[BM 77, Com 79]. Potentially, any order-preserving
one-dimensional access method can be used. Operations such asinsert, update, delete or
search operations are performed by using the B*-tree. Figure 109 depicts the general
procedure of an insert operation and the processing of arange query. In both cases, the
d-dimensional input is transformed into some 1-dimensional information which can be
processed by the B*-tree. Note that athough we index our data using a 1-dimensional
key, we store d-dimensional points plusthe corresponding 1-dimensiona key inthe |leaf
nodes of the B*-tree. Therefore, we do not have to provide an inverse transformation.
The transformation itself is based on a specific partitioning of the data spaceinto aset of
d-dimensional pyramids. Thus, in order to define the transformation, wefirst explain the
data space partitioning of the Pyramid-Technique.

8.2.1 Motivation

The basic motivation of space partitioning using the Pyramid-Techniqueisrelated to the
technique of unbalanced splitting presented in chapter 6. Theindex architecture, howev-
er, istotally different from our previous proposal. Index construction, maintenance and

198 Indexing Ultra-High-Dimensional Feature Spaces

o 0.003: 1 Queryrectangle
9 I

@ 0.002
g *
S o001 N = 100,000 3
= ; y.
= 1 N = 1,000,000

0 5 10 15 20 - - :
dimensiond Balanced Split Pyramid-Technique

Figure 110: Partitioning Strategies

query processing are also completely new since the Pyramid-Technigue transforms the
d-dimensional pointsinto a one-dimensional embedding rather than organizing a recti-
linear directory. Figure 110 on the right shows the partitions of an index using the pyra-
mid technique. The page regions are shaped like peels of an onion. Under uniformity
assumption, it is very likely that pages near by the boundary of the data space are very
thin. The outermost peel, for example, contains 2d data pages and, thus, Cy; [(2d data
points. Thethickness 9 of the peel is determined such that it contains an expectation of
C [(2d datapoints, resulting in the equation:

Cys [2d

d
Vos—(4Vps—99) = N

If we assume the data space to be normalized to the unit hypercube (Vpg = 1), we get the
following result for the thickness of the outermost peel:

Cyr [2d
9, = 1—d/1—%.

Figure 110 depicts in the diagram on the left side 9 for varying dimension. The thick-
ness decreases with increasing dimension. The middle and right side of figure 110 com-
pare balanced splitting with the Pyramid-Technique. For the outermost peel, it isfor a
reasonable selectivity impossible that the query touches both partitions on opposite
sides. Asthe outermost peel is very thin (typically in the order of 103,10 of the side
length of the data space, it is even unlikely that any of the partitions on the outermost
peel isintersected by a query. The next peel under the outermost peel is affected with a
dlightly higher probability. But thetotal expectation of page accessesisstill very low. We
will analyze this effect in depth in section 8.4.

The Pyramid-Technique 199

(d-1)-dimensional surface

pyramid
\ /\ partition
center 7/
point / \\
Data space

Figure 111: Partitioning the Data Space into Pyramids

8.2.2 Data Space Partitioning
The Pyramid-Technique partitions the data space in two steps: in the first step, we split
the data spaceinto 2d pyramids having the center point of the dataspace (0.5, 0.5, ..., 0.5)
astheir top and a (d-1)-dimensional surface of the data space as their base. In a second
step, each of the 2d pyramids is divided into several partitions, each corresponding to
one data page of the B*-tree. In the 2-dimensional example depicted in figure 111, the
space has been divided into 4 triangles (the 2-dimensional analogue of the d-dimension-
a pyramids) which al have the center point of the data space as top and one edge of the
dataspace as base (figure 111 | eft). In asecond step, these 4 partitions are split again into
severa data pages parallel to the base line (figure 111 right). Given a d-dimensional
spaceinstead of the 2-dimensional space, the base of the pyramid is not a 1-dimensional
line such asin the example, but a(d-1)-dimensional hyperplane. As acube of dimension
d has 2d (d-1)-dimensional hyperplanes as a surface, we obviously obtain 2d pyramids.
Numbering the pyramids as in the 2-dimensional example in figure 112a, we can
make the following observations which are the basis of the partitioning strategy of the
Pyramid-Technique: All pointslocated on thei-th (d-1)-dimensional surface of the cube
(the base of the pyramid) have the common property that either their i-th coordinateis 0
or their (i —d)-th coordinate is 1. We observe that the base of the pyramidisa(d - 1)-
dimensional hyperplane, because one coordinate is fixed and (d - 1) coordinates are
variable. On the other hand, all pointsv located in the i-th pyramid p; have the common
property that the distance in the i-th coordinate from the center point is either smaller
than the distance of all other coordinatesif i <d, or larger if i =d. Moreformally:

Oj, 0<j<d,j#i: (|0.5-v|<]|0.5-v|) if(i<d)
Oj, 0<j<d,j#(i—d): (|0.5-V;_g| 2]0.5-v||) if(i 2 d)

200 Indexing Ultra-High-Dimensional Feature Spaces

N

>H T
Po 2 # [
ﬁ STt 7~ —: .V
I
do —»: ,4—
0.5-v,
a) numbering of pyramids b) point in pyramid

Figure 112: Properties of Pyramids

Figure 112b depicts this property in two dimensions: all points located in the lower
pyramid are obviously closer to the center point in their dy-direction than in their d,-
direction. This common property provides avery ssmple way to determine the pyramid
p; which includes agiven point v: we only have to determine the dimension i having the
maximum deviation |0.5—v;| from the center. More formally:

Definition 18: Pyramid of a point v
A d-dimensional point visdefined to belocated in pyramid p;,

jmac (v, <05)
(e +) 1f(v;,_ 20.5)

o o o

With e = (1(Ok, 0= (j, k) <d,j #k: [0.5-v[2|0.5-v,))).

Note that all further considerations are based on this definition. Therefore, it is crucial
for our technique.

Another important property is the location of a point v within its pyramid. Thisloca-
tion can be determined by asingle valuewhichisthe distancefrom the point to the center
point according to dimension j .. Asthisgeometrically correspondsto the height of the
point within the pyramid, we call thislocation height of v (cf. figure 113)

The Pyramid-Technique 201

Definition 19: Height of a point v
Given ad-dimensional point v. Let p; be the pyramid in which v is located according
to definition 18. Then, the height h,, of the point v is defined as

h, = \0.5—vi MOD d|.

Using definition 18 and 19, we are ableto transform ad-dimensional point vinto avalue
(i+h,) wherei istheindex of the according pyramid p; and h, isthe height of v within p;.
Moreformally:

Definition 20: Pyramid value of a point v
Given ad-dimensional point v. Let p; be the pyramid in which v is located according
to definition 18 and h,, be the height of v according to definition 19. Then, the pyramid
value pv, of visdefined as

pVV = (I +hV)

Note that i is an integer and h,, is areal number in the range [0, 0.5]. Therefore, each

pyramid p; covers an interval of [i, (i+0.5)] pyramid values and the sets of pyramid

values covered by any two pyramids p; and p; are disjunct. Note further that this trans-
formation isnot injective, i.e. two pointsv and v may have the same pyramid value. As
mentioned above, we do not require an inverse transformation and therefore we do not
require a bijective transformation.

8.2.3 Index Creation

Given the transformation determining the pyramid value of a ppibts a simple task

to build an index based on the Pyramid-Technique. In order to dynamically insert a point
v, we first determine the pyramid valpe, of the point and insert the point into &Bee
usingpv, as a key. Finally, we store tidedimensional point andpv, in the according

data page of the Btree. Update and delete operations can be done analogously. Note

v height of v
v
P1 / \

Data space Pyramid p;

Figure 113: Height of a Point within its Pyramid

202 Indexing Ultra-High-Dimensional Feature Spaces

that B*-trees can be bulk-loaded very efficiently, for example, when building a B*-tree
from alarge set of dataitems. The bulk-loading techniques for B*-trees can be applied
to the Pyramid-Technique as well.

In general, the resulting data pages of the B*-tree contain a set of points which all
belong to the same pyramid and have the common property that their pyramid valuelies
in aninterval given by the minimal and maximal key value of the data pages. Thus, the
geometric correspondence of a single B*-tree data page is a partition of a pyramid as
shown in figure 113 (right).

8.3 Query Processing

In contrast to the insert, delete and update operation, query processing using the Pyra-
mid-Technigue is a complex operation. Let us focus on point queries first which are
defined as “Given a query point g, decide whether q is in the datahadsing the
Pyramid-Technique, we can solve the problem by first computing the pyramidovglue

of g and querying the Btree usingovg. As a result, we obtain a setdtlimensional
points sharingv, as a pyramid value. Thus, we scan the set and determine whether the
set containg| and output the result.

In case of range queries, the problem is defined as foll@ween a d-dimensional
interval

[qomin’ qOmax] [qd_lmv qd_lmax] .
determine the points in the database which are inside the taNgee that the geomet-
ric correspondence of a multidimensional interval is a hyper-rectangle. Analogously to
point queries, we face the problem to transforndtdénensional query into a 1-dimen-
sional query on the Btree. However, as the simple 2-dimensional example depicted in
figure 114 (left) demonstrates, a query rectangle may intersect several pyramids and the
computation of the area of intersection is not trivial. As we also take from the example,
we first have to examine which pyramids are affected by the query, and second, we have
to determine the ranges inside the pyramids. The test whether a point is inside the ranges
is based on a single attribute criteridg hetween two values). Therefore, determining
all such objects is a one-dimensional indexing problem. Objects outside the ranges are
guaranteed not to be contained in the query rectangle. Points lying inside the ranges, are
candidates for a further investigation. It can be seen in figure 114 that some of the candi-

Query Processing 203

Phigh

hIow \

4 N

. e

query rectangle

Figure 114: Transformation of Range Queries

datesare hits, othersarefalse hits. Then, asimple point-in-rectangle-testisperformed in
the refinement step.

For simplification, we focus the description of the algorithm only on pyramids p;
where i <d, however, our algorithm can be extended to all pyramids in a straight-for-
ward way. As afirst step of our algorithm, we transform the query rectangle q into an
equivalent rectangle g such that theinterval is defined relative to the center point.

Gjpyy = O, —05aa gy, = ¢ —0510j,0<j<d.

Additionally, weinterpret any point v mentioned in this section to be defined relative
to the center point of the data space. Based on definition 18, we are able to determine if
apyramid p; is affected by a given query q. Aswe will see, we have to determine the
absolute minimum and maximum of an interval which is defined as follows: Let
MIN(r) be defined as the minimum of the absolute values of aninterval r:

0 if rips0sr

max

]
MIN(r) = O
0

min(|r otherwise

min|' rm.’:lx‘)

Note that |r ., ,| may belarger than |r....| . Analogously, we define:
MAX(r) = max(|rmin| [Fmax) -

204 Indexing Ultra-High-Dimensional Feature Spaces

Lemma 18: (Intersection of a Pyramid and a Rectangle)

A pyramid p; isintersected by ahyperrectangle [qo_, Go,], -+, [Qd—1,,, Od-1,,] if
andonly if

0j,0<j<d,j#i: g <-MIN(Q).

Proof (Lemma 18)

Thequery rectangleintersects pyramid p; if and only if there existsapoint vinsidethe
rectangle which fals into pyramid p;. Thus, the coordinates |vj\ of v must al be
smaller than |v;| . This, however, isonly possibleif the minimum absolutevalueinthe
query rectangle in dimension j is closer to the center point than aimm isto the center
point. Lemma 18 follows from the fact that this must hold for all dimensionsj.

O

In the second step, we have to determine which pyramid values inside an affected pyra-
mid p; are affected by the query. Thus, we arelooking for an interval [hyqy, hpign] inthe
range of [0, 0.5] such that the pyramid vaues of all pointsinside the intersection of the
query rectangle and pyramid p; are in the interval [i+hq,, i+hyign]. Figure 114 depicts
thisinterval for two and three dimensions.

In order to determine hyq,, and hygn, we first restrict our query rectangle to pyramid
pi, i.e. weremove al points above the center point:

’aimin = E]imin’ ’aimax = min(aimxx 0)1

Qs = Gy @0 Qi = Gy, Where (0<j<d),j 2.

Note that we restricted our considerations to the pyramids pg .. py_,. Therefore, the
relevant valuesof g, and q;,_ arenegative. Theeffect of thisrestrictionisdepictedin
atwo-dimensional examplein figure 115 (upper part).

The determination of the interval [hygy, hyighl isvery simpleif the center point of the
data space is included in the query rectangle, i.e. j, (0<j <d): (g, <0<q;_).In
this case, we simply use the extension of the query rectangle as a result, thus:

Piow = 0 and hyign = MAX(Q).

If the center point is not included in the query rectangle, we make the observation that
Prigh = MAX(Ei) , too. Thisisdueto the fact that the query rectangle must contain at

Query Processing 205

first step
—>

"""" hIow

Figure 115: Restriction of Query Rectangle

least one point v such that v, = MAX(’cTi) because otherwise there would be no inter-
section between the query rectangle and pyramid p;.

In order to find the value h,q,,, we have to determine the minimum height of points
insidethe query rectangle and the pyramid p;. Aswe consider pointswhich areinside E
and inside p;, we can intersect al intervals [Qjnn Oined (0<j<d),j#i with
[’q\imm, ’d\im] without affecting the value hy,,. Then, the minimum of the min-values of
all dimensions of the new rectangle q isequal to hg,, Figure 115 (lower part) showsan
example of this operations. Obviously, the checkered rectangles on the left and the right
side of each example are causing the same value hq,,

Lemma 19: (Interval of Intersection of Query and Pyramid)
Given a query interval q and an affected pyramid p;, the intersection interval
[Niow hhignl is defined asfollows:
Casel: (0j,0<j<d: (g, <0<q,,))
hIow =0,
hnign = MAX(Q) .
Case 2: (otherwise)

hiow = MiNo<j<djziy(Tin,))

hrign = MAX(q)

206 Indexing Ultra-High-Dimensional Feature Spaces

max(MAX('q1), MIN(T))) if MAX(Q}) = MIN(q)
MIN(Q) otherwise

Ujin =

o o

Proof (Lemma 19)
We will show for any point v which is located inside the query rectangle g and an
affected pyramid p; that the resulting query interval [hyign, higw] contains |v;| . Note
that we assumed i to be smaller than d and thus v, < 0. Therefore, we have to show
that
Pyow < Vi| £ Prigh-
L |vi| £ hyign:
This holds because we choose hgh such that |vi| < MAX(qi) = hygp.
2. howsV;:
If g containsthe center point, we have hyy,, = 0< ||

Otherwise, , (0j, (0=j <d)) becausevisinsidethe pyramidi. On the other

vil 2|V,

hand, v; 2 &jmm, Lj, (0<=j <d) becausevisinside the query rectangle and v; = ’d\jmm
because al coordinates of v ae negative for O<i<d. Thus,
vj| = MIN(q}), (0], 0<j < d).

Additionaly, |v;| 2 M|N(,ai) because of the same reasons. Assembling the two re-
sults, wederive: |v;| 2 max(MIN(’ai). MIN(’d\j)), 0j, 0<j <d.Fromequation (*),
however, follows that qj =hg,. Thus we finaly obtain that
vi| = max(MIN('qi), MIN(G})) 2 hyg,,

O

Lemma 18 and 19 imply the simple query processing algorithm depicted in figure 116.

8.4 Theoretical Analysis

In contrast to our assumptions in chapter 3, we focus in this section on window queries
which are completely contained in the data space and extend our model to reflect such a
query distribution. For simplicity, we assume auniform, independent distribution of data
pointsin the d-dimensional unit hypercube and hypercube shaped window queries with

Theoretical Analysis 207

Poi nt _Set PyrTree::range_query(range q)
Poi nt _Set res;

for (i =0; i <2d;, i++) {

if (intersect(p[i], q) {

/1 using | emma 18
determine_range(plil, g, hjow hpign):
// using | emma 19

cs = btree_query(i+hjon i+hpign);
for (c = cs.first; cs.end; cs.next){
if (inside(q, c))
res. add(c);
}
}

}

return res,;

}

Figure 116: Processing Range Queries (Algorithm)

side length g. The query anchor which isin this case the lower |eft corner of the query
window by definition, is therefore taken randomly from the hypercube [0 q]ite
make sure that the query window is completely contained in the data space.

8.4.1 Analysisof Balanced Splitting

We start with the analysis of balanced splitting for our query distribution. Our assump-
tion is (like in chapter 3) that in high-dimensional query processing the data space can-
not be split in each dimension, but only in a nuntef dimensions with

N
d = log,(=).
z ceff

As the range queries are completely contained in the data space, there is no need to
consider boundary effects for the queries.iffithe selectivity, i.e. the ratio of objects to
be retrieved, then the side-lengtsimply corresponds to thteth root ofs:

q=9s.

For a 20-dimensional range query with a selectivity of 0.01%, we obtain a side length of
g = 0.63 which is larger than half of the extension of the data space in this dimension. For

208 Indexing Ultra-High-Dimensional Feature Spaces

apage b; given by its lower and upper bounds Ib; ; and ub; ; (0 <j <d), we can extend
our formulafor the access probability

d-1

Prange(q) = |_| (Ubi,i _Ibi,i +a)
i=0

to take our new query distribution into account:

d-1
min(ub; ;, 1—qg) —maxlb, ; —q, 0)
Puindow(d) = rl = 1-q o) .

j=0

The minimum and maximum are necessary to cut the parts of the Minkowski sum ex-
ceeding the data space, whereas the denominatar)(s due to fact that the stochastic
“event space” of the query anchor is not [0, 1] but rather [OgJL ¥he model for bal-
anced splits can be simplified if the number of data pages is a power of two. Then, all
pages have the extension 0.%idimensions, accommodated in the lower or the upper
half of the data space, and full extension in the remaining dimensio@Bye denote
the effective (average) capacity of a data page. It is dependentianin our special
case, all pages have the same access probability and thus the expected value of data page
accesses is:
N log(&)

. 05
Evingon(d 0 N) = == Cmin(l, Emg).

Note that we require the minimum to assure that the expected value does not exceed the
total number of data pages and that we are able to ignore the remdiridy dimen-
sions because the extension of the data pages in these dimensions is 1.

8.4.2 Analysis of the Pyramid Technique

Now we are going to determine a cost estimation for the Pyramid-Technique. We restrict
ourselves to the cost for processing hypercube shaped range queries having a side length
larger than 0.5 to achieve a reasonable selectivity for high-dimensional queries. In this
case, the center of the data space is always contained in the query and therefore, our
window query is transformed into a set of exactlypfe-dimensional range queries with

hiow = 0 andhy, g = MAX(q) .

Theoretical Analysis 209

Query Rectangle

Query Anchor > @ Candidatesin p;

(The “Affected Part”)

Bi

Figure 117: Modeling the Pyramid-Technique

We do not need the concept of the Minkowski sum here because we analyze the perfor-
mance of one-dimensional interval queries. However, we have to take into account that,
in contrast to the points of the database, the pyramid values are not uniformly distribut-
ed.

Inthefirst step of our model, we determine an expected value for the amount of data
in each pyramid which has to be accessed during query processing (the size of the can-
didate set). We consider the lower boundaries of the query rectangle
QA = (qomm. ey Oy 1min) as the anchor point of the query. QA is obviously taken from
the multidimensional interval QAI = [0, 1— q]d to guarantee that the whole query is
located inside the data space. Therefore, the height hy;gp, in the pyramid p; is uniformly
distributed in the interval H; = [q—0.5, 0.5 (cf. figure 117). We call the part of the
hyper-pyramid, starting with hyq,, = 0 and ending with hy, 4, (underlaid in grey in figure
117), the affected part of the pyramid. The volume of the affected part can be determined
by using the fact that it is the 2d-th part of a hypercube with sidelength 2 Chy;;

(2 hygn)”
Vlhign) = 57

From thisvolumeof the affected part for agiven hygp, we can also determine the expect-
ed value by forming an average over al possible positions of hyg, in the interval H;.
Thus, we haveto integrate over hy;g, and then divide the result by the size of theinterval
H; which yieldsthe following integral formula:

0.5

_[V(Phign) dhyign

— =05
Ev(d, a) 05-(q-05)

210 Indexing Ultra-High-Dimensional Feature Spaces

[%] 1
(]
[92]
3
o 0.8
(8]
<<
[} 0.6 .
= —=— Balanced Split
Y —a— Pyramid Tree
o
g 02
1S A A A A A A A A A A A 4 oaoaa
p=}
z 0 20 40 . 60 80 100
Dimension

Figure 118: Range Queries Using the Pyramid Technique and Balanced Splitting

Theintegral can be evaluated and simplified to:
1-(29-1)""*
4d{1-q) Qd+1)

As E,/(d, q) is the expected volume of the affected part for a query of the size g in a

Ey(d,q) =

single pyramid under the uniformity assumption that
2d (E(d, g) {N/2d) = E(d, g) [N

isthe expected total number of objectsin the affected parts of al pyramids.

These objects are the candidates for an exact-geometry test of d-dimensional range
containment (cf. figure 117). Sinceit isunlikely that the affected part is perfectly aligned
with a break between two subsequent pages, the question is, how many data pages are
occupied by the candidates. Note that al candidates belong to asingle interval of pyra-
mid valuesand therefore, the candidates are stored contiguously on the data pages. Thus,
assuming a pagination with the effective page capacity Cgs, we have to descend the
directory of the B*-tree for each pyramid to find the object with the lowest pyramid
value in each pyramid. This object may be |ocated anywhere inside a data page. Then,
we have to read a run with the length of E,(d, q) N objects which occupies
E\(d, g) N/ C; datapages. Thelast object is, again located somewhere on a data page
with an equal probability of every position on the page. On average, we haveto read half
apage before and after the run, respectively. Therefore, the required number of accesses
to data pagesfor al 2d pyramidsis:
d+1

_2d+NOQ1-(29-1)""H
Epyramidtree(dr a, N) - 2Ceﬁ(d) [(d + 1) EU—Q) .

The Extended Pyramid-Technique 211

clustered data Pyramid-T. Extended Pyramid-T.

Figure 119: Effect of Clustered Data

The number of accesses to directory pages is 2d times the height of the B*-tree
loge,, d"pg(N/ C4p) and can be neglected because the directory fits into the cache. We
made the same assumption in the model for balanced splitting.

8.4.3 Comparison

Figure 118 depictsthe performance of the Pyramid-Technique as predicted by our model
and, in comparison, the estimated cost when using balanced splitting. The Pyramid-
Technigue does not reveal any performance degeneration in high dimensions. Note that
we achieved this result by assuming hypercube shaped queries which are uniformly
distributed over the data space and, therefore, the result only holds for this query type.

8.5 The Extended Pyramid-Technique

All our considerations presented so far were based on the assumption that the data is
uniformly distributed. However, data produced by real-life applications does not behave
this way. Therefore, the question arises, how to adapt the Pyramid-Technique to real
data. Let us consider the following scenario: What happens to the Pyramid-Technique if
most of the dataislocated in one corner of the data space (figure 119 left). Obvioudly,
only afew pyramids (in the extreme case only one) will contain most of the data while
the other pyramids are nearly empty. This, however, will result in the suboptimal space
partitioning depicted in the example in figure 119 (middle). Obvioudly, partitioning is
suboptimal because we can assume real-life queries to be similarly distributed as the
dataitself. Under this realistic assumption, a much better partitioning for the same data
setisshownin figure 119 (right).

212 Indexing Ultra-High-Dimensional Feature Spaces

Thebasicideaof the extended Pyramid-Techniqueisto achieve such apartitioning by
transforming the data space such that the data cluster is located in the center point
(0.5, ..., 0.5) of space. Thus, we have to map the given data space to the canonical data
space [0, 1]d such that the d-dimensional median of the data is mapped to the center
point. Note that we only have to assure that the median of the data roughly coincides
with the center point of the data space. The presence of clusters distributed over the
space does not cause a problem for our technique. However, we only apply the transfor-
mation to determine the pyramid values of points and query rectangles, but not to the
pointsitself. Therefore, we do not haveto apply theinversetransformation to our answer
set.

As the computation of the d-dimensional median is a hard problem, we use the fol-
lowing heuristic to determine an approximation of the d-dimensional median: We main-
tain ahistogram for each dimension to keep track of the median in this dimension. The
d-dimensional median isthen approximated by the combination of the d one-dimension-
a medians. Obviously, the approximated d-dimensional median may be located outside
the convex hull of the data cluster. As our experiments showed, this effect occurs very
rarely and therefore the performance of our algorithmsis not affected. The computation
of the median can either be done dynamically in case of dynamic insertions, or once in
case of abulk-load of the index.

Given the d-dimensional median mp of the data set, we define a set of d functions t;,
0<i<(d-1) transforming the given data space in dimension i such that the following
conditions hold:

1.t(0) =0
241 =1
3. t;(mp;) = 0.5

4.t:[0,1] - [0, 1]

The three conditions are necessary to assure that the transformed data space still has an
extension of [0..1] d (1. and 2.), and that the median of the data becomes the center point
of the data space (3.). Condition 4. assures that each point in the original data spaceis
mapped to a point inside the canonical data space. The resulting functions t; can be
chosen as an exponentia function such that:

t(x) = X .

The Extended Pyramid-Technique 213

1 1

08 o.si

06 0.65

04 0.4;

02 0.2:

0 0.2 0.4 0.6 0.8 1 07 0.2 0.4 0.6 0.8 1
mp = 05 mp = 0.85

Figure 120: Transformation Functionst;

Obviously, conditions 1., 2., and 4. are satisfied by X', r >0, 0< x < 1. In order to deter-
mine the parameter r, we have to satisfy condition 3.: t,(mp) = 0.5 = mp . Thus,
1

1 _|ng(mpi)
————— and t:(X) = X .
Tog;(mpy 2 i)

r =

Now, inorder to insert apoint vinto an index using the extended Pyramid-Technique,
we simply transform v into a point v';=t;(v;) and determine the pyramid value pv,, .
Then, we insert v using pv,, as a key value as described in section 8.2.3. In order to
process a query, we first transform the query rectangle q (or query point) into a query
rectangle g’ such thatq’imm=ti (qimin) a”dl’imafti (qimax) . Note thgt is arectangle be-
causewe applied independent transformationsto each dimension. Next, we usethe algo-
rithm presented in section 8.3, to determine the intervals of affected pyramid values and
query the B*-tree. As aresult, we obtain a set of non-transformed d-dimensional points
v which we test with the origina query rectangle g. Note that we used the transforma-
tions t; only to determine the pyramid value but we have not transformed the points
itself.

If we dynamically build an index, the situation may occur that the first 10% of insert-
ed points have a median different from that of the other 90% of the data. More general,
we have to handl e the situation that the median changes during the insertion process. To
handle this case, we maintain the current median by maintaining a histogram for each
dimension and rebuild theindex if the distance of the current median to the center point
exceeds a certain threshold. Note that rebuilding the index is not too expensive because
weuse abulk-load techniquefor B*-trees. In order to determine agood threshold, we use

214 Indexing Ultra-High-Dimensional Feature Spaces

the value th = (./d)/4 because the maximum distance from any point to the center
point is (./d)/2 and, therefore, the adapting process is guaranteed to terminate after a
logarithmic number of steps. Note further that the probability that the median shifts and
therefore the index has to be reorganized decreases with an increasing percentage of
inserted data items. Therefore, a reorganization occurs very rarely in practice. Further-
more, our experiments showed that a dlightly shifted median has a negligible influence
on the performance of the Pyramid-Technique.

8.6 Experimental Evaluation

To demonstrate the practical impact of the Pyramid-Technique and to verify our theoret-
ical results, we performed an extensive experimental evaluation of the Pyramid-Tech-
nigue and compared it to the following competitive techniques:

» X-tree [BKK 96]

« Hilbert-R-tree [KF 94]

* Sequential Scan [WSB 98].
The Hilbert-R-tree has been chosen for comparison, because the Hilbert-curve and other
space filling curves can be used in conjunction with a B-tree in a so-called one-dimen-
sional embedding. Since the Pyramid-Technique also incorporates a very sophisticated
one-dimensional embedding, the Hilbert R-tree appeared to us as a natural competitive
method.

Recently, the criticism arose that index-based query processing is generally ineffi-
cient in high-dimensional data spaces [BGRS 98], and that sequential scan processing
yields a better performance in this case. Therefore, we included the sequential scan in
our experiments. We will confirm the observation that the sequential scan outperforms
the X-Tree and the Hilbert R-Tree for high dimensionalities, but we will also see that our
new technique outperforms the sequential scan in all experiments performed.

For clarity, we state our assumption that all relevant information is stored in the vari-
ous indexes, as well as in the file used for the sequential scan. Therefore, no additional
accesses to fetch objects for presentation or further processing are needed in any of the
techniques applied in our experiments.

Our experiments have been computed on HP 9000/780 workstations with several
GigaBytes of secondary storage.

Experimental Evauation 215

50,000 60
3 40,000 § 50
40
$ 30,000 2
8 g 30
;, 20,000 ;T 20
E 10,000 % 10
o4 T i } } } ! 0 ¢——o— ' —
o o o o o o o o o o o o o o
o o o o o o o o o o o o o o
o (=] o (=} o o o o o o o o o o
o o o o o o o o o o o o o o
o 0 o el o [Tel o Q [Te) (=) [Tel Q Yol o
[Te} M~ o N 0 ~ (=] [T M~ o N 0~ o
~ -~ « «~ « - - «~ ~ «
Number of Objects Number of Objects
N
g 1000 + % < 600 T
= M &, 500
X 800 + —
f] —&—Pyram. T.
[£ 400 T
4 —m— X-
g_ 600 ; 300 X-Tree
=) @ i
2 404 @ 200 —a&— Hilbert
b L] —%—Sequ. Scan
a o i 100 :
D200 T4 3 B o %
¥) 3 - —— —
‘E“ e |—| L Q0 9 @ @ 9 9 9
0 ! I i o o (=] (=] (=] o o
' ' © © © o o o 9
[S] [} () o o o o o o o
o = e o Te} o el o Te] (=]
< R——— 0 ~ o N [Te] ~ o
P e - - = < o
K= -
o = Number of Objects
#* O E

Figure 121: Performance Behavior over Database Size

Our evaluation comprises both, real and synthetic data sets. In all experiments, we
performed range querieswith adefined selectivity because range queriesserveasabasic
operation for other queries such as nearest neighbor queries or partial range queries. The
query rectangles are selected randomly from the data space such that the distribution of
the queries equal s the distribution of the data set itself and the query rectangles are fully
included in the data space. Thus, in case of uniform datawe used uniformly distributed
hypercube shaped query rectangles.

216 Indexing Ultra-High-Dimensional Feature Spaces

8.6.1 Evaluation Using Synthetic Data

Our synthetic data set contains 2,000,000 uniformly distributed points in a 100-dimen-
sional dataspace. Theraw datafile occupies 800 M Bytes of disk space. The main advan-
tage of uniformly distributed point setsisthat it is possible to scale down the dimension-
aity of the point set by projecting out some of the dimensions without affecting the
semantics of the query. We created files with varying dimension and varying number of
objects by projection and selection and constructed various indexes using these raw data
files.

In our first experiment (cf. figure 121) we measured the performance behavior with
varying number of objects. We performed range queries with 0.1% selectivity in a 16-
dimensional data space and varied the database size from 500,000 to 2,000,000 objects.
Unfortunately, using our implementation, the Hilbert-R-tree could only be constructed
for amaximum of 1,000,000 objects due to the limited main memory. The file sizes of
al indexesin thisexperiment sum up to 1.1 GigaBytes. The page size in this experiment
was 4,096 Bytes, leading to an effective page capacity of 41.4 objects per page in all
index structures. Figure 121 shows the performance of query processing in terms of
number of page accesses, absorbed CPU-time and finally the total elapsed time, com-
prising CPU-time and time spent in disk 1/0. The speed-up with respect to the number of
page accesses seems to be amost constant and ranges between 9.78 and 10.91. The
speed-up in CPU-time is higher than the speed-up in page accesses, but is only slightly
increasing with growing database sizes. The reason isthat B*-treesfacilitate an efficient
in-page search for matching objects by applying bisection or interval search agorithms.
However, most important is the speed-up in total elapsed time. It starts with factor 53,
increases quickly and reaches its highest value with the largest database: The Pyramid-
Technique with 2 million objects performsrange queries 879 times faster than the corre-
sponding X-tree! Range query processing on B*-trees can be performed much more
efficient than on X-trees because large parts of the tree can be traversed efficiently by
following the side links in the data pages. Moreover, long-distance seek operations in-
ducing expensive disk head movements have alower probability due to better disk clus-
tering possibilitiesin B*-trees. The bar diagram on the right side of figure 121 summa-
rizes the highest speed-up factorsin this experiment.

In a second experiment, visualized in figure 122, we determined the influence of the

data space dimension on the performance of query processing. For this purpose we cre-
ated 5 datafiles as projections of the origina data files with the dimensionalities 8, 12,

Experimental Evauation 217

N W oW b
o o o o

CPU-Time [Sec.]
N
(6 =)

Page Accesses

o

8 12 16 20 24

Dimension Dimension

10000 T

2500.7
W
=}
=]

N
a
o

1000 -
—o—Pyramid T.

—— X-Tree
—a&— Hilbert
—>—SequScan

N

[=]

o
4

100 -

-
a
o

Max. Speed-Up over X-Tree
5
<]

Total Elapsed Time [Sec.]

A
o
L

o

8 12 16 20 24

Dimension

g 2 ¢
£
<.'_T|:
£ 3P S
#og

Figure 122: Performance Behavior over Data Space Dimension

16, 20, and 24 (the database size in this experiment is 1,000,000 objects) and created the
corresponding indexes. The total amount of disk space occupied by the index structures
used in this experiment sums up to 1.6 GigaBytes. The page sizein this experiment was
again 4,096 Bytes. The effective data page capacity depends on the dimension and
ranged from 28 to 83 objects per page. We investigated range queries with a constant
selectivity of 0.01%. For a constant selectivity, the query range varies according to the

data space dimension.

We observed that the efficiency of query processing using the X-treerapidly decreas-
eswith increasing dimension up to the point where large portions of the index are com-
pletely scanned (16-dimensional data space). From this point on, the page accesses are
growing linearly with the index size. Even worse is the performance of the Hilbert R-

218 Indexing Ultra-High-Dimensional Feature Spaces

tree. A comparable deterioration of the performance with increasing dimension is not
observable when using the Pyramid-Technique. Here, the number of page accesses, the
CPU-time and total elapsed time grow slower than the size of the data set. The percent-
age of accessed pageswith respect to a| data pagesis even reduced with growing dimen-
sions (decreasing from 7.7% in the 8-dimensional experiment to 5.1% in the 24-dimen-
sional experiment). The experiment yields aspeed-up factor over the X-treeof upto 14.1
for the number of page accesses, and 103.5 for the CPU-time. Furthermore, the Pyramid-
Technique isup to 2,500.7 times faster in terms of total elapsed time than the X-tree.

To demonstrate this observation that the percentage of pages accessed by the Pyra-
mid-Technique decreases when going to higher dimensions, we determined the percent-
age of data pages accessed during query processing when indexing very high dimen-
sions. Figure 123 depicts the result of this experiment: The percentage drops from 8.8%
in 20 dimensions to 8.0% in 100 dimensions.

8.6.2 Evaluation Using Real Data Sets

In this series of experiments, we used data sets from two different application domains,
information retrieval and data warehousing to demonstrate the practical impact of our
technique.

The first data set contains text descriptors, describing substrings from a large text
database extracted from WWW-pages. These text descriptors have been converted into
300,000 points in a 16-dimensional data space and were normalized to the unit hyper-
cube. We varied the selectivity of the range queries from 10 to 31% and measured the

10.00%
9.00%
8.00%
7.00%
6.00%

5.00% - . } . . . ; | |
20 30 40 50 60 70 80 90 100

Percentage of
Page Accesses

Dimension

Figure 123: Percentage of Accessed Pages

Experimental Evauation 219

query execution time (total elapsed time). Theresult is presented in figure 124 and con-
firms our earlier results on synthetic data that the Pyramid-Technique clearly outper-
forms the other index structures. The highest speed-up factor observed was 51. Addi-
tionally, the experiment shows that the Pyramid- Technique outperformsthe competitive

structuresfor any selectivity, i.e. for very small queriesaswell asfor very large queries.

In alast series of experiments, we analyzed the performance of the Pyramid-Tech-
nique on a data set taken from a real-life data warehouse. The relation we used has 13
attributes: 2 categorical, 5 integer, and 6 floating point attributes. There are some very
strong correlations in some of the floating point attributes, some of the attributes follow
avery skewed distribution, whereas some other attributes are rather uniformly distribut-
ed. The actual data set we used comprises a subset of 803,944 tuples containing data of
afew months. In afirst experiment, we measured the real time consumed during query
processing. Again, the Pyramid-Technique outperformed the other index structures by
orders of magnitude. As expected, the speed-up increases when going to higher dimen-
sions because the effects described in section 8.4 apply more for larger query ranges.
However, even for the smallest query range in the experiment, the speed-up factor over
the X -tree was about 10.47, whereas the speed-up for the largest query range was about
505.18 in total query execution time.

12
§ 10
'é' 8 —&— Pyramid T.
= —— X-Tree
- 6 .
g —a— Hilbert
§' 4 —*%—Seq. Scan
w
T 2
o
0
8 8 8 § =
S i o
o o
o
Selectivity

Figure 124: Query Processing on Text Data

220 Indexing Ultra-High-Dimensional Feature Spaces

o 80
9, 70
5o .
E 50 —&— Pyramid T.
'_
8 40 —— X Tree
3 30 —a— Hilbert
©
o 20 —>—Sequ. Scan
S 10
o O
= - - - - - -

o o o o S

o o] =] =

Q = (=]

o o

o

Selectivity

Figure 125: Query Processing on Warehousing Data

In a second experiment, we measured the effect of the extension of the Pyramid-
Technique proposed in section 8.5. We made the experiment on this data set because the
dataisvery skew and the median israther close to the origin of the data spacein most of
the dimensions. Figure 125 shows the effect of the extension. For all selectivities, there
was a speed-up of about 10-40%. This shows first that for very skewed data, it is worth
to reorganize the index, and second that if we refuse to do so, the loss of performanceis
not too high compared to the high speed-up factors over other index structures.

A major point of criticism isthe argument that the Pyramid-Techniqueisdesigned for
hypercube shaped range queries and might perform bad for other queries. Therefore, we
ran an additional experiment investigating the behavior of the Pyramid-Technique for
skewed queries. We generated partial range queries shrinking the data spacein k dimen-
sions and having the full extension of the data space in (d-k) dimensions. These queries
can be considered as (d-k)-dimensional hyper-dicesin ad-dimensional space. Asfigure
126 shows, the Pyramid-Technique outperforms the linear scan for all of these queries
except the 1-dimensional queries. For 1-dimensiona queries, the Pyramid-Technique
required 2.6 sec. compared to 2.48 sec. for the linear scan. However, a large improve-
ment was observed for 8-dimensional to 13-dimensional queries. The X-Tree could not
compete with the Pyramid-Technique for any of these queries.

Experimental Evauation 221

100 5

——Pyramid T.
—<Sequ.Scan
—=—X-Tree

Total Elapsed Time [Sec.]

0.1

1 3 5 7 9 1 13
#attributes specified

Figure 126: Varying the Query Mix (Warehouse Data)

Summarizing the results of our experiments, we make the following observations:

1. For nearly hypercube shaped queries, the Pyramid-Technique outperforms any
competitive technique, including the linear scan. This holds even for skewed, clus-
tered and categorical data.

2. For queries having a bad selectivity, i.e. a high number of answers or extremely
skewed queries, especially queries specifying only a small number of attributes, the
Pyramid-Technique still outperforms competitive index structures. A linear scan of
the database, however, isfaster.

222 Indexing Ultra-High-Dimensional Feature Spaces

223

Chapter 9
Conclusions

Indexing high-dimensional data spacesis an emerging domain of research. The material
presented in this thesis has matured this new area both theoretically aswell as practical-
ly. The theoretical contribution is in particular the part about cost models which isin-
tended to bring deep insightsinto the problems and effects occurring in high-dimension-
al data spaces. Practical contributions are various new index structures and optimization
techniques for high-dimensional data spaces.

9.1 Background

High-dimensional indexing ismotivated by the similarity search problemin applications
such as multimedia, CAD, medical image processing, molecular biology and time se-
quence analysis. For a similarity search, usualy a so-called feature-transformation is
applied. Thefeature approach extractsimportant propertiesfrom the objectsin the data-
base and transforms the objectsinto points of a high-dimensional vector space. Multidi-
mensional index structures are applied for the management of these feature vectors.

Unfortunately, neither standard index structures and query processing techniques, nor
the state-of-the-art in specialized index structures for high-dimensiona data spaces
yields satisfactory performance. Often the performance deteriorates when approaching
dimensions higher than 20. The aim of this thesis was to overcome this drawback.

224 Conclusions

9.2 Contributions

For this purpose, in the beginning of this thesis (chapter 3), a cost model for query
processing in high-dimensional data spaces was developed. We paid particular attention
to boundary effects which occur in high-dimensional query processing. We also consid-
ered correlation effects which are inherent to data from real applicationsin contrast to
artificial datafrom auniform and independent distribution. Our cost model isapplicable
for query processing using both, the Euclidean metric and the maximum metric. It pro-
vides accurate estimates for the number of page accesses when executing range queries
or nearest neighbor queries.

Based on this cost model, anumber of optimization techniques for high-dimensional
query processing was proposed in the rest of this thesis. We started (chapter 4) with an
optimization of the logical block size of theindex structure which isof particular impor-
tance in high-dimensional query processing. In our approach, the blocksize is adapted
dynamically and independently in all pages to consider that the optimum may change
when the database size increases.

Our next optimization technique is concerned with the dimension of the data space.
On the one hand, our motivation was to overcome the deterioration of the performance
of multidimensional index structures when moving to high-dimensional data spaces. On
the other hand, the idea was inspired from the inverted-list-approach which builds a
separate index on each attribute, merging the results of the single indexes for query
processing. This approach, however, suffers from severe performance problems, be-
cause the merging step becomestoo expensive if too many answers must be merged. The
general idea of our approach is not to use one-dimensional indexes for each of the at-
tributes but rather to decompose the vectors into sub-vectors of a moderate dimension-
ality to avoid the problems of both approaches, the high-dimensional index and thein-
verted-list-approach. The optimization task tackled in chapter 5 was therefore the
suitable assignment of attributes to indexes.

Chapter 6 was devoted to the optimization of the shapes of the page regionsin high-
dimensional index structures. Whereas low-dimensional index structures tend to opti-
mize for cube-like minimum bounding rectangles, we can derive from our cost model
that this approach is inappropriate in the high-dimensional case. For high-dimensional
query processing, an approach cutting thin slices from the data space boundary outper-
forms the classical approach of balanced splitting by large factors. We described this

Future Work 225

strategy in context of afast bulk-loading algorithm for the X-tree. Thisalgorithmisalso
novel and afurther research contribution of chapter 6.

In chapter 7, we proposed to exploit parallelism for high-dimensional query process-
ing. The central task from a database point of view is the assignment of data to different
servers. For this purpose, we developed a novel declustering method which was shown
to be optimal with respect to our problem formalization. The idea is to decompose the
data space into quadrants and to assign the quadrants to servers such that neighbors are
assigned to different servers. The problem is equivalent to a specia case of the graph
coloring problem, but fortunately can be solved efficiently.

In chapter 8, we finally presented the Pyramid-Technique, an index which is highly
adapted to processing of range queries using the maximum metric. The Pyramid-Tech-
nique maps the data points into a one-dimensiona data space. This one-dimensional
space can be indexed using conventional index structures such as the B*-tree. We gain
advantages such as an easy implementation within a commercial database system and
the availability of sophisticated concurrency and recovery control mechanisms. The
most important advantage of the Pyramid-Technique is, however, that query processing
in the above mentioned cases is not subject to the so-called ‘curse of dimensionality’.
The performance of query processing does not deteriorate when approaching higher
dimensions.

9.3 Future Work

There are three major directions on which we will focus our future research: First, we
will open new application domains to our techniques. Examples for promising applica-
tion domains include biometrical data such as face recognition, fingerprints, voice iden-
tification, etc. The new challenge in these applications is the representation of uncertain-
ty which is individual to single attributes. Few previous work exists for questions about
the impact of uncertainty on multi-step query processing architectures and efficient in-
dexing techniques.

A second direction of our future research is to integrate the refinement cost into our
cost model and in the optimization process. There is a clear trade-off between index cost
and refinement cost when performing, for instance dimension reduction or data space
quantization, because these techniques improve the efficiency of index structures, but
worsen the selectivity of the filter step. In our optimization techniques presented in the

226 Conclusions

current thesis, the relative selectivity of the filter step was consistently held fixed. A
suitable application of reduction techniques, however, seems to be crucial for efficient
query processing. Although optimal reduction isachallenging problem, few work exists
in this area. We expect to automatize an important step in the chain of optimization for
query processing.

Our third issue of future research concerns the practical applicability of high-dimen-
sional indexes and the multi-step paradigm of query processing within agiven informa-
tion infrastructure. Most current work on multidimensional index structures and query
processing in non-standard database applications is based on file system implementa-
tions and neglects issues such as data independence, concurrency and recovery. In con-
trast, most industrial companies have an information infrastructure based on a commer-
cia (relational) database management system. The major database vendors extend the
capabilities of their systems in the so-called object-relational approach trying to com-
bine the advantages of relational and object-oriented database systems. Object-relation-
a databases enabl e the application-specific implementation of index structures. In our
future research, we will tackle the problem, how to integrate new indexing techniques
into relational and object-relational database systems and, therefore, bridge one of the
largest gapsin the practical applicability of the whole research direction of multidimen-
sional query processing.

227

References

[AFS 93]

Agrawal R., Faloutsos C., Swami A.: ‘Efficient similarity search in
sequence databasesRroc. 4th Int. Conf. on Foundations of Data
Organization and Algorithms, 1993, LNCS 730, pp. 69-84

[AGGR 98] Agrawal R., Gehrke J., Gunopulos D., Raghavan P.:” Automatic Subspace

Clustering of High-Dimensional Data for Data Mining Applications’,
Proc. ACM SIGMOD Int. Conf. on Management of Data, Seattle, pp. 94-
105 ,1998.

[AGMM 90]Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. JA Basic

[ALSS 95]

[AMN 95]

[Ary 95]

[AS83]

[AS91]

[BBB+ 97]

[BBK 98]

Local Alignment Search ToolJournal of Molecular Biology, Vol. 215,
No. 3, 1990, pp. 403-410.

Agrawa R., Lin K., Shawney H., Shim K.: ‘Fast Similarity Search in the
Presence of Noise, Scaling, and Translation in Time-Series Databases’,
Proc. of the 21st Conf. on Very Large Databases, 1995, pp. 490-501.

Arya S., Mount D.M., Narayan O.Atcounting for Boundary Effects in
Nearest Neighbor Searching’, Proc. 11th Symp. on Computational
Geometry, Vancouver, Canada, pp. 336-344, 1995.

Arya S.: ‘Nearest Neighbor Searching and Applicatiori2h.D. thesis,
University of Maryland, College Park, MD, 1995.

Abel D. J., Smith J.L.: ‘A Data Structure and Algorithm Based on a Linear
Key for a Rectangle Retrieval Probler@omputer Vision 24, 1983, pp. 1-
13.

Aref W. G., Samet H.: ‘Optimization Strategies for Spatial Query
Processing’ Proc. 17th Int. Conf. on Very Large Databases (VLDB'91),
Barcelona, Catalonia, 1991, pp. 81-90.

Berchtold S., Bohm C., Braunmdller B., Keim D. A., Kriegel H.4Past
Parallel Similarity Search in Multimedia DatabasgsProc. ACM
SIGMOD Int. Conf. on Management of Data, 1997, Tucson, Arizona,
pp. 1-12, SIGMOD BEST PAPER AWARD.

Berchtold S., Bohm C., Kriegel H.-Amproving the Query Performance
of High-Dimensional Index Structures Using Bulk-Load Operatidik!.,
Int. Conf. on Extending Database Technology, Vaencia, Spain, 1998.

228

[BBK 98b]

[BBK+ 98]

[BBKK 97]

[BEK+ 98]

[Ben 75]

[Ben 79]

[Ber 97]

[BF 95]

[BGRS 98]

[Big 89]

[BJK 98]

[BK 97]

[BKK 96]

[BKK 97]

References

Berchtold S., Bohm C., Kriegel H.-PThe Pyramid-Technique: Towards
indexing beyond the Curse of DimensionaliBroc. ACM SIGMOD Int.
Conf. on Management of Data, Seattle, pp. 142-153,1998.

Berchtold S., Bohm C., Keim D., Kriegel H.-P., Xu ®ptimal
Multidimensional Query Processing Using Tree Stripisghmitted.

Berchtold S., Bohm C., Keim D., Kriegel H.-PA Cost Model For
Nearest Neighbor Search in High-Dimensional Data Space’, ACM PODS
Symposium on Principles of Database Systems, 1997, Tucson, Arizona.

Berchtold S., Ertl B., Keim D., Kriegel H.-P., Seidl TEast Nearest
Neighbor Search in High-Dimensional Spaces’, Proc. 14th Int. Conf. on
Data Engineering, Orlando, 1998.

Bentley J.L.: Multidimensional Search Trees Used for Associative
Searching’, Communications of the ACM, Vol. 18, No. 9, pp. 509-517,
1975.

Bentley J. L.: ‘Multidimensional Binary Search in Database
Applications; IEEE Trans. Software Eng. 4(5), 1979, pp. 397-409.

Berchtold S.: Geometry based search of similar parts, (in german),
Ph.D. thesis, University of Munich, 1997.

Belussi A., Faloutsos C'Estimating the Selectivity of Spatial Queries
Using the “Correlation' Fractal Dimension’Proceedings of 21th
International Conference on Very Large Data Bases, VLDB’95, Zurich,
Switzerland, 1995, pp. 299-310.

Beyer K., Goldstein J., Ramakrishnan R., Shaft‘When Is “Nearest
Neighbor” Meaningful?; submitted for publication, 1998.

Biggs N.L.:. Discrete Mathematics, Oxford Science Publications,
Clarendon Press-Oxford, 1989, pp. 172-176.

Berchtold S., Jagadish H.V., Ross Kindependence Diagrams. A
Technique for Visual Data Mining’, Proc. 4th Int. Conf. on Knowledge
Discovery and Data Mining, New York, pp. 139-143, 1998.

Berchtold S., Kriegel H.-P.:S3: Smilarity Search in CAD Database
Systems,, Proc. ACM SIGMOD Int. Conf. on Management of Data, 1997,
Tucson, Arizona, pp. 564-567.

Berchtold S., Keim D., Kriegel H.-P.The X-Tree: An Index Structure for
High-Dimensional Data’, 22nd Conf. on Very Large Databases, 1996,
Bombay, India, pp. 28-39.

Berchtold S., Keim D., Kriegel H.-P.Using Extended Feature Objects
for Partial Smilarity Retrieval’, VLDB Journal Vol. 6, No. 4, pp. 333-
348, 1997.

229

[BKSS90] Beckmann N., Kriegel H.-P, Schneider R., Seeger B.: ‘The R*-tree: An

[BO 97]

[BM 77]
[Bri 95]

[BSW 97]

[CD 97]

[Chi 94]

[Cle 79]

[Com 79]

[CPZ 97]

[DH 73]

[DS82]

[Eas 81]

[Eva94]

[Fal 85]

[Fal 88]

Efficient and Robust Access Method for Points and Rectanglex,
ACM SIGMOD Int. Conf. on Management of Data, Atlantic City, NJ,
1990, pp. 322-331.

Bozkaya T., Ozsoyoglu M., ‘Distance-Based Indexing for High-
Dimensional Metric SpacesProc. 1997 ACM SIGMOD International
Conference on Management of Data, Tucson, AZ, 1997.

Bayer R., McCreight E.M.: ‘Organization and Maintenance of Large
Ordered Indices’ActaInformatica 1(3), 1977, pp. 173-189.

Brin S., Near Neighbor Search in Large Metric SpaceRroc. 21st
VLDB Conference, 1995, pp. 574-584.

van den Bercken J., Seeger B., Widmayer P:, ‘A General Approach to
Bulk Loading Multidimensional Index Structure3rd Conf. on Very
Large Databases, 1997, Athens, Greece.

Chaudhuri S., Dayal U.: ‘Data Warehousing and OLAP for Decision
Support; Tutorial, Proc. ACM SIGMOD Int. Conf. on Management of
Data, 1997, Tucson, Arizona.

Chiueh T., Content-Based Image Indexing’, Proc. 20th VLDB
Conference, 1994, pp. 582-593.

Cleary J.G.:Analysis of an Algorithm for Finding Nearest Neighbors in
Euclidean Space’, ACM Trans. on Mathematical Software, Vol. 5, No.2,
pp. 183-192, 1979.

Comer D.:'The Ubiquitous B-tree’ ACM Computing Surveys 11(2),
1979, pp. 121-138.

CiacciaP, PatellaM., Zezula P: ‘M-tree: An Efficient Access Method for
Similarity Search in Metric Spaced?roc. 23rd Int. Conf. on Very Large
Databases (VLDB'97), Athens, Greece, 1997.

DudaR. O., Hart P. E.: ‘Pattern Classification and Scene AnalysWiley,
New York, 1973.

Du H.C., Sobolewski J.S.Disk allocation for cartesian product files on
multiple Disk systems’, ACM TODS, Journal of Transactions on Database
Systems, 1982, pp. 82-101.

Eastman C.MOptimal Bucket Size for Nearest Neighbor Searching in k-
d Trees; Information Processing Letters Vol. 12, No. 4, 1981.

Evangdlidis G.: ‘The hB-Tree: A Concurrent and Recoverable Mult-
Attribute Index StructurePh. D. thesis, Northeastern University, Boston,
MA, 1994.

Faloutsos C.: ‘Multiattribute Hashing Using Gray CodesProc. ACM
SIGMOD Int. Conf. on Management of Data, 1985, pp. 227-238.

Faloutsos C.: ‘Gray Codes for Partial Match and Range Querid€EE
Trans. on Software Engineering 14, 1988, pp. 1381-1393.

230

[FB 74]

[FB 93]

[FBF 77]

[FBFH 94]

[FG 96]

[FK 94]

[FL 95]

[FR 89]

[Fre 87]

[FRM 94]

[FSR 87]

[Fuk 90]

[Gae 95]

References

Finkel R, Bentley JL. ‘Quad Trees: A Data Structure for Retrieval of
Composite KeysActa Informatica4(1), 1974, pp. 1-9.

Faloutsos C., Bhagwat PDéclustering Using Fractals, PDIS Journal of
Parallel and Distributed Information Systems, 1993, pp. 18-25.

Friedman J. H., Bentley J. L., Finkel R. AAn‘Algorithmfor Finding Best
Matches in Logarithmic Expected Time’, ACM Transactions on
Mathematical Software, Vol. 3, No. 3, September 1977, pp. 209-226.

Faloutsos C., Barber R., Flickner M., Hafner J., et ‘EBfficient and
Effective Querying by Image Conterdvurnal of Intelligent Information
Systems, 1994, Vol. 3, pp. 231-262.

Faloutsos C., Gaede V.: ‘Analysis of n-Dimensional Quadtrees using the
Hausdorff Fractal Dimension’ Proceedings of 22th International
Conference on Very Large Data Bases VLDB'96, Mumbai (Bombay),
India, 1996, pp. 40-50.

Faloutsos C., Kamel |.Beyond Uniformity and Independence: Analysis
of R-trees Using the Concept of Fractal Dimensiétbceedings of the
Thirteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, Minneapolis, Minnesota, 1994, pp. 4-13.

Faloutsos C., Lin K.-I.: ‘FastMap: A Fast Algorithm for Indexing, Data-
Mining and Visualization of Traditional and Multimedia Datdroc.
ACM SIGMOD Int. Conf. on Management of Data, San Jose, CA, 1995,
pp. 163-174.

Faloutsos C., Roseman S.: ‘Fractals for Secondary Key RetrievaProc.
8th ACM SIGACT/SIGMOD Symp. on Principles of Database Systems,
1989, pp. 247-252.

Freeston M.: ‘The BANG file: A new kind of grid file'Proc. ACM
SIGMOD Int. Conf. on Management of Data, San Francisco, CA, 1987,
pp. 260-269.

Faloutsos C., Ranganathan M., Manolopoulos Y.: ‘Fast Subsequence
Matching in Time-Series DatabaseBfpc. ACM SIGMOD Int. Conf. on
Management of Data, 1994, pp. 419-429.

Faloutsos C., Sellis T., Roussopoulos Mnalysis of Object-Oriented
Spatial Access Methods, Proc. ACM SIGMOD Int. Conf. on
Management of Data, 1987.

Fukunaga K.:'Introduction to Statistical Pattern Recognition2nd
edition, Academic Press, 1990.

Gaede V.: ‘Optimal Redundancy in Spatial Database Systefrsc. 4th
International Symposium on Advances in Spatial Databases, SSD'95,
Portland, Maine, USA, 1995, Lecture Notes in Computer Science Vol.
951, pp. 96-116.

[Gar 82]
[GG 98]
[GL 89]
[GM 93]
[Gre 89]

[Gue 89]

[Gut 84]

[Hen 94]

[Hen 98]

[Hin 85]

[Hoa 62]
[HS 95]

[HSW 88a]

[HSW 88b]

[HSW 89]

[Jag 90]

[Jag 90b]

231

Gargantini |.: ‘An Effective Way to Represent Quadtre€dmm. of the
ACM, Vol. 25, No. 12, 1982, pp. 905-910.

Gaede V., Gunther O.:Multidimensional Access MethodsACM
Computing Surveys, Vol. 30, No. 2, 1998, pp. 170-231.

Golub G.H., van Loan C.F.: ‘Matric Computations, 2nd edition, John
Hopkins Univerity Press, Baltimore, 1989.

Gary J. E., Mehrotra R.: ‘Similar Shape Retrieval using a Structural
Feature Index’]nformation Systems, Vol. 18, No. 7, 1993, pp. 525-537.
Greene D.: ‘An Implementation and Performance Analysis of Spatial Data
Access MethodsProc. 5th |EEE Int. Conf. on Data Eng, 1989.

Glnther O.:The Design of the Cell Tree: An Object-Oriented Index
Structure for Geometric DatabasesProc. 5th Int. Conf. on Data
Engineering, Los Angeles, CA, 1989, pp. 598-605.

Guttman A.: ‘R-trees: A Dynamic Index Structure for Spatial Searching’,
Proc. ACM SIGMOD Int. Conf. on Management of Data, Boston, MA,
1984, pp. 47-57.

Henrich, A.: ‘A distance-scan algorithm for spatial access structures,
Proceedings of the 2nd ACM Workshop on Advances in Geographic
Information Systems, ACM Press, Gaithersburg, Maryland, pp. 136-143,
1994.

Henrich, A.: The LSD"-tree: An Access Structure for Feature Vectors,,
Proc. 14th Int. Conf. on Data Engineering, Orlando, 1998.

Hinrichs K.: ‘Implementation of the Grid File: Design Concepts and
Experiance, BIT 25, pp. 569-592.

C.A.R. Hoare, ‘Quicksort’, Computer Journal, Vol. 5, No. 1, 1962.

Hjaltason G. R., Samet HR&anking in Spatial Databases, Proc. 4th Int.
Symp. on Large Spatial Databases, Portland, ME, 1995, pp. 83-95.
Hutflesz A., Six H.-W., Widmayer P:Globally Order Preserving
Multidimensional Linear Hashing'Proc. 4th IEEE Int. Conf. on Data
Eng., 1988, pp. 572-579.

Hutflesz A., Six H.-W., Widmayer P.: “Twin Grid Files: Space Optimizing
Acces Scheme#$roc. ACM SIGMOD Int. Conf. on Management of Data,
1988.

Henrich A., Six H.-W., Widmayer P.The LSD-Tree: Spatial Access to
Multidimensional Point and Non-Point Objects’, Proc. 15th Conf. on Very
Large Data Bases, Amsterdam, The Netherlands, 1989, pp. 45-53, 1989.
Jagadish H. V.Linear Clustering of Objects with Multiple Attributes’,
Proc. ACM SIGMOD Int. Conf. on Management of Data, Atlantic City,

NJ, 1990, pp. 332-342.

Jagadish H. V.: ‘Spatial Search with PolyhedraRroc. 6th Int. Conf. on
Data Engineering, Los Angeles, CA, 1990, pp. 311-319.

232

[Jag 91]

[IW 96]

[Kal 86]

[Kei 97]

[KF 93]
[KF 94]

[KKS 98]

[Knu 75]

[Kor+ 96]

[KP 88]

[Kri 84]

[KS86]

[KS87]

[KS88]

[KS89]

References

Jagadish H. V.: ‘A Retrieval Technique for Similar ShapeBfpc. ACM
SIGMOD Int. Conf. on Management of Data, 1991, pp. 208-217.

Jain R, White D.A.: ‘Similarity Indexing: Algorithms and Performance’
Proc. SPIE Storage and Retrieval for Image and Video Databases 1V, Vol.
2670, San Jose, CA, 1996, pp. 62-75.

Kaos M. H., Whitlock P. A.: ‘Monte Carlo Methods'Wiley, New York,
1986.

Keim D. A.: ‘Efficient Similarity Search in Spatial Database Systems’,
habilitation thesis, Institute for Computer Science, University of Munich,
1997.

Kamel I., Faloutsos C.On Packing R-trees, CIKM, 1993, pp. 490-499.

Kamel 1., Faloutsos C.!Hilbert R-tree: An Improved R-tree using
Fractals’. Proc. 20th Int. Conf. on Very Large Databases, 1994, pp. 500-
509.

Kastenmdller G., Kriegel H.-P., Seidl TSmilarity Search in 3D Protein
Databases, Proc. German Conference on Bioinformatics (GCB 98), K&In
(Cologne), 1998.

Knuth D. E.:'The Art of Computer Programming¥/olume 3, Addison-
Wesley, Reading, MA, 1975.

Korn F, Sidiropoulos N., Faloutsos C., Siegel E., Protopapas Z.: ‘Fast
Nearest Neighbor Search in Medical Image DatabasBsdc. 22nd
VLDB Conference, Mumbai (Bombay), India, 1996, pp. 215-226.

Kim M.H., Pramanik S.: Optimal file distribution for partial match
retrieval’, Proc. ACM SIGMOD Int. Conf. on Management oftBa1988,
pp. 173-182.

Kriegel H.-P.: ‘Performance Comparison of Index Structures for Multi-
Key Retrieval’ Proc. ACM SIGMOD Int. Conf. on Management of Data,
Boston, MA, 1984, pp. 186-196.

Kriegel H.-P, Seeger B.: ‘Multidimensional Order Preserving Linear
Hashing with Partial ExtensiongProc. Int. Conf. on Database Theory, in:
Lecture Notes in Computer Science, Vol. 243, Springer, 1986.

Kriegel H.-P, Seeger B.: ‘Multidimensional Dynamic Quantile Hashing is
very Efficient for Non-Uniform Record Distribution®roc 3rd Int. Conf.
on Data Engineering, 1987, pp. 10-17.

Kriegel H.-P, Seeger B.: ‘PLOP-Hashing: A Grid File Without
Directory’, Proc. 4th Int. Conf. on Data Engineering, 1988, pp. 369-376.

Kriegel H.-P, Seeger B.: ‘Multidimensional Quantile Hashing Is Very
Efficient for Non-Uniform DistributionsInformation Sciences 48, 1989,
pp. 99-117.

[KS97]

[KS 98]

[KSS 97]

[Kuk 92]

[KW 85]

[LJF 95]

[Lum 70]

[LS89]

[LS90]

[Man 77]

MG 93]

[MG 95]

[Mor 66]

[Mul 71]

[NHS 84]

[OM 84]

233

Katayama N., Satoh S.: ‘The SR-tree: An Index Structure for High-
Dimensional Nearest Neighbor QuerigBtoc. ACM SIGMOD Int. Conf.
on Management of Data, 1997, pp. 369-380.

Kriegel H.-P., Seidl T.: Approximation-Based Similarity Search for 3-D
Surface Segments, Geolnformatica Journal, Kluwer Academic
Publishers, 1998, to appear.

Kriegel H.-P., Schmidt T., Seidl T3D Similarity Search by Shape
Approximation’,Proc. Fifth Int. Symposium on Large Spatial Databases
(SSD97), Berlin, Germany, Lecture Notes in Computer Science,
Vol. 1262, 1997, pp.11-28.

Kukich K.: ‘Techniques for Automatically Correcting Words in Text’,
ACM Computing Surveys, Vol. 24, No. 4, 1992, pp. 377-440.

Krishnamurthy R., Whang K.-YMultilevel Grid Files’, IBM Research
Center Report, Yorktown Heights, N.Y., 1985.

LinK., Jagadish H. V., Faloutsos C.: ‘The TV-Tree: An Index Structure for
High-Dimensional Data’vLDB Journal, Vol. 3, pp. 517-542, 1995.

Lum, V.Y.. ‘Multi-attribute Retrieval with Combined Indexes’
Communications of the ACM, Vol. 13, 11, November, 1970, pp. 660-665.

Lomet D., Salzberg B.: ‘The hB-tree: A Robust Multiattribute Search
Structure; Proc. 5th |EEE Int. Conf. on Data Eng., 1989, pp. 296-304.

Lomet D., Salzberg B.: ‘'The hB-tree: A Multiattribute Indexing Method
with Good Guaranteed Performan¢c&CM Trans. on Data Base Systems
15(4), 1990, pp. 625-658.

Mandelbrot B.: Fractal Geometry of Nature’, W. H. Freeman and
Company, New York, 1977.

Mehrotra R., Gary J:Feature-Based Retrieval of Similar Shapdaoc.
9th Int. Conf. on Data Engeneering, April 1993

MehrotraR., Gary J.: ‘Feature-Index-Based Sililar Shape retrievaPoc.
of the 3rd Working Conf. on Visual Database Systems, March 1995

Morton G.: ‘A Computer Oriented Geodetic Data BAse and a New
Technique in File SequencingBM Ltd., 1966.

Mullin, J.K.: ‘Retrieval-Update Speed Tradeoffs Using Combined
Indices’, Communications of the ACM, Vol. 14, 12, December, 1971,
pp. 775-776.

Nievergelt J., Hinterberger H., Sevcik K. CThe Grid File: An
Adaptable, Symmetric Multikey File Structur@CM Trans. on Database
Systems, Vol. 9, No. 1, 1984, pp. 38-71.

Orenstein J., Merret T. H.: ‘A Class of Data Structures for Associative
Searching, Proc. 3rd ACM SIGACT-SIGMOD Symp. on Principles of
Database Systems, 1984, pp. 181-190.

234 References

[Ore 82] Orenstein J. A.:Multidimensional tries used for associative searching’,
Inf. Proc. Letters, Vol. 14, No. 4, pp. 150-157, 1982.

[Ore 90] Orenstein J.,'A comparison of spatial query processing techniques for
native and parameter spacesProc. ACM SIGMOD Int. Conf. on
Management of Data, 1990, pp. 326-336.

[Oto 84] Otoo, E. J.: ‘A Mapping Function for the Directory of a Multidimensional
Extendible Hashing'Proc. 10th. Int. Conf. on Very Large Data Bases,
1984, pp. 493-506.

[Ouk 85] Ouksel M.: ‘The Interpolation Based Grid FileProc 4th ACM SIGACT/
SIGMOD Symp. on Principles of Database Systems, 1985, pp. 20-27.

[PFTV 88] Press W., Flannery B. P, Teukolsky S.A., Vetterling W. T.: ‘Numerical
Recipes in G’Cambridge University Press, 1988.

[PH 90] Patterson D. A., Hennessy JL.: ‘Computer Architecture: A Quantitative
Approach; Morgan Kaufman, 1990.

[PM 97] Papadopoulos A., Manolopoulos YPerformance of Nearest Neighbor
Queries in R-Trees, Proc. 6th Int. Conf. on Database Theory, Delphi,
Greece, in: Lecture Notes in Computer Science, Vol.11186, Springer, pp.
394-408, 1997.

[PS 85] Preparata F.P., Shamos M. l.: ‘Computational Geometry’, Chapter 5
(‘Proximity: Fundamental Algorithms’), Springer Verlag New York, 1985,
pp. 185-225.

[PSTW 93] Pagel B.-U., Six H.-W., Toben H., Widmayer‘Fowards an Analysis of
Range Query Performance in Spatial Data Structyt@siceedings of the
Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, PODS’'93, Washington, D.C., 1993, pp.214-221.

[RKV 95] Roussopoulos N., Kelley S., Vincent Rdearest Neighbor Queries’, Proc.
ACM SIGMOD Int. Conf. on Management of Data, 1995, pp. 71-79.

[Rob81] Robinson J. T.!The K-D-B-tree: A Search Structure for Large
Multidimensional Dynamic Indexe$roc. ACM SIGMOD Int. Conf. on
Management of Data, 1981, pp. 10-18.

[RP92] Ramasubramanian V., Paliwal K. K.Fdst k-Dimensional Tree
Algorithms for Nearest Neighbor Search with Application to Vector
Quantization Encoding’, IEEE Transactions on Signal Processing,
Vol. 40, No. 3, March 1992, pp. 518-531.

[Sag 94] Sagan H.:Space Filling Curves’ Springer-Verlag Berlin/Heidelberg/
New York, 1994.

[Sch 91] Schroéder M.: Fractals, Chaos, Power Laws. Minutes from an Infinite
Paradise’, W.H. Freemarand Company, New York, 1991.

[Sch 95]

[Sed 78]
[See 91]

[Sei 97]

[SH 94]

[Sie 90]

[SK 90]

[SK 97]

[SPG 91]

[Spr 91]

[SRF 87]

[SSH 86]

[Str 80]

[TC91]

[TS96]

235

Schiele O. H.: Forschung und Entwicklung im Maschinenbau auf dem

Weg in die Informationsgesellschaft’ (in German, translation by the
author), Bundesministerium fur Bildung, Wissenschaft, Forschung und
Technologie, Frankfurt am Main, Germany, 1995, http://www.iid.de/
informationen/vdmal/infoway3.html.

Sedgewick R.Quicksort’, Garland, New York, 1978.

Seeger B.Multidimensional Access Methods and their Applications’,
Tutorial, 1991.

Seidl T.: Adaptable Similarity Search in 3-D Spatial Database Systems’,
Ph.D. Thesis, Faculty for Mathematics and Computer Science, University
of Munich, 1997.

Shawney H., Hafner J.Efficient Color Histogram Indexing’, Proc. Int.
Conf. on Image Processing, 1994, pp. 66-70.

Sierra H. M.:'An Introduction do Direct Access Storage Deviges’
Academic Press, 1990.

Seeger B., Kriegel H.-P: ‘The Buddy Tree: An Efficient and Robust Access
Method for Spatial Data Base Systen®’oc. 16th Int. Conf. on Very
Large Data Bases, Brishane, Australia, 1990, pp. 590-601.

Seidl T., Kriegel H.-P: ‘Efficient User-Adaptable Similarity Search in
Large Multimedia Databases’Proc. 23rd Int. Conf. on Very Large
Databases (VLDB'97), Athens, Greece, 1997, pp. 506-515.

Silberschatz A., Peterson J., Galvin P: ‘Operating Systems Concepts’
third edition, Addison-Wesley, 1991.

Sproull R.F.: Refinements to Nearest Neighbor Searching in k-
Dimensional Trees, Algorithmica, pp. 579-589, 1991.

Sellis T., Roussopoulos N., Faloutsos The'R+-Tree: A Dynamic Index
for Multi-Dimensional Objects, Proc. 13th Int. Conf. on Very Large
Databases, Brighton, England, 1987, pp. 507-518.

Stonebreaker M., Sellis T., Hanson n Analysis of Rule Indexing
Implementations in Data Base Systenfsbc. 1st Int. Conf. on Expert
Data Base Systems, 1986.

Strang G.: ‘Linear Algebra and its Applications2nd edition, Academic
Press, 1980.

Taubin G., Cooper D. B.: ‘Recognition and Positioning of Rigid Objects
Using Algebraic Moment Invariantsh Geometric Methods in Computer
Vision, Vol. 1570, SPIE, 1991, pp. 175-186.

Yannis Theodoridis, TimosK. Sellis: ‘A Model for the Prediction of R-tree
Performance’ Proceedings of the Fifteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 3-5, 1996,
Montreal, Canada. ACM Press, 1996, ISBN 0-89791-781-2 pp. 161-171.

236

[Uhl 91]
[Ull 89]

[Wel 71]
[WJ 96]

[WSB 98]

[WW 80]

[Yia93]

[YY 85]

References

Uhlmann J. K., Satisfying General Proximity/Smilarity Queries with
Metric Trees, Information Processing Letters, Vol. 40, 1991, pp. 175-179.
Ullman J.D.: ‘Database and Knowledge-Base Systevbl. II,Compute
Science Press, Rockville, MD, 1989.

Welch T.: Bounds on the Information Retrieval Efficiency of Static File
Structures, Technical Report 88, MIT, 1971.

White D.A., Jain R.'Similarity indexing with the SS-treé”roc. 12th Int.
Conf on Data Engineering, New Orleans, LA, 1996.

Weber R., Schek H.-J., Blott S.:A‘Quantitative Analysis and
Performance Study for Smilarity-Search Methods in High-Dimensional
Spaces, Proc. Int. Conf. on Very Large Databases, New York, 1998.
Wallace T., Wintz P.:‘An Efficient Three-Dimensional Aircraft
Recognition Algorithm Using Normalized Fourier Descriptors’,
Computer Graphics and Image Processing, Vol. 13, pp. 99-126, 1980.
Yiannilos P. N., Data Structures an Algorithms for Nearest Neighbor
Search in General Metric Space&CM-SIAM Symposium on Discrete
Algorithms, 1993, pp. 311-321.

Yao A. C., Yao F. F.:A General Approach to D-Dimensional Geometric
Queries, Proc. ACM Symp. on Theory of Computing, 1985.

I ndex

A

Access probability 66, 84, 96
Activepagelist (APL)............. 33
Algebraic moment invariant 4
Algorithm. 25
Application. 1,92
Approximate nearest neighbor query. . 20
Approximation error 7,64,68, 74
B

B+tree............ ... 21,196
Balanced.................... 22, 207
Bernoulli-chain 76
Binomial theorem. 74
Boundary 4,78, 81
Boundary effect 63, 79, 98
Bucketnumber.................. 176
C

Candidate. 10, 210
Capacityooevuii... 22, 208
Centroid.........cooviiiininnn 49
Clipping 79, 82
Closest point candidate (cpc). 34
Closest point candidate list (cpcl) 39
Coded actual dataregion (cadr). 47

Color histogram 5

237

Colorimage....................... 5
Computer aided design (CAD) 2
Computer visionoovua.. 3
Concurrencyoovvvenennnn. 195
Conservative approximation. 23
Correlation 59, 63, 189
Costmodel 59, 62
Curse of dimensiondity 11,195
D

Datadistribution 59
Datanodecouuunn 21
Datapageccoviiiinn... 22
Dataspace...............coovnnn 16
Databaseccoiiiinnt. 16
Declusteringcccovvunn. 171
Delete ..o 23, 25, 196
Dependence...................... 93
Diameter 79
Dimension.coovuuinnn 59
Directneighbor.................. 178
Directory 21, 156
Directorynode 21
Directory page.o.o.vunnn 22
Discretization 84,91
Disk assignmentgraph 180
Diskdrive...................... 100

238

Disk modulo declustering 172
E

Economy 8
Effective page capacity 23,69
Effective storage utilization. 23
Euclideanmetric 17
Exact matchquery 26
Expectation 70, 71, 73, 77, 86, 87, 89, 97,

209

Exponential function............. 212
External bipartitioning. 153
F

FBFmodel 62
Featuredistance.................. 10
Feature transformation. 9
Featurevector. 10
Filterstep..............oooiitt. 10
Finite summation................. 90
Forcedsplit.oott. 46
Fourier transform................ 4,8
Fractal dimension.............. 63, 95
Fractal point density. 95
FX declustering 172
G

Gamma-function 62
Gap. . 69, 81
Geometricshape. 2
Graphcoloring.............. 172, 180
Graycode.oovvivinnnnnnn 54
GRID-Files. 15
H

hB-tree...............ccoiin... 40

Index

High-dimensional data space . 15,59, 78,

161, 175
High-dimensional index 21
Hilbertcurve..................... 54
Hilbert declustering. 172
Hilbert-R-tree 40, 163, 214
Histogram..................... 5,75
HSdgorithm. 28, 33, 60, 71
Hypercube. 66
Hypercylinder 67
Hyperrectangle 66
Hypersphere 66
|
Independence 92
Index structure 11, 39
Indirect neighbor. 178
Insert................. 23, 25,41, 196
Intermediatemodel 86
Intersectionvolume. 83, 87
K
Karhunen-Loéve-transform. 50
k-d-B-tree, 46
kd-tree....... i 46
K-nearest neighbor query 20,76
L
Levelofnode 22
Low-dimensional indexing.......... 15
Lower bounding property........ 10, 24
LSDh-tree 47
M
Manhattan metric 17
Materialization 84
Mathematical morphology 6

MAXDIST ... 30, 40, 53, 55
Maximum metric 17
Median..........coovvvinnnnnn. 212
Medical imaging 6
Mergesort.t 153
Metric. ..o 17, 60
Metricindex. 9
Middleboxt 75
MINDIST. 29, 40, 53, 55
Minimum bounding rectangle (MBR) . 40
Minkowski sum 66, 81, 96
MINMAXDIST 29, 40, 53, 56
Molecular biology 7
Montecarlo integration. 91
Multidimensiond hashing 15
Multidimensional index structure 15
Multimediadatabase 5
Multi-step query processing. 10
N

Nearest neighbor distance . 71, 78, 87, 97
Nearest neighbor query 11, 19, 28, 71, 87,

97,175

Nearest neighbor sphere. 36, 79
Near-optimal declustering 179
Non-standard database. 1
Non-uniformity 92
Number of page accesses. . 70, 77, 89, 97
Numerical evaluation.............. 74
Numerical integration 75
O

Objectdistance 9
One-dimensional embedding. 198
Oveflowcoiiint. 41

239

=]

Pageaccess...................... 86
Pageregion................ 23, 60, 69
Pagesize...............oovivinnn 22
Parallel query processing 171
Partial similarity 3
Peel ... 198
Physcalpage 100
Pivotvalue 154
Pointquery 18
Polygon.............coiiiiit 3
Polynomial 74
Positioningtime 100
Potential dataregion............... 47
Precomputation................... 83

Principal component analysis (PCA) ..94
Probability density function (pdf). . 72, 89

Probability distribution.......... 72,89
Protein..............c it 7
Pruningelement 33
Pyramidvalue................... 201
Pyramid-technique 196
Q

QBIC. ... 4,5
Quadratic formdistance 3,5,18
Quantile........................ 189
Queryanchor................. 66, 207
Query by imagecontent 4,5
Query processingiueeiiiin. 15
R

G 1= 42, 69
Rt-tree ... 40
Rangequery 11, 18, 27, 65, 80, 96
Rankingquery................. 20,38

240 Index

Real-world-applications. 92 Surface 42
Recoverycooiin. 195 Surface segment 67
Refinementstep.................. 10

Region.............oooviiiin, 23 T

Resinsert. . oo 26, 43, 51 Telescope vector (TV) 50
Reorganization. 214 Time sequence analysis. 8
RKV algorithm. 28, 60 Total similarity 3
Rotational delay time............. 100 Transfertime.................... 100
Round robin declustering. 173 Transformation 197
Rtree. ... 4069 Trapezoidl 75
S TV-tree L 50, 171
S3system. ... 3 U

Section coding ...« 3 Uniformity. 92
SECIO. e 100 Update...............onnn.. 25,196
Seektime.........coovuvvnnnnn. 101

Selectivity 10, 64, 161, 221 V

Sequential scan. 21,214 VAMSplit R-tree. 40
Sequentidlization 156 Vector space metric. 17
Smilarity ... L Vertex coloring algorithm. 181
Similarity measre. ... o Vertex coloring function. 182
SIMPSOM'S fUleo & Volume of hypersphere. 62
Singular value decomposition (SVD) . 94

Space fillingcurve. 54,68 \\/

Spatial database 64 \window query. 11, 19, 207
Speed-uUp 174, 189

Split ..o 25 X

Split-history A4 XOR ..o 178
SRree........... 52 XAree ..., 43,69, 171, 214
SSHIEE . ot 49

Storage utilization 23,42 Z

Supernode 44 Z-ordering. ... 54

241

Curriculum Vitae

Christian Bohm was born on September 28, 1968 in Rosenheim, Germany. After visiting
primary school from 1975 to 1979 he attended secondary school from 1979 to 1988.

He entered th&echnische Universitat Minch€hUM) in November 1988 for his
study in Computer Science. During this time, he worked as a self-employed software
engineer and consultant for various companies. In April 1994, he passed thefinal exam-
ination with distinction and received the diploma degree. His diploma thesis was titled
‘Management of Biological Sequence Data in an Object-Oriented Database System’ (in
German) which was supervised by Professor R. Bayer, Ph.D., chair for database and
knowledge base systems at WigM, and by Professor Dr. J. Christoph Freytag and Dr.
Frank Schonefeld at the database systems research gigstaf Equipment (DEC).

In July 1994, he entered the research group for knowledge basesFRESS
institute Bayerisches Forschungszentrum fir wissensbasierte Systéioh is super-
vised by Professor R. Bayer, Ph.D. Christian Bobhm was responsible for a nation-wide
digital library project.

In January 1996, he transferred to thedwig-Maximilians-Universitat Miinchen
(LMU) where heisworking asaresearch and teaching assi stant with Professor Dr. Hans-
Peter Kriegel, the chair of the teaching and research unit for database systems at the
Institute for Computer Science of the LMU. He received the SIGMOD Best-Paper-
Award 1997 for a joint publication with Dr. Stefan Berchtold, Bernhard Braunmdiller,
Professor Dr. Daniel Keim and Professor Dr. Hans-Peter Kriegel.

242 Curriculum Vitae

