
Efficiently Indexing
High-Dimensional Data Spaces

Dissertation im Fach Informatik

an der Fakultät für Mathematik und Informatik

der Ludwig-Maximilians-Universität München

von

Christian Böhm

Tag der Einreichung: 06.10.1998

Tag der mündlichen Prüfung: 17.12.1998

Berichterstatter:

Prof. Dr. Hans-Peter Kriegel, Ludwig-Maximilians-Universität München

Prof. Dr. Bernhard Seeger, Philipps-Universität Marburg

i

Acknowledgments

I would like to express my thanks to all people who supported me during the past years

while I have been working on this thesis. I extend my warmest thanks to my supervisor,

Professor Dr. Hans-Peter Kriegel. He took particular care to maintain a good working

atmosphere within the group and to provide a supportive and inspiring environment. I am

grateful to Professor Dr. Bernhard Seeger who was readily willing to act as the second

referee to this work. I would also like to thank Professor R. Bayer, Ph.D. for supporting

me during my employment at the FORWISS institute, Technische Universität München.

This work could not have grown and matured without the discussions with my col-

leagues. In particular I would like to thank Dr. Stefan Berchtold and Professor Dr. Daniel

Keim from whom I learned important things about scientific work. During a research

visit to AT&T, Florham Park, USA, I cooperated with Dr. H. V. Jagadish who inspired

me to a great extent. Other fruitful discussions which brought this work forward took

place with (in alphabetical order): Mihael Ankerst, Bernhard Braunmüller, Markus Bre-

unig, Dr. Martin Ester, Andreas Miethsam, Jörg Sander, Thomas Schmidt, Dr. Thomas

Seidl, and Dr. Xiaowei Xu. I thank them all. I would like to thank all my students who

supported my work: Gerald Klump, Sven Messfeld, Urs Michel, Stefan Schönauer and

Gert Unterhofer. Particular thanks go to Franz Krojer who took special care of our tech-

nical environment. This work could not have been completed without the background

help of Susanne Grienberger. Besides shouldering much of the administrative burden,

she carefully read this thesis and helped to polish the English. Last, but not least, I want

to thank my parents, my friends and my girlfriend Bianca.

Christian Böhm

Munich, September 1998.

ii Acknowledgments

iii

Abstract

Indexing high-dimensional data spaces is an emerging research domain. It gains increas-

ing importance by the need to support modern applications by powerful search tools. In

the so-called non-standard applications of database systems such as multimedia, CAD,

molecular biology, medical imaging, time series processing and many others, similarity

search in large data sets is required as a basic functionality.

A technique widely applied for similarity search is the so-called feature transforma-

tion, where important properties of the database objects are transformed into points of a

multidimensional vector space, the so-called feature vectors. Thus, similarity queries are

naturally translated into neighborhood queries in the feature space. In order to achieve a

high performance in query processing, multidimensional index structures are used to

manage the feature vectors. Unfortunately, multidimensional index structures deterio-

rate in performance when the dimension of the data space increases, because they are

primarily designed for low-dimensional data spaces and due to a bunch of effects usually

called the ‘curse of dimensionality’.

The general goal of this thesis is therefore the improvement of the efficiency of index-

based query processing in high-dimensional data spaces.

For this purpose, a cost model for index-based query processing in high-dimensional

data spaces was developed. It is applicable to a variety of index structures and query

processing techniques and can be used for the evaluation of techniques and for optimi-

zation.

Based on this cost model, a variety of improvement and optimization techniques for

multidimensional index structures was developed. The first, called DABS-tree, involves

a cost model based split algorithm supporting a dynamic and local adaptation of the

block size of the index structure. Dynamic block size adaptation is especially useful as

we can show that conventional index structures often access data in too small portions.

iv Abstract

The optimal unit of processing is not only dependent on the dimension but also on the

number of objects currently stored in the database and on the distribution from which

data and query points are taken.

A second technique for query processing based on our cost model is called tree strip-

ing. Here, the vectors are vertically decomposed into sub-vectors from data spaces of

lower dimensionality. These subspaces are indexed and queried independently. The par-

tial results of the single indexes must be merged to achieve a total result. Here, it is an

optimization task to choose appropriate dimensionalities of the subspaces.

The next technique optimizes directly the shape of bounding boxes by exploiting

a priori knowledge of the data set when bulk-load operations are applied. In this context,

a new method for bottom-up construction of indexes is developed.

A further technique is intended for high-dimensional query processing in parallel

environments. An optimal strategy for distributing points among servers in a network or

among disks connected to a single computer is presented.

The last technique presented in this thesis is called Pyramid tree. It is based on a

transformation of feature vectors and range queries into a one-dimensional space. For

range queries using maximum metric, it turned out that this technique is not affected by

the ‘curse of dimensionality’. Therefore, it can be efficiently used for indexing data

spaces of very high dimensions.

All indexing and optimization techniques in this thesis were carefully analyzed. The

practical impact was shown by exhaustive experimental evaluations yielding substantial

performance improvements over state-of-the-art indexing techniques. The material pre-

sented in this thesis has matured the new research domain of indexing high-dimensional

data spaces both theoretically as well as practically by a new cost model and various new

index structures and optimization techniques for index-based query processing.

v

Abstract (In German)

Die Indexierung hochdimensionaler Datenräume ist eine neue Forschungsrichtung, die

durch die Notwendigkeit, neue Anwendungen mit mächtigen Suchwerkzeugen auszu-

statten, zunehmend an Bedeutung gewinnt. In den sogenannten Nicht-Standard-Anwen-

dungen von Datenbanksystemen wie z.B. Multimedia, CAD, Molekularbiologie, medi-

zinische Bildverarbeitung, Analyse von Zeitreihen usw. ist die Ähnlichkeitssuche in

großen Datenmengen eine wichtige Basisfunktion.

Eine weit verbreitete Technik zur Ähnlichkeitssuche ist die sogenannte Feature-

Transformation, bei der wichtige Eigenschaften der Datenobjekte in Punkte eines mehr-

dimensionalen Vektorraums, die sogenannten Feature-Vektoren überführt werden. So

werden Ähnlichkeitsanfragen auf natürliche Weise in Nachbarschaftsanfragen im Fea-

ture-Raum übersetzt. Um eine hohe Effizienz bei der Anfragebearbeitung zu erreichen,

werden häufig multidimensionale Indexstrukturen zur Verwaltung der Feature-Vektoren

eingesetzt. Leider versagen herkömmliche multidimensionale Indexstrukturen oft bei

einer hohen Dimension des Datenraums, da sie in erster Linie für niedrigdimensionale

Räume konzipiert wurden. Verantwortlich für das Versagen der Indexstrukturen sind

eine Reihe von Effekten, die üblicherweise mit dem Begriff ‘Fluch der hohen Dimensi-

on’ (‘ Curse of Dimensionality’) belegt werden.

Das Hauptziel der vorliegenden Arbeit ist deshalb die Verbesserung der Performanz

bei der indexbasierten Anfragebearbeitung in hochdimensionalen Datenräumen. Hierzu

wurde ein Kostenmodell für die indexbasierte Anfragebearbeitung in hochdimensiona-

len Datenräumen entwickelt, das auf eine Reihe von Indexstrukturen und Techniken zur

Anfragebearbeitung anwendbar ist und sowohl zur Evaluation dieser Techniken als auch

zu deren Optimierung genutzt werden kann.

Basierend auf dem Kostenmodell wurden eine Menge von Optimierungstechniken

entwickelt. Die erste, genannt DABS-Tree beinhaltet einen kostenmodellbasierten Split-

vi Abstract (In German)

Algorithmus, der eine dynamische und lokale Adaptierung der logischen Blockgröße

der Indexstruktur gestattet. Dies ist insbesondere nützlich, da in der Arbeit gezeigt wird,

daß konventionelle Indexstrukturen häufig die Daten in zu kleinen Portionen einlesen.

Die optimale Verarbeitungseinheit ist dabei nicht nur von Schemainformationen wie

z.B. der Dimension des Datenraums abhängig sondern auch von Instanzinformationen

wie z.B. der Anzahl von Objekten, die in der Datenbank gespeichert sind.

Eine weitere Optimierungstechnik, die auf dem Kostenmodell basiert, ist das soge-

nannte Tree-Striping. Die Vektoren werden hierbei in Teilvektoren mit niedrigerer Di-

mension zerlegt. Die Teilräume werden unabhängig voneinander indexiert und bearbei-

tet. Die Zwischenergebnisse der einzelnen Indexe werden am Schluß zu einem

Endergebnis zusammengefaßt. Die Optimierungsaufgabe besteht bei dieser Technik in

einer geeigneten Auswahl der Teilräume.

Die nächste Technik optimiert direkt die Form der Seitenregionen der Indexstruktur

bei Vorliegen von a-priori-Wissen über die Datenobjekte. In diesem Zusammenhang

wurde auch eine effiziente Bottom-Up-Konstruktion für Indexe entwickelt.

Eine weitere Technik dient zur hochdimensionalen Anfragebearbeitung in einer Par-

allelrechnerumgebung. Hier wurde eine optimale Strategie zur Verteilung der Daten-

punkte auf verschiedene Knoten eines Rechnernetzes (das sogenannte Declustering)

entwickelt.

Die letzte Technik die im Rahmen dieser Arbeit präsentiert wird, ist der sogenannte

Pyramid-Tree. Für diese neuartige Indexstruktur wird gezeigt, daß sie für einen be-

stimmten Anfragetypus (Range-Queries in Verbindung mit der Maximumsmetrik) nicht

dem ‘Fluch der hohen Dimension’ unterworfen ist.

Alle neuentwickelten Indexierungstechniken wurden einer sorgfältigen theoretischen

Analyse unterzogen. Ihre Praktikabilität wurde anhand einer umfassenden experimen-

tellen Evaluation gezeigt, bei der das enorme Verbesserungspotential gegenüber bishe-

rigen Techniken nachgewiesen werden konnte. Durch unsere Beiträge zur Kostenmo-

dellierung und zahlreiche neue Indexstrukturen und Optimierungstechniken wurde das

neue Forschungsgebiet der hochdimensionalen Indexierung daher sowohl um theoreti-

sche als auch praktische Aspekte substantiell bereichert.

vii

Table of Contents

Acknowledgments . i

Abstract . iii
Abstract (In German) . v

Table of Contents . vii
List of Figures . xi

1 Introduction 1

1.1 Non-Standard Applications to Database Systems . 2
1.1.1 Retrieval of Similar Geometric Shapes . 2
1.1.2 Histogram-Based Similarity of Color Images . 5
1.1.3 Medical Imaging . 6
1.1.4 Molecular Biology . 7
1.1.5 Time Sequence Analysis . 8
1.2 Feature Transformation . 9
1.2.1 Object Distance . 9
1.2.2 Feature Distance . 10
1.2.3 Multi-Step Query Processing . 10
1.2.4 Index Structures . 11
1.3 Outline of the Thesis . 12

2 Query Processing in High-Dimensional Data Spaces 15

2.1 Basic Definitions . 16
2.1.1 Database . 16
2.1.2 Vector Space Metrics . 17
2.1.3 Query Types . 18
2.1.4 Query Evaluation without Index . 21
2.2 Common Principles of High-Dimensional Indexing Methods 21
2.2.1 Structure . 21
2.2.2 Management . 22
2.2.3 Regions . 23
2.3 Basic Algorithms . 25

viii Table of Contents

2.3.1 Insert, Delete and Update . 25

2.3.2 Exact Match Query . 26

2.3.3 Range Query . 27

2.3.4 Nearest Neighbor Query . 28

2.3.5 Ranking Query . 38

2.4 Previous Approaches to High-Dimensional Indexing 39

2.4.1 R-tree . 40

2.4.2 R*-tree . 42

2.4.3 X-tree . 43

2.4.4 k-d-B-tree . 46

2.4.5 LSDh-tree . 47

2.4.6 SS-tree . 49

2.4.7 TV-tree . 50

2.4.8 SR-tree . 52

2.4.9 Space Filling Curves . 54

2.4.10 Summary . 56

3 A Cost Model for Query Processing in High-Dimensional Data Spaces 59

3.1 Review of Related Cost Models . 62

3.2 Range Query . 65

3.2.1 The Minkowski Sum . 66

3.2.2 Estimating Rectangular Page Regions . 69

3.2.3 Expected Number of Page Accesses . 70

3.3 Nearest Neighbor Query . 71

3.3.1 Coarse Estimation of the Nearest Neighbor Distance 71

3.3.2 Exact Estimation of the Nearest Neighbor Distance 72

3.3.3 Numerical Evaluation . 74

3.3.4 K-Nearest Neighbor Query . 76

3.3.5 Expectation of the Number of Page Accesses . 77

3.4 Effects in High-Dimensional Data Spaces . 78

3.4.1 Problems specific to High-Dimensional Data Spaces 78

3.4.2 Range Query . 80

3.4.3 Nearest Neighbor Query . 87

3.5 Data Sets from Real-World-Applications . 92

3.5.1 Independent Non-Uniformity . 93

3.5.2 Correlation . 93

3.5.3 Model Dependence on the Fractal Dimension . 95

3.5.4 Range Query . 96

3.5.5 Nearest Neighbor Query . 97

3.6 Modeling the Storage System . 100

ix

4 Dynamic Optimization of the Logical Block Size 103

4.1 Motivation . 103
4.2 Basic Idea . 105
4.3 Structure of the DABS-Tree . 107
4.4 Search in the DABS-Tree . 108
4.5 Handling Insert Operations . 110
4.5.1 Searching the Data Page . 110
4.5.2 Free Storage Management . 111
4.6 Handling Delete Operations . 112
4.7 Dynamic Adaptation of the Block Size . 112
4.7.1 Split and Merge Management . 113
4.7.2 Model Based Local Cost Estimation . 113
4.7.3 Monotonicity Properties of Splitting and Merging 115
4.8 Experimental Evaluation . 116

5 Optimizing the Dimension Assignment 119

5.1 Introduction . 119
5.2 Tree Striping . 120
5.2.1 Basic Idea . 120
5.2.2 Definition of Tree Striping . 122
5.3 Analytical Model . 125
5.4 Query processing . 130
5.5 Experimental Analysis . 134

6 Optimizing the Geometry of Regions Using Bulk-Load Operations 141

6.1 Introduction . 142
6.2 Related Work . 143
6.2.1 General Idea of bulk-loading . 143
6.2.2 Hilbert R-Trees . 144
6.2.3 VAM-Split R-Trees . 144
6.2.4 Buffer Trees . 145
6.3 Our New Technique . 146
6.3.1 Basic Idea . 146
6.3.2 Determination of the Tree Topology . 148
6.3.3 The Split Strategy . 149
6.3.4 Recursive Top-Down Partitioning . 151
6.3.5 External Bipartitioning of the Data Set . 153
6.3.6 Constructing the Index Directory . 156
6.3.7 Analytical Evaluation of the Construction Algorithm 156
6.4 Improving the Query Performance . 160
6.5 Experimental Evaluation . 163

x Table of Contents

7 Optimized Declustering for Parallel Query Processing 171

7.1 Introduction . 171

7.2 Parallel Nearest-Neighbor Search . 173

7.2.1 Effects in High-Dimensional Spaces . 175

7.2.2 Declustering for Nearest-Neighbor Search . 177

7.3 Near-optimal Declustering for Nearest-Neighbor Queries 180

7.3.1 Declustering as a Graph Coloring Problem . 180

7.3.2 The Vertex Coloring Algorithm . 181

7.3.3 Extensions of our Declustering Technique . 187

7.4 Experimental Results . 190

8 Indexing Ultra-High-Dimensional Feature Spaces 195

8.1 Introduction . 195

8.2 The Pyramid-Technique . 197

8.2.1 Motivation . 197

8.2.2 Data Space Partitioning . 199

8.2.3 Index Creation . 201

8.3 Query Processing . 202

8.4 Theoretical Analysis . 206

8.4.1 Analysis of Balanced Splitting . 207

8.4.2 Analysis of the Pyramid Technique . 208

8.4.3 Comparison . 211

8.5 The Extended Pyramid-Technique . 211

8.6 Experimental Evaluation . 214

8.6.1 Evaluation Using Synthetic Data . 216

8.6.2 Evaluation Using Real Data Sets . 218

9 Conclusions 223

9.1 Background . 223

9.2 Contributions . 224

9.3 Future Work . 225

References . 227

Index . 237

Curriculum Vitae . 241

xi

List of Figures

1 Introduction
Fig. 1: Similarity Search in CAD Databases . 2
Fig. 2: Section Coding. 3
Fig. 3: Object Transformation According to Jagadish [Jag 91] 4
Fig. 4: Two similar images and the corresponding 112-D color histograms [Sei 97] . . 5
Fig. 5: Medical Imaging (MRI) [Kei 97] . 6
Fig. 6: The Opening and Closing Operation of Mathematical Morphology 6
Fig. 7: Example for Molecular Docking [Sei 97] . 7
Fig. 8: A Time Series: DAX Performance Index (Source: Frankfurt Stock Exchange) . 8
Fig. 9: Multi-Step Processing of Similarity Queries . 9

2 Query Processing in High-Dimensional Data Spaces
Fig. 10: Metrics for Data Spaces . 17
Fig. 11: Hierarchical Index Structures . 22
Fig. 12: Corresponding Page Regions of an Indexing Structure 24
Fig. 13: Algorithm for Exact Match Queries . 27
Fig. 14: Algorithm for Range Queries. 28
Fig. 15: MINDIST and MAXDIST. 29
Fig. 16: MINMAXDIST . 31
Fig. 17: The RKV Algorithm for Finding the Nearest Neighbor 32
Fig. 18: The HS Algorithm for Finding the Nearest Neighbor . 34
Fig. 19: Schedules of RKV and HS Algorithm . 38
Fig. 20: Example for the Split History . 44
Fig. 21: The kd-tree . 45
Fig. 22: The k-d-B-tree . 46
Fig. 23: The LSDh-tree . 47
Fig. 24: Region Approximation Using the LSDh-tree . 48
Fig. 25: Situation in R-tree Variants where no Overlap-Free Insert is Possible 48
Fig. 26: Situation in the SS-tree where no Overlap-Free Split is Possible 49
Fig. 27: Telescope Vectors . 51
Fig. 28: Page Regions of an SR-tree . 52

xii List of Figures

Fig. 29: Incorrect MINDIST in the SR-tree . 53
Fig. 30: Examples of Space Filling Curves. 54
Fig. 31: MINDIST Determination Using Space Filling Curves 55

3 A Cost Model for Query Processing in High-Dimensional Data Spaces
Fig. 32: Evaluation of the model of Friedman, Bentley and Finkel 63
Fig. 33: The Minkowski Sum . 65
Fig. 34: The Compensation Factor for Considering Gaps. 70
Fig. 35: Probability Density Functions . 73
Fig. 36: Probability that a Point is Near by the Data Space Boundary 78
Fig. 37: Expected Nearest Neighbor Distance with Varying Dimension 79
Fig. 38: Side Lengths of Page Regions for Ceff=30 . 80
Fig. 39: Side Lengths and Positions of Page Regions in the Modified Model 81
Fig. 40: Minkowski Sum Outside the Boundary of the Data Space 82
Fig. 41: The Modified Minkowski Sum for the Max. (l.) and Euclidean Metric (r.) . . . 82
Fig. 42: The Volume of the Intersection between Sphere and the Unit Hypercube 83
Fig. 43: The Volume of the Intersection between a Sphere and the Unit Hypercube. . . 84
Fig. 44: Various Models in High-Dimensional Data Spaces . 85
Fig. 45: Accuracy of the Models in a 16-dimensional Data Space 86
Fig. 46: The Intersection Volume for Maximum Metric and Arbitrary Center Point. . . 87
Fig. 47: The Impact of Boundary Effects on the Nearest Neighbor Distance. 88
Fig. 48: The Intersection Volume for Euclidean Metric and Arbitrary Center Point . . . 89
Fig. 49: Accuracy of the Cost Models for Nearest Neighbor Queries 92
Fig. 50: Correlations and their Problems. 94
Fig. 51: Accuracy for Data Sets from Real-World Applications 100
Fig. 52: Structure of a Disk Drive [SPG 91] . 101
Fig. 53: Access Time of Disk Drive with Varying Logical Blocksize 102

4 Dynamic Optimization of the Logical Block Size
Fig. 54: Performance of Query Processing With Varying Dimension 104
Fig. 55: Block Size Optimization . 105
Fig. 56: Structure of the DABS-Tree . 107
Fig. 57: Algorithm for Exact Match Queries . 109
Fig. 58: The Additional kd-tree. 110
Fig. 59: Optimal block size for Uniform Data . 116
Fig. 60: Performance for 4-Dimensional (left) and 16-Dimensional (right) Data 117
Fig. 61: Sequential Scan and X-tree are Outperformed . 118
Fig. 62: Query Processing Using CAD Data. 118

5 Optimizing the Dimension Assignment
Fig. 63: Improvement over Inverted Lists and Multidimensional Indexing 121
Fig. 64: Tree Striping . 121
Fig. 65: A First Query Processing Algorithm . 124

xiii

Fig. 66: Total Cost for Query Processing . 128
Fig. 67: Optimal Dimension Assignment . 129
Fig. 68: Insertion Algorithm . 131
Fig. 69: Query Processing Using Tree Striping . 132
Fig. 70: Comparison of Measured Optimum and Model Prediction 134
Fig. 71: Improvement of Tree Striping for a Varying Dimension of the Data Space . . 135
Fig. 72: Improvement of Tree Striping for an Increasing Number of Data Items 136
Fig. 73: Performance for Varying Selectivities. 137
Fig. 74: Optimal Dimension Assignment for Real Data (Text Data) 138
Fig. 75: Performance of Partial Range Queries. 138
Fig. 76: Improvement for Partial Range Queries . 139
Fig. 77: Performance of Partial Range Queries with Varying Selectivities (Text Data) 140

6 Optimizing the Geometry of Regions Using Bulk-Load Operations
Fig. 78: Space Filling Curves . 143
Fig. 79: Basic Idea of Our Technique . 147
Fig. 80: The Split Tree . 150
Fig. 81: Recursive Top-Down Data Set Partitioning . 152
Fig. 82: Adapted Quicksort . 154
Fig. 83: External Bisection . 155
Fig. 84: Improvement Factor for the Index Construction According to Lemma 7-11 . 160
Fig. 85: Examples for Balanced and Unbalanced Split Strategies in 2-d Space 162
Fig. 86: Performance of Index Construction Against Database Size and Dimension. . 164
Fig. 87: Performance of Range Queries with Varying Side Length 165
Fig. 88: Performance of Range Queries with Varying Database Size and Dimension . 165
Fig. 89: Influence of the Storage Utilization on Range Query Performance 166
Fig. 90: CPU-Time for Executing Range Queries . 167
Fig. 91: Real Time for Executing Range Queries . 167
Fig. 92: Experiments on Real Data (Text Descriptors) . 168

7 Optimized Declustering for Parallel Query Processing
Fig. 93: Nearest-Neighbor Queries in High Dimensions (X-tree) 172
Fig. 94: Speed-Up of Parallel Nearest-Neighbor Search (Round Robin) 173
Fig. 95: Improvement of Hilbert over Round Robin. 175
Fig. 96: NN-Sphere . 176
Fig. 97: Partitions Affected by the Search when Increasing the NN-sphere. 177
Fig. 98: Disk Modulo, FX and Hilbert are not Near-Optimal Declustering Techniques 179
Fig. 99: Disk Assignment Graph. 181
Fig.100: Vertex Coloring Algorithm . 182
Fig.101: Number of Colors Required by col . 187
Fig.102: Recursive Declustering. 189
Fig.103: Speed-Up of Our Technique on Uniformly Distributed Data (1 MByte) . . . 190
Fig.104: Speed-Up of Our Technique and Hilbert Declustering (Fourier Points) 191

xiv List of Figures

Fig.105: Improvement Factor over Hilbert Declustering (Fourier Points) 192
Fig.106: Scale-Up on NN Queries and 10-NN Queries (Fourier Points) 192
Fig.107: Total search time of our technique and the Hilbert curve (Text Data). 193
Fig.108: Effect of Recursive Declustering . 193

8 Indexing Ultra-High-Dimensional Feature Spaces
Fig.109: Operations on Indexes . 197
Fig.110: Partitioning Strategies . 198
Fig.111: Partitioning the Data Space into Pyramids. 199
Fig.112: Properties of Pyramids . 200
Fig.113: Height of a Point within its Pyramid . 201
Fig.114: Transformation of Range Queries . 203
Fig.115: Restriction of Query Rectangle . 205
Fig.116: Processing Range Queries (Algorithm) . 207
Fig.117: Modeling the Pyramid-Technique . 209
Fig.118: Range Queries Using the Pyramid Technique and Balanced Splitting 210
Fig.119: Effect of Clustered Data . 211
Fig.120: Transformation Functions ti . 213
Fig.121: Performance Behavior over Database Size . 215
Fig.122: Performance Behavior over Data Space Dimension 217
Fig.123: Percentage of Accessed Pages . 218
Fig.124: Query Processing on Text Data . 219
Fig.125: Query Processing on Warehousing Data . 220
Fig.126: Varying the Query Mix (Warehouse Data) . 221

9 Conclusions

Chapter 1
Introduction

Information is the master key to economic success and influence in the contemporary

society. It is generally agreed upon this proposition: “Only who can apply the newest

information for his product development, is able to survive in the global competition”

[Sch 95]. Crucial for the applicability of information is its quality and its fast availabili-

ty. What is lacking most, however, is not the access to information resources but rather

the facility to effectively and efficiently search for the required information.

If the structure of the information to be searched is simple, such as in one-dimensional

numerical attributes or character strings, the problem can be considered as solved. Data-

base management systems (DBMS) provide index structures for the management of

such data [BM 77, Com 79] which are well-understood and widely applied.

In recent years, an increasing number of applications has emerged processing large

amounts of complex, application-specific data objects [Jag 91, AFS 93, GM 93,

FBFH 94, FRM 94, ALSS 95, Kor+ 96, BK 97, Ber 97, Kei 97, Sei 97]. In application

domains such as multimedia, medical imaging, molecular biology, computer aided de-

sign, marketing and purchasing assistance, etc., a high efficiency of query processing is

crucial due to the immense and even increasing size of current databases. The search in

such databases, called non-standard databases, is seldom based on an exact match of

objects. Instead, the search is often based on some notion of similarity which is also

specific to the application.

We will start with a brief description of some of these new application domains,

showing how similarity search is applied to fulfill the user’s requirements. Then we will

2 Introduction

show a common solution to these different application domains, the so-called feature

transformation. We will motivate that specialized index structures for high-dimensional

vector spaces are needed for efficient query processing when using the feature approach.

Unfortunately, the state-of-the-art in index structures and query processing techniques

does not yield satisfactory performance. Based on this fact, we will substantiate our

general motivation for the current thesis. An outline of the techniques proposed in this

thesis will round off our introduction.

1.1 Non-Standard Applications to Database Systems

In this section, we will briefly sketch five applications to similarity search in database

systems including the search for similar geometric shapes, as required in CAD databas-

es, the search for similar color images in a multimedia database, medical imaging, the

search for similar proteins in molecular biology, and the analysis of time sequences such

as stock exchange rates, etc. Here, we do not strive for completeness, since this introduc-

tion is not actually a related work for our thesis. It should rather serve for motivation and

illustration.

1.1.1 Retrieval of Similar Geometric Shapes

An important application domain for non-standard database systems is the area of Com-

puter Aided Design (CAD). Most current CAD systems are file based systems which do

not take advantage from any database technology. Some modern CAD systems currently

use object-relational or object-oriented database technology, but only simple operations

are supported, such as object retrieval according to the key. Database systems are in this

case merely used as storage managers supporting data independence, concurrency and

recovery, but not to support the user with a powerful search tool.

Figure 1: Similarity Search in CAD Databases

3

In a recent research project, the S3-System (Similarity Search System) was developed

[Ber 97, BK 97, BKK 97]. The scope of this project was to reduce the diversity of parts

in the car industry by providing the designers with a CAD database. The idea is to avoid

the redesign of plastic clips when a similar design already exists. Cost can be saved by

the reuse of mounting tools and injection moulds. The designs in the S3-project are two-

dimensional. A further application to the search for similar geometric shapes is comput-

er vision [Jag 91, GM 93, MG 93]. In different applications, the notion of similarity is

defined differently. These definitions vary in their properties. Several similarity mea-

sures yield invariances which may be meaningful in some context, in another context

not. The following invariances are considered as important: Translation invariance, ro-

tation invariance, invariance with respect to uniform and non-uniform scaling, shearing

invariance, invariance with respect to partial object occlusion. Moreover, we can distin-

guish between partial and total similarity. When speaking about total similarity, two

objects have to be similar over all. In partial similarity, these objects have only to be

similar in some detail.

Berchtold, Keim and Kriegel [Ber 97, BK 97, BKK 97] define similarity measures

for two-dimensional polygons based on two different principles: The first, section cod-

ing, is based on volume coincidence. Starting from its center of gravity, the object is cut

into slices in a pizza-like fashion (cf. figure 2). In each slice, the ratio of the volume

intersection is determined independently. The vector of the ratios of all slices in the

Euclidean space is used for the determination of the similarity. Seidl and Kriegel [Sei 97,

KKS 98] extend the model by replacing the Euclidean metric by the more general qua-

dratic form distance. By doing so, vicinity properties of two sectors can be taken into

account which makes the model more realistic. Section coding is invariant with respect

to translation, scaling and (to a limited degree) rotation.

Figure 2: Section Coding

0.8

0.1

0.2

0.7

0.8

0.7

0.2

0.1
0.8 0.1 0.2 0.7 0.7 0.2 0.1 0.8

4 Introduction

The second similarity measure in the S3-project is based on the boundary of the poly-

gon. The line segments of the polygon are transformed into a parametric form, the cur-

vature. Then, an analytical Fourier transform is applied, and the coefficients are again

interpreted as vectors in a Euclidean space. By applying this method to the complete

object boundary, a measure for total similarity is defined. Partial similarity is defined by

decomposing the object boundary into sequences of line segments with fixed length and

applying the same technique to all sequences.

Jagadish proposes a technique for the retrieval of similar shapes in two dimensions

[Jag 91]. He derives an appropriate object description from a rectilinear cover of an

object, i.e. a cover consisting of axis-parallel rectangles (cf. figure 3). The rectangles

belonging to a single object are sorted by size, and the largest ones serve as retrieval key

for the shape of the object. Due to a normalization, invariance with respect to scaling and

translation is achieved. The technique is not rotation-invariant.

Mehrotra and Gary suggest the use of boundary features for the retrieval of shapes

[MG 93, MG 95, GM 93]. Here, a 2-D shape is represented by an ordered set of surface

points, and fixed-sized subsets of this representation are extracted as shape features. All

of these features are mapped to points in a multidimensional space. This method can

handle translation, rotation and scaling invariance as well as partially occluded objects.

The QBIC (Query By Image Content) system [FBFH 94] contains a component for

2-D shape retrieval where shapes are given as sets of points. The method is based on

algebraic moment invariants and is also applicable to 3-D objects [TC 91]. As an impor-

tant advantage, the invariance of the feature vectors with respect to rigid transformations

(translations and rotations) is inherently given. However, the adjustability of the method

to specific application domains is restricted. From the available moment invariants ap-

propriate ones have to be selected, and their weighting factors may be modified.

Figure 3: Object Transformation According to Jagadish [Jag 91]

Non-Standard Applications to Database Systems 5

1.1.2 Histogram-Based Similarity of Color Images

A natural way to search for color images in a multimedia database is based on color

distributions [SH 94]. Two color images are defined to be similar if they contain approx-

imately the same colors. This is formalized by the means of a color histogram. After

accordingly reducing and normalizing the color spectrum of the images to a manageable

number of different colors, the images are analyzed. For each color, the ratio of pixels is

determined which are correspondingly colored (cf. figure 4).

An obvious way to compare color histograms is, again, to interpret them as vectors in

Euclidean space. This approach leads to the difficulty that all pairs of different colors are

interpreted as likewise dissimilar. In human perception, however, some colors are very

similar to each other (e.g. red and orange) whereas others are very dissimilar (e.g. yellow

and blue). The so-called cross-talk between similar colors can again be taken into ac-

count if not the Euclidean distance between the histogram vectors is determined, but the

following quadratic form distance metric:

.

In this formula, the similarity matrix A contains the information which colors are similar

to each other and to what degree. Both approaches, the QBIC system [FBFH 94] and the

approach of Seidl and Kriegel [SK 97] use this definition of similarity in color images.

Figure 4: Two similar images and the corresponding 112-D color histograms [Sei 97].

0
0.1
0.2
0.3
0.4

1 14 27 40 53 66 79 92 10
5

0
0.1
0.2
0.3
0.4

1 14 27 40 53 66 79 92 10
5

δA
2

x y,() x y–() A x y–()T⋅ ⋅=

6 Introduction

1.1.3 Medical Imaging

Korn et al. propose a method for searching similar tumor shapes in a medical image

database [Kor+ 96]. For diagnostic purposes, especially the constitution of the surface of

a tumor (parameters such as smoothness, raggedness, etc.) is important. Therefore, the

similarity measure is in this method based on the theory of Mathematical Morphology, a

quantitative theory of shape which incorporates a multi-scale component. In mathemat-

ical morphology, mappings are defined in terms of a structural element, a primitive

shape such as a circle. It interacts with the input to transform it by two operations called

opening and closing. Intuitively, opening is the set of points that a brush with the form of

the structural element can reach when it is barely allowed to touch the boundary of the

shape. In contrast, closing is equivalent to opening the complement of the object (cf.

figure 6).

The similarity between two objects is defined in the following way: The objects are

subject to a sequence of openings and closings with varying size of the structural ele-

ment. For each opening (closing) in the sequence and for the original objects, the differ-

ence volume is determined. The largest observed difference volume determines the dis-

similarity of the two objects.

Figure 5: Medical Imaging (MRI) [Kei 97].

Figure 6: The Opening and Closing Operation of Mathematical Morphology.

original object structural element opening closing

Non-Standard Applications to Database Systems 7

1.1.4 Molecular Biology

As in the area of CAD, multimedia and medical image processing, similarity queries are

important in molecular biology [AGMM 90], too. Similarity queries are important since

most of the biological functions in organisms are performed by the interaction of pro-

teins. Similar functions are usually performed by molecules with a similar geometrical

structure. There are various applications that require the three-dimensional structure of

the molecular surface. The structure of molecules is provided by the Brookhaven Protein

Data Bank which contains more than 3,000 molecules.

One of the most interesting tasks in molecular biology is the prediction of molecular

interaction. Molecules interact if their surfaces have a complementary structure with

respect to their 3-dimensional geometric shape and to electromagnetic and chemical

properties. Finding molecules with a complementary structure, however, is a task close-

ly related to the similarity search problem. The basic idea is to determine the comple-

ment of the query object and then to search for database objects which are similar to the

complement of the query.

Kriegel, Schmidt and Seidl [KSS 97, KS 98] defined a similarity measure for seg-

ments of molecule surfaces which is based on fitting standard segments such as parabo-

loids to the molecular surface and determining the approximation error. The mutual

approximation error is used as measure for the (dis-)similarity.

y

x

z

φ

ψχ

Figure 7: Example for Molecular Docking [Sei 97].

8 Introduction

1.1.5 Time Sequence Analysis

The analysis of time sequences has many applications in economic and other sciences.

Questions of interest include, for example:

• Identify companies with similar growth patterns

• Determine products with similar selling patterns

• Discover stocks with similar movements in stock prices (cf. figure 8)

• Find if two musical scores are similar [AFS 93].

Agrawal et al. present a method for similarity search in a sequence database of one-

dimensional data [AFS 93]. The authors define the square root of the sum of squared

differences as the distance function between two sequences x and y:

This definition coincides with the Euclidean distance of vectors and with the energy of

the difference signal in a signal theoretic sense. The sequences are mapped onto points

of a low-dimensional feature space by using a Discrete Fourier Transform.

The technique was later generalized for subsequence matching [FRM 94], and

searching in the presence of noise, scaling, and translation [ALSS 95].

Further applications of similarity search include information retrieval [Kuk 92,

Wel 71], vector quantization [RP 92] and data mining [AGGR 98, BJK 98, CD 97].

δ x y,() xt yt–()2

0 t n<≤
∑=

6300

5333

4367

3400

A
ug

 2
9

Ja
n

30

M
ar

 1
9

M
ay

 1
1

D
ec

 0
8

O
ct

 1
7

Ju
n

30

Figure 8: A Time Series: DAX Performance Index (Source: Frankfurt Stock Exchange).

Feature Transformation 9

1.2 Feature Transformation

At a first glance, the similarity notions of the five applications introduced above seem

quite different from each other. Nevertheless, the similarity measures have some proper-

ties in common which facilitate query processing by the same paradigm in all these

applications.

1.2.1 Object Distance

The first community of the similarity measures is that they all are defined in terms of a

distance between two objects. That means, each similarity measure δ assigns a positive

value to a pair of objects saying how dissimilar they are:

δ : .

Usually, the similarity measure δ is equal to 0 if and only if the two objects are identical.

The higher δ is, the less similar are the two objects. Therefore, δ is also called the object

distance. In all applications mentioned above, δ forms a metric, because it is positive,

symmetric, and fulfills the triangle inequality. Recently, some query processing tech-

niques have been proposed which can directly handle objects in a metric space [Yia 93,

Chi 94, Uhl 91, Bri 95, BO 97, CPZ 97]. These structures, however, generally lack the

required performance and were thus not applied in any of the sample applications.

Figure 9: Multi-Step Processing of Similarity Queries.

Object TableFeature Table

Query

d-dimensional
feature vectors

d-dimensional index

O O ℜ0
+→×

10 Introduction

1.2.2 Feature Distance

To handle similarity queries efficiently, usually a so-called feature transformation is

applied. This approach extracts important properties from the objects in the database and

transforms them into vectors of a d-dimensional vector space, the so-called feature vec-

tors. Usually, the feature transformation is defined such that the distance between the

feature vectors (the feature distance) either corresponds to the object distance or is, at

least a lower bound thereof (“lower bounding property”). This way, the similarity

search is naturally translated into a range query on the feature space.

The feature transformation is usually provided by an expert in the corresponding

application domain, as it has to capture the most important and most distinguishing

properties of the objects in order to achieve a good performance in query processing. In

our example of time sequence databases, the discrete Fourier transform was used as

feature transformation. In the example of medical image databases, the volumes of the

object and its openings and closings were used as features. In molecular similarity, the

features were based on the approximation by standard surfaces such as paraboloids. In

all cases, the feature distance can be proven to be a lower bound of the object distance

which is a necessary condition for the correctness of the method.

1.2.3 Multi-Step Query Processing

If the feature distance does not directly correspond to the object distance, but is only a

lower bound, we talk about the paradigm of multi-step query processing. In a so-called

filter step, a range query is processed on the feature space. As the feature distances are

lower bounds of the actual object distances, the result of the range query is a set of

candidates. It is guaranteed that each object satisfying the range query is contained in the

candidate set (no false dismissals) but there may be candidates which are not actual

answers to the similarity query. Therefore, the candidates have to be tested in the object

space in a so-called refinement step. The paradigm yields advantages if only a few can-

didates have to be tested, i.e. if there is a good filter selectivity.

Figure 9 depicts the setting in multi-step query processing: The feature vectors are

organized in an index. A query on this filter produces a set of candidates. The set is

complete (no false dismissals), but may contain several objects which are not actual hits

to the query. Therefore, the exact object representation must be loaded to the main mem-

ory. The final test whether an object is an actual answer to the query is called refinement

step. From a database point of view, there are two main cost factors in this setting: The

Feature Transformation 11

cost for the filter step is mainly influenced by the quality of the index. The cost of

refinement is mainly influenced by the filter selectivity, i.e. the size of the candidate set.

As we assume the algorithm for the refinement step to be given by the application, we do

not consider it as a parameter for optimization, although there may be potential for im-

provement, too. The filter step, however, is identical for any application. Hence, it is

desired to support the filter step by the database management system.

This allows us to particularly focus on the following problem: Given a set N of d-

dimensional points, how can we quickly search for points that fulfill a given query con-

dition. The query condition could either be a multidimensional interval in which all

points have to be located (window query) or it could be a point and we are looking for all

points having a distance less than some value ε from this point (range query) or we are

looking for the nearest neighbor of this point (nearest neighbor query). All these query

types are useful in non-standard databases and it depends on the specific application

which one will be used. In the following, we restrict our considerations on query pro-

cessing in the feature space.

1.2.4 Index Structures

Various solutions to the problem of multidimensional search have been proposed. If the

dimension d is sufficiently small, e.g. 3, we are able to use index structures such as the

grid file [NHS 84], the hB-tree [LS 89, LS 90], the kd-tree [Ben 75, Ben 79] or the R*-

tree [BKSS 90]. However, if d is quite large, e.g. 16, these index structures do not pro-

vide an appropriate performance. The reasons for this degeneration of performance are

subsumed by the term “curse of dimensionality”. The major problem in high-dimension-

al spaces is that most of the measures one could define in a d-dimensional vector space,

such as volume, area, or perimeter are exponentially depending on the dimensionality of

the space. Thus, many techniques work only in low-dimensional spaces where we still

have an exponential dependency provided that the exponent is small enough.

To overcome these problems, a variety of specialized new index structures has been

proposed in the past years dealing with the problem of high-dimensional indexing. Ex-

amples are the TV-tree [LJF 95], the SS-tree [WJ 96], or the X-tree [BKK 96]. For a

complete overview cf. chapter 2. These structures, however, do not break the curse of

dimensionality. They rather extend the area of dimensions where efficient indexing is

possible, but still have their limitations when dimension increases to values above 20.

12 Introduction

Unfortunately, the problems leading to the curse of dimensionality are complex.

Therefore, no simple criterion exists do decide when to use which indexing method. To

achieve good results in high-dimensional indexing, careful optimization must be under-

taken. These optimizations are the most important motivation for the current thesis.

1.3 Outline of the Thesis

Chapter 2 is devoted to the related work. First, we introduce the common principles of

the well-known index structures for high-dimensional data spaces and develop a frame-

work to distinguish the previous approaches. We present the basic algorithms for query

processing and index maintenance and describe then the state-of-the-art in high-dimen-

sional indexing in a comprehensive way.

In chapter 3, we are going to introduce a cost model for query processing in high-

dimensional data spaces. We start with a basic model for range queries and nearest

neighbor queries which is applicable to query processing in low-dimensional data spaces

under uniformity and independence assumption. We extend this model in two steps:

First, we take the implications of high-dimensional query processing into account. This

is done by a careful analysis of the effects and problems of high-dimensional data spac-

es. In a second step, the unrealistic assumption of a uniform and independent distribution

of the data points is removed. For this purpose, we introduce the concept of the fractal

dimension. We present all formulas of the cost model for the two most relevant vector

metrics, the Euclidean metric (L2) and the maximum metric ().

In chapter 4, we come to a first conclusion of the cost model presented in chapter 3.

We use the cost model for the optimization of the logical block size of the index struc-

ture. As the optimum may dynamically change when new data objects are inserted in the

database, and the optimum may also vary at different positions in the data space, the

particularity of our approach is that the logical block size is adapted dynamically and

independently in all data pages.

The next technique which is presented in chapter 5, is called tree striping. It is inspired

from the so-called inverted list approach where not a single d-dimensional index is used

for query processing, but a set of d one-dimensional indexes. Although the performance

of inverted lists is very bad, it turns out that a mixture of inverted lists and multidimen-

sional indexing outperforms both query processing techniques. In our approach, the vec-

tors are decomposed into sub-vectors of a moderate dimensionality. The subspaces are

L∞

Outline of the Thesis 13

indexed and queried independently. The results of query processing have to be merged

in a separate step. The decomposition decision is based on our cost model. Therefore the

optimization task is in this chapter the right dimension assignment.

In the next chapter, we optimized the shape of the page regions under the assumption

that the complete data set is previously known. In contrast to the classical approaches for

low-dimensional indexing which tend to optimize for cube-like page regions, it can be

derived from our cost model that cube-optimization is inappropriate when indexing

high-dimensional data spaces. We can conclude that range search becomes more effi-

cient when thin pages are cut from the borders of the data space. In the context of this

chapter, a fast algorithm for the index construction from the scratch (bulk-load) was

developed. The benefit is therefore two-fold: Additionally to the performance gain for

the search operation, we present a sophisticated new algorithm for the fast index con-

struction improving the efficiency of this operation by orders of magnitude.

Although these optimization techniques accelerate the range search and the nearest

neighbor search in case of a moderate dimensionality by large factors, there still exists a

dimension boundary where efficient index-based query processing is not possible. To

overcome this problem, we propose in chapter 7 to exploit parallelism for high-dimen-

sional query processing. We present an optimal declustering method. The general idea is

to decompose the data space into quadrants and to assign the quadrants to servers such

that neighboring quadrants are assigned to different servers. The quadrants can be repre-

sented as vertices in a graph, whereas the neighborhood relationships (we consider direct

and indirect neighborhoods) are represented by the edges. Server assignment can be

considered as graph coloring. An efficient solution, however, is possible, as not general

graphs occur in our problem, but only a special type.

In chapter 8, we present an indexing technique for a special query type, range queries

on maximum metric. It can be observed that it is for this special query type not subject

to the curse of dimensionality. The ratio of page accesses is even decreasing with in-

creasing dimension. The general idea of the technique is a decomposition of the data

space in pyramid-like objects starting from the center of the data space. These pyramids

are decomposed in a second step parallel to the base area. As every point can be repre-

sented by a pair containing the pyramid number and the height inside this pyramid,

simple one-dimensional index structures can be applied for the management of the trans-

formed points. Apart from the improved performance, a further advantage of the pyra-

mid technique is that it is the easily to integrate in a relational database system.

14 Introduction

15

Chapter 2
Query Processing in
High-Dimensional Data Spaces

In this chapter, we will give an introduction about the basics of query processing in high-

dimensional data spaces. We start with a few definitions which introduce important no-

tions and formalize our problem description. Then, we will present the common princi-

ples of multidimensional index structures. There are two basic classes of multidimen-

sional access methods: Hierarchical, data organizing structures such as R-trees [Gut 84,

BKSS 90] and space organizing structures such as Multidimensional Hashing

[HSW 88a, KS 86, KS 87, Oto 84] or grid-files [NHS 84, Fre 87, Hin 85, HSW 88b,

KW 85, KS 88, Ouk 85]. For a comprehensive description of all multidimensional ac-

cess methods, primarily concentrating on low-dimensional indexing problems, cf. to the

survey of Gaede and Günther [GG 98]. We will concentrate here on the first class, the

data organizing structures, since hashing-based methods do not play an important role in

high-dimensional indexing. To our best knowledge, there exists no serious approach to

solve the high-dimensional indexing problem with a space organizing structure. Also,

we focus in this work on index structures primarily designed for secondary storage.

After introducing the common framework for multidimensional index structures, al-

gorithms for query processing are presented according to all relevant query types. We

will see that these algorithms can be expressed independently from the underlying mul-

tidimensional access method. In contrast, algorithms for the construction and mainte-

nance of the index structures in a dynamic environment are specific to the corresponding

16 Query Processing in High-Dimensional Data Spaces

index structures and therefore presented later. Two algorithms for processing nearest

neighbor queries are discussed in detail, because they are referenced later in this thesis.

In a related work section, we will give an overview over well-known index structures

for high-dimensional query processing classifying the approaches by our common

framework.

2.1 Basic Definitions

Before we are able to proceed, we need to introduce some notions and to formalize our

problem description. In this section, we will define our notion of the database and we

will develop a two-fold orthogonal classification for various neighborhood queries.

Neighborhood queries can either be classified according to the metric which is applied

to determine distances between points or according to the query type. Any combination

between metrics and query types is possible.

2.1.1 Database

We assume that in our similarity search application, objects are feature-transformed into

points of a vector space with a fixed, finite dimension d. Therefore, a database DB is a

set of points in a d-dimensional data space DS. The data space DS is a subset of .

Usually, analytical considerations are simplified if the data space is restricted to the unit

hypercube DS = [0..1]d.

Our database is completely dynamic. That means, insertions of new points and dele-

tions of points are possible and should be handled efficiently. The number of point ob-

jects currently stored in our database is abbreviated as n. We should note that the notion

of a point is ambiguous. Sometimes, we mean a point object, i.e. a point stored in the

database. In other cases, we mean a point in the data space, i.e. a position which is not

necessarily stored in DB. The most common example for the second possibility is the

query point. From the context, the intended meaning of the notion point will always be

obvious.

Definition 1: Database

A database DB is a set of n points in a d-dimensional data space DS,

ℜd

DB P0 ... Pn 1–, ,{ }=

Basic Definitions 17

.

In some applications, objects cannot be mapped into feature vectors, however, there

exists some notion of similarity between objects that can be expressed as a metric dis-

tance between objects. Thus, the objects are embedded in a metric space. These object

distances can directly be used for query evaluation. Several index structures for pure

metric spaces have been proposed [CPZ 97, Yia 93, Chi 94, Uhl 91, Bri 95, BO 97]. Our

notion of a database, however, is restricted to vector spaces with finite dimension and

therefore, we will not consider these approaches.

2.1.2 Vector Space Metrics

All neighborhood queries are based on the notion of the distance between two points P

and Q in the data space. Depending on the application to be supported, several metrics to

define the distances are applied. Most common is the Euclidean metric L2 defining the

usual Euclidean distance function :

But also other Lp metrics such as the Manhattan metric (L1, also known as city block

metric) or the maximum metric (Loo) are widely applied:

Queries using the L2 metric are (hyper-) sphere shaped. Queries using the maximum

metric or the Manhattan metric are hypercubes and rhomboids, respectively (cf. figure

Pi DS∈ i, 0..n 1–=

DS IRd⊆

δem

δem P Q,() Qi Pi–()2

i 0=

d 1–

∑2=

δcm P Q,() Qi Pi–

i 0=

d 1–

∑= δmm P Q,() max Qi Pi–{ }=

Manhattan (L1) Euclidean (L2) weighted Eucl.Maximum (Loo) weighted Max. Ellipsoid

Figure 10: Metrics for Data Spaces.

18 Query Processing in High-Dimensional Data Spaces

10). If additional weights w0,..., wd-1 are assigned to the dimensions, then we define

weighted Euclidean or weighted Maximum Metrics which correspond to axis-parallel

ellipsoids and axis-parallel hyperrectangles:

Arbitrarily rotated ellipsoids can be defined by using a positive definite similarity matrix

W. This quadratic form distance metric is used for adaptable similarity search [Sei 97]:

2.1.3 Query Types

The first classification of queries is according to the vector space metric defined on the

feature space. An orthogonal classification is based on the question whether the user

defines a region of the data space or an intended size of the result set.

Point Query

The most simple query type is the point query. It specifies a point in the data space and

retrieves all point objects in the database with identical coordinates:

A simplified version of the point query determines only the Boolean answer whether the

database contains an identical point or not.

Range Query

In a range query, a query point Q, a distance r, and a metric M are specified. The result

set comprises all points P from the database which have a distance smaller or equal to r

from Q according to metric M:

Definition 2: Range Query

For a query object Q, a query range r, a metric M and a database DB, the range query

retrieves the set

Point queries can also be considered as range queries with a radius r = 0 and an arbitrary

metric M. If M is the Euclidean metric, then the range query defines a hypersphere in the

δwem P Q,() wi Qi Pi–()2⋅
i 0=

d 1–

∑2= δwmm P Q,() max wi Qi Pi–⋅{ }=

δqfm
2

P Q,() P Q–()T
W P Q–()⋅ ⋅=

PointQuery DB Q,() P DB∈ P Q={ }=

RangeQuery DB Q r M, , ,() P DB|δM P Q,() r≤∈{ }=

Basic Definitions 19

data space from which all points in the database are retrieved. Analogously, the maxi-

mum metric defines a hypercube.

Window Query

A window query specifies a rectangular region in data space from which all points in the

database are selected. The specified hyperrectangle is always parallel to the axis (“win-

dow”). We regard the window query as a region query around the center point of the

window using a weighted maximum metric where the weights wi represent the inverse

of the side lengths of the window.

Nearest Neighbor Query

The range query and its special cases (point query and window query) have the disad-

vantage that the size of the result set is previously unknown. A user specifying the radius

r may have no idea how many results his query may produce. Therefore, it is likely that

he falls into one of two extremes: either he gets no answers at all or he gets almost all

database objects as answers. To overcome this drawback, it is common to define similar-

ity queries with a defined result set size, the nearest neighbor queries.

The classical nearest neighbor query returns exactly one point object as result which

is the object with the lowest distance to the query point among all points stored in the

database. The only exception from this one-answer rule is due to tie-effects. If several

points in the database have the same (minimal) distance, then our first definition allows

more than one answer:

Definition 3: Nearest Neighbor Query (Deterministic)

For a given query object Q and a given distance metric M, the deterministic nearest

neighbor query retrieves the set:

A common solution avoiding the exception to the one-answer rule uses non-determin-

ism. If several points in the database have a minimal distance from the query point Q, an

arbitrary point from the result set is chosen and reported as answer. We follow this ap-

proach:

NNQueryDeterm DB Q M, ,() P DB∈ P′ DB:δM P Q,() δM P′ Q,()≤∈∀{ }=

20 Query Processing in High-Dimensional Data Spaces

Definition 4: Nearest Neighbor Query

For a given query object Q and a given distance metric M, a nearest neighbor query

retrieves the set:

K-Nearest Neighbor Query

If a user does not only want one closest point as answer upon his query, but rather a

natural number k of closest points, he will perform a k-nearest neighbor query. Analo-

gously to the nearest neighbor query, the k-nearest neighbor query selects k points from

the database such that no point among the remaining points in the database is closer to

the query point than any of the selected points. Again, we have the problem of ties which

can be solved either by non-determinism or by allowing more than k answers in this

special case:

Definition 5: k-Nearest Neighbor Query

For a given query object Q and a given distance metric M, a k-nearest neighbor query

retrieves the set:

Approximate Nearest Neighbor Query

In approximate nearest neighbor queries and approximate k-nearest neighbor queries,

the user also specifies a query point and a number k of answers to be reported. In contrast

to exact nearest neighbor queries, the user is not interested exactly in the closest points,

but wants only points which are not much farther away from the query point than the

exact nearest neighbors. The degree of inexactness can be specified by an upper bound,

how much farther away the reported answers may be compared to the exact nearest

neighbors. The inexactness can be used for efficiency improvement of query processing.

Ranking Query

In a ranking query, the user specifies neither a range in the data space nor a result set size.

Even though, the ranking query is more related to nearest neighbor queries than to range

queries, because the first answer of a ranking query is always the nearest neighbor. The

user has then the possibility to ask for further answers. Upon this request, the second

nearest neighbor is reported, then the third and so on. The user decides after examining

an answer if he needs further answers or not. Ranking queries can be especially useful in

NNQuery DB Q M, ,() SOME P DB∈ P′ DB:δM P Q,() δM P′ Q,()≤∈∀{ }=

kNNQuery DB Q k M, , ,() P0…Pk 1– DB∈ P′ DB\ P0…Pk 1–{ }∈∃¬{=

i∃¬∧ 0 i k:δM Pi Q,() δM P′ Q,() }><≤,

Common Principles of High-Dimensional Indexing Methods 21

the filter step of a multi-step query processing environment. Here, the refinement step

usually takes the decision whether the filter step has to produce further answers or not.

2.1.4 Query Evaluation without Index

All query types introduced in the previous section can be evaluated by a single scan of

the database. As we assume that our database is densely stored on a contiguous block on

the secondary storage, all queries can be evaluated by a so-called sequential scan which

is faster than the access of small blocks spread over wide parts of the secondary storage.

The sequential scan works as follows: The database is read in very large blocks deter-

mined by the amount of main memory available to query processing. After reading a

block from disk, the CPU processes it and extracts the required information. After a

block is processed, the next block is read in. We do not assume parallelism between CPU

and disk I/O for any query processing technique presented in this thesis as our database

server is single-threaded.

Further, we do not assume any additional information to be stored in the database.

Therefore, the database has the following size in bytes:

The cost of query processing based on the sequential scan is proportional to the size of

the database in bytes.

2.2 Common Principles of High-Dimensional Indexing Methods

2.2.1 Structure

High-dimensional indexing methods are based on the principle of hierarchical clustering

of the data space. Structurally, they are similar to the B+-tree [BM 77, Com 79]: The data

vectors are stored in data nodes such that spatially adjacent vectors are likely to reside in

the same node. Each data vector is stored in exactly one data node, i.e. there is no object

duplication among the data nodes. The data nodes are organized in a hierarchically struc-

tured directory. Each directory node points to a set of subtrees. Usually, the structure of

the information stored in data nodes is completely different from the structure of the

directory nodes. In contrast, the directory nodes are uniformly structured among all lev-

els of the index. There is a single directory node which is called the root node. It serves

sizeof DB() d n sizeof float()⋅ ⋅=

22 Query Processing in High-Dimensional Data Spaces

as an entry point for query and update processing. The index structures are height-bal-

anced. That means, the lengths of the paths between the root and all data pages are

identical, but may change after insert or delete operations. The length of a path from the

root to a data page is called the height of the index. The length of the path from a random

node to a data page is called the level of the node. Data pages are on level zero.

2.2.2 Management

The high-dimensional access methods are designed primarily for the secondary storage.

Data pages have a data page capacity Cmax,data, defining how many data vectors can be

stored in a data page at most. Analogously, the directory page capacity Cmax,dir gives an

upper limit to the number of subnodes in each directory node. The original idea was to

choose Cmax,data and Cmax,dir such that data and directory nodes fit exactly into the pages

of the secondary storage. However, in modern operating systems, the page size of a disk

drive is considered as a hardware detail hidden from programmers and users. Even

though, consecutive reading of contiguous data on disk is by orders of magnitude less

expensive than reading at random positions. It is a good compromise to read data contig-

uously from disk in portions between a few kilobytes and a few hundred kilobytes. This

is a kind of artificial paging with a user-defined logical page size. How to choose prop-

erly this logical page size will be investigated in chapter 3 and 4. The logical page sizes

for data and directory nodes are constant for most of the index structures presented in

this chapter. The only exception are the X-tree and the DABS-tree. The X-tree defines a

basic page size and allows directory pages to extend over multiples of the basic page

size. This concept is called supernode (cf. section 2.4.3). The DABS-tree is an indexing

structure giving up the requirement of a constant blocksize. Instead, an optimal block-

size is determined individually for each page during the creation of the index. This Dy-

Data Pages

Directory Pages

Root:

Figure 11: Hierarchical Index Structures.

Common Principles of High-Dimensional Indexing Methods 23

namic Adaptation of the Block Size gives the DABS-tree which is presented in chapter

4, its name.

All index structures presented here are dynamic, i.e. they allow insert and delete

operations in O (log n) time. To cope with dynamic insertions, updates and deletes, the

index structures allow data and directory nodes to be filled under their capacity Cmax. In

most index structures the rule is applied that all nodes up to the root node must be filled

to about 40% at least. This threshold is called the minimum storage utilization sumin. For

obvious reasons, the root is generally allowed to hurt this rule.

For B-trees, it is possible to derive an average storage utilization analytically, called

the effective storage utilization sueff. In contrast, for high-dimensional index structures,

the effective storage utilization is influenced by the specific heuristics applied in insert

and delete processing. Since these indexing methods are not amenable to an analytical

derivation of the effective storage utilization, it has to be determined experimentally.

For comfort, we will denote the product of the capacity and the effective storage

utilization as the effective capacity Ceff of a page:

.

2.2.3 Regions

For efficient query processing it is important that the data are well clustered into the

pages, i.e. that data objects which are close to each other are likely to be stored in the

same data page. Assigned to each page is a so-called page region which is a subset of the

data space. The page region can be a hypersphere, a hypercube, a multidimensional

cuboid, a multidimensional cylinder or a set-theoretical combination (union, intersec-

tion) of these possibilities. For most, but not all high-dimensional index structures the

page region is a contiguous, solid and convex subset of the data space without holes. For

most index structures, regions of pages in different branches of the tree may overlap,

although overlaps lead to bad performance behavior and have to be avoided if possible

or at least minimized.

The regions of hierarchically organized pages always have to be completely con-

tained in the region of their parent node. Analogously, all data objects stored in a subtree

are always contained in the page region of the root page of the subtree. The page region

is always a conservative approximation for the data objects and the other page regions

stored in a subtree.

Ceff,data sueff,data Cmax,data⋅= Ceff,dir sueff,dir Cmax,dir⋅=

24 Query Processing in High-Dimensional Data Spaces

In query processing, the page region is used to exclude branches of the tree from

further processing. For example, in case of range queries if a page region does not inter-

sect with the query range, it is impossible that any region of a hierarchically subordered

page intersects with the query range. Neither is it possible that any data object stored in

this subtree intersects with the query range. Only pages where the corresponding page

region intersects with the query have to be investigated further. Therefore, a suitable

algorithm for range query processing can guarantee that no false drops occur.

For nearest neighbor queries a related but slightly different property of conservative

approximations is important. Here, distances to a query point have to be determined or

estimated. It is important that distances to approximations of point sets are never greater

than the distances to the regions of subordered pages and never greater than the distances

to the points stored in the corresponding subtree. This is commonly known as the lower

bounding property.

Page regions have always a representation that is an invertible mapping between the

geometry of the region and a set of values storable in the index. For example, spherical

regions can be represented as center point and radius using d + 1 floating point values if

d is the dimension of the data space. For efficient query processing, it is necessary that

the test for intersection with a query region and the distance computation to the query

point in case of nearest neighbor queries can be performed efficiently.

Both geometry and representation of the page regions must be optimized. If the ge-

ometry of the page region is suboptimal, the probability increases that the corresponding

Figure 12: Corresponding Page Regions of an Indexing Structure.

Basic Algorithms 25

page has to be accessed more frequently. If the representation of the region is unneces-

sarily large, the index itself gets larger yielding a worse efficiency in query processing as

we will see later in this chapter.

2.3 Basic Algorithms

In this section, we will present some basic algorithms on high-dimensional index struc-

tures for index construction and maintenance in a dynamic environment as well as for

query processing. Although some of the algorithms are published for a specific indexing

structure, here they are presented in a more general way.

2.3.1 Insert, Delete and Update

Insert, delete and update are the operations which are most specific to the corresponding

index structures. Even though, there are basic algorithms capturing all actions which are

common to all index structures. Inserts are generally handled as follows:

• Search a suitable data page dp for the data object do.

• Insert do into dp.

• If the number of objects stored in dp exceeds Cmax,data, then split dp into two data

pages

• Replace the old description (the representation of the region and the background

storage address) of dp in the parent node of dp by the descriptions of the new pages

• If the number of subtrees stored in the parent exceeds Cmax,dir, split the parent and

proceed similarly with the parent. It is possible that all pages on the path from dp to

the root have to be split.

• If the root node has to be split, let the height of the tree grow by one. In this case, a

new root node is created pointing to two subtrees resulting from the split of the

original root.

Individual heuristics for the specific indexing structure are applied to handle the follow-

ing subtasks:

• The search for a suitable data page (commonly called the PickBranch procedure).

Due to the overlap between regions and as the data space is not necessarily com-

26 Query Processing in High-Dimensional Data Spaces

pletely covered by page regions, there are generally multiple alternatives for the

choice of a data page in most multidimensional index structures.

• The choice of the split, i.e. which of the data objects/subtrees are aggregated into

which of the newly created nodes.

Some index structures try to avoid splits by a concept named forced re-insert. Some data

objects are deleted from a node having an overflow condition and reinserted into the

index. The details are presented later in this chapter.

The choice of heuristics for insert processing may affect the effective storage utiliza-

tion. For example, if a volume-minimizing algorithm allows unbalanced splitting in a

30:70 proportion, then the storage utilization of the index is decreased and the search

performance is negatively affected. On the other hand, the presence of forced reinsert

operations increases the storage utilization and the search performance.

Until now, few have been done to handle deletions from multidimensional index

structures. Underflow conditions can generally be handled by three different actions:

• Balancing pages by moving objects from one page to another

• Merging pages

• Deleting the page and reinserting all objects into the index.

For most index structures it is a difficult task to find a suitable mate node for balancing

or merging actions. The only exceptions are the LSDh-tree [Hen 98] and the Space Fill-

ing Curves [Mor 66, FB 74, AS 83, OM 84, Fal 85, Fal 88, FR 89, Jag 90] (cf. section

2.4.5 and section 2.4.9). All other authors either suggest reinserting or do not provide a

deletion algorithm at all. An alternative approach might be to permit underfilled pages

and to maintain them until they are completely empty. The presence of delete operations

and the choice of underflow treatment can affect sueff,data and sueff,dir positively as well

as negatively.

An update-operation is viewed as a sequence of a delete-operation followed by an

insert-operation. No special procedure has been suggested, yet.

2.3.2 Exact Match Query

Exact match queries are defined as follows: Given a query point q, determine whether q

is contained in the database or not. Query processing starts with the root node which is

loaded into the main memory. For all regions containing point q the function Exact-

MatchQuery is called recursively. Since an overlap between page regions is allowed in

Basic Algorithms 27

most index structures presented in this chapter, it is possible that several branches of the

indexing structure have to be examined for processing an exact match query. The result

of ExactMatchQuery is true if any of the recursive calls returns true. For data pages, the

result is true if one of the points stored on the data page fits. If no point fits, the result is

false. Figure 13 contains the pseudocode for processing exact match queries.

2.3.3 Range Query

The algorithm for range query processing returns a set of points contained in the query

range as result to the calling function. The size of the result set is previously unknown

and may reach the size of the entire database. The algorithm is formulated independently

from the applied metric. Any Lp metric including metrics with weighted dimensions

(ellipsoid queries, [Sei 97, SK 97]) can be applied if there exists an effective and effi-

cient test for the predicates IsPointInRange and RangeIntersectRegion. Also partial

range queries, i.e. range queries where only a subset of the attributes is specified, can be

considered as regular range queries with weights (the unspecified attributes are weighted

with zero). Also window queries can be transformed into range-queries by using a

weighted Lmax metric.

bool ExactMatchQuery (Point q, PageAdr pa) {
int i ;
Page p = LoadPage (pa) ;
if (IsDatapage (p))

for (i = 0 ; i < p.num_objects ; i ++)
if (q == p.object [i])

return true ;
if (IsDirectoryPage (p))

for (i = 0 ; i < p.num_objects ; i ++)
if (IsPointInRegion (q, p.region[i]))

if (ExactMatchQuery (q, p.sonpage[i]))
return true ;

return false ;
}

Figure 13: Algorithm for Exact Match Queries.

28 Query Processing in High-Dimensional Data Spaces

The algorithm presented in figure 14 performs a recursive self-call for all child-pages

whose corresponding page regions intersect with the query. The union of the results of

all recursive calls is built and passed to the caller.

2.3.4 Nearest Neighbor Query

There are two different approaches to process nearest neighbor queries on multidimen-

sional index structures. One was published by Roussopoulos, Kelley and Vincent

[RKV 95] and is in the following called RKV algorithm. The other algorithm (‘HS algo-

rithm’), was published by Hjaltason and Samet [HS 95]. Due to their importance for our

further work, these algorithms are presented in detail and their strengths and weaknesses

are discussed.

We start with the description of the RKV algorithm because it is more similar to the

algorithm for range query processing in the sense that a depth-first traversal through the

index is performed. RKV is an algorithm of the type “branch and bound”. In contrast, the

HS algorithm loads pages from different branches and different levels of the index in an

order induced by the proximity to the query point.

Unlike range query processing, there is no fixed criterion, known a priori, to exclude

branches of the indexing structure from processing in nearest neighbor algorithms. Ac-

tually, the criterion is the nearest neighbor distance but the nearest neighbor distance is

not known until the algorithm has terminated. To cut branches, nearest neighbor algo-

PointSet RangeQuery (Point q, float r, Metric m, PageAdr pa) {
int i ;
PointSet result = EmptyPointSet ;
Page p = LoadPage (pa) ;
if (IsDatapage (p))

for (i = 0 ; i < p.num_objects ; i ++)
if (IsPointInRange (q, p.object [i], r, m)

AddToPointSet (result, p.object [i]) ;
if (IsDirectoryPage (p))

for (i = 0 ; i < p.num_objects ; i ++)
if (RangeIntersectRegion (q, p.region[i]), r, m))

PointSetUnion (result, RangeQuery(q, r, m, p.childpage[i])) ;
return result ;

}

Figure 14: Algorithm for Range Queries.

Basic Algorithms 29

rithms have to use pessimistic (conservative) estimations of the nearest neighbor dis-

tance which will change during the run of the algorithm and will approach the nearest

neighbor distance. A suitable pessimistic estimation of the nearest neighbor distance is

the closest point among all points visited at the current state of execution (the so-called

closest point candidate cpc). If no point has been visited yet, it is also possible to derive

pessimistic estimations from the page regions visited so far.

The RKV Algorithm

The authors of the RKV algorithm define two important distance functions, MINDIST

and MINMAXDIST. MINDIST is the actual distance between the query point and a

page region in the geometrical sense, i.e. the nearest possible distance of any point inside

the region to the query point. The definition in the original proposal [RKV 95] is limited

to R-tree like structures where regions are provided as multidimensional intervals I (i.e.,

minimum bounding rectangles, MBR) with

.

Then, MINDIST is defined as follows:

Definition 6: MINDIST

The distance of a point q to region I, denoted as MINDIST (q, I) is:

I lb0 ub0,[] ... lbd 1– ubd 1–,[]××=

MIN
DIST

MINDIST MINDIST

M
IN

D
IS

T
 =

 0

MAXDISTMAXDIS
T

M
A

X
D

IS
T

MAXDIST

q q

Figure 15: MINDIST and MAXDIST.

pr1

pr4

pr2

pr3

pr1

pr4

pr2

pr3

MINDIST2
q I,()

lbi qi– if qi lbi<
0 otherwise

qi ubi– if ubi qi<

 2

i 0=

d 1–

∑=

30 Query Processing in High-Dimensional Data Spaces

An example of MINDIST is presented on the left side of figure 15. In page regions pr1

and pr3, the edges of the rectangles define the MINDIST. In page region pr4 the corner

defines MINDIST. As the query point lies in pr2, the corresponding MINDIST is 0. A

similar definition can also be provided for differently shaped page regions, such as

spheres (subtract the radius from the distance between center and q) or combinations. A

similar definition can be given for L1 and Lmax metric, respectively. For a pessimistic

estimation, some specific knowledge about the underlying indexing structure is re-

quired. One assumption which is true for all known index structures is that every page

must contain at least one point. Therefore, we could define the following MAXDIST

function determining the distance to the farthest possible point inside a region:

MAXDIST is not defined in the original paper as it is not needed in R-tree like struc-

tures. An example is shown on the right side of figure 15. Being the greatest possible

distance from the query point to a point in a page region, the MAXDIST is not equal to

0 even if the query point is located inside the page region pr2.

In R-trees, the page regions are minimum bounding rectangles (MBR), i.e. rectangu-

lar regions where each surface hyperplane contains one data point at least. The following

MINMAXDIST function provides a better (i.e. lower) but still conservative estimation

of the nearest neighbor distance:

,

where:

 and .

The general idea is that every surface hyperarea must contain a point. The farthest point

on every surface is determined and among those the minimum is taken. For each pair of

opposite surfaces, only the nearer surface can contain the minimum. Thus, it is guaran-

MAXDIST2
q I,()

lbi qi– if lbi qi– qi ubi–>
qi ubi– otherwise

 2

i 0=

d 1–

∑=

MINMAXDIST
2

q I,() min
0 k d<≤

qk rmk–
2

qi rMi–
2

i k≠
0 i d<≤

∑+()=

rmk
lbk if qk

lbk ubk+

2
----------------------≤

ubk otherwise

= rMi
lbi if qi

lbi ubi+

2
--------------------≥

ubi otherwise

=

Basic Algorithms 31

teed that a data object can be found in the region having a distance less than or equal to

MINMAXDIST (q, I). MINMAXDIST (q, I) is the smallest distance providing this

guarantee. The example on figure 16 shows on the left side the considered edges. Among

each pair of opposite edges of an MBR, only the edge closer to the query point is consid-

ered. The point yielding the maximum distance on each considered edge is marked with

a circle. The minimum among all marked points of each page region defines the MIN-

MAXDIST as shown on the right side of figure 16.

This pessimistic estimation cannot be used for spherical or combined regions because

no property similar to the MBR property is fulfilled. In this case, MAXDIST (q, I) which

is an estimation worse than MINMAXDIST has to be used. All definitions presented

with the L2-metric in the original paper [RKV 95] can easily be adapted to L1 or Lmax

metrics as well as to weighted metrics.

The algorithm presented in figure 17 performs accesses to the pages of an index in a

depth-first order (“branch and bound”). A branch of the index is always completely

processed before the next branch starts. Before child nodes are loaded and recursively

processed, they are heuristically sorted according to their probability of containing the

nearest neighbor. For the sorting order, the optimistic or pessimistic estimation or a

combination thereof may be chosen. The quality of sorting is critical for the efficiency

of the algorithm because for different sequences of processing the estimation of the

nearest neighbor distance may approach more or less fast to the actual nearest neighbor

distance. The paper [RKV 95] reports advantages for the optimistic estimation. The list

of child nodes is pruned whenever the pessimistic estimation of the nearest neighbor

distance changes. Pruning means to discard all child nodes having a MINDIST larger

than the pessimistic estimation of the nearest neighbor distance. It is guaranteed that

q q

Figure 16: MINMAXDIST.

MINMAXDIST

MINMAXDIST

M
INM

AXDIST

M
IN

M
A

X
D

IS
T

32 Query Processing in High-Dimensional Data Spaces

these pages do not contain the nearest neighbor because even the closest point in these

pages is farther away than an already found point (lower bounding property). The pessi-

mistic estimation is the lowest among all distances to points processed so far and all

results of the MINMAXDIST (q, I) function for all page regions processed so far.

To extend the algorithm to k-nearest neighbor processing is a difficult task. Unfortu-

nately, the authors make it easy by discarding the MINMAXDIST from path pruning,

sacrificing the performance gains obtainable from the MINMAXDIST path pruning.

The k-th lowest among all distances to points found so far must be used. Additionally

required is a buffer for k points (the k closest point candidate list, cpcl) which allows an

efficient deletion of the point with the highest distance and an efficient insertion of a

random point. A suitable data structure for the closest point candidate list is a priority

queue (also known as semi-sorted heap [Knu 75]).

float pruning_dist/* The current distance for pruning branches*/
= INFINITE;/* Initialization before the start of RKV_algorithm */

Point cpc ; /* The closest point candidate. This variable will contain
the nearest neighbor after RKV_algorithm has completed*/

void RKV_algorithm (Point q, Metric m, PageAdr pa) {
int i ; float h ;
Page p = LoadPage (pa) ;
if (IsDatapage (p))

for (i = 0 ; i < p.num_objects ; i ++) {
h = PointToPointDist (q, p.object [i], m) ;
if (pruning_dist >= h) {

pruning_dist = h ;
cpc = p.object [i] ;

} }
if (IsDirectoryPage (p)) {

sort (p, CRITERION) ; /* CRITERION is MINDIST or MINMAXDIST */
for (i = 0 ; i < p.num_objects ; i ++) {

if (MINDIST (q, p.region[i]), m) <= pruning_dist)
RKV_algorithm (q, m, p.childpage[i]) ;

h = MINMAXDIST (q, p.region[i]), m) ;
if (pruning_dist >= h)

pruning_dist = h ;
} } }

Figure 17: The RKV Algorithm for Finding the Nearest Neighbor.

Basic Algorithms 33

Considering the MINMAXDIST imposes some difficulties, since the algorithm has

to assure that k points are closer to the query than a given region is. For each region, we

know that at least one point must have a distance less than or equal to MINMAXDIST.

If the k-nearest neighbor algorithm would prune a branch according to MINMAXDIST,

it would assume that k points must be positioned on the nearest surface hyperplane of the

page region. The MBR property only guarantees one such point. We further know that m

points must have a distance less than or equal to MAXDIST where m is the number of

points stored in the corresponding subtree. The number m could be, for example, stored

in the directory nodes or could be estimated pessimistically by assuming minimal stor-

age utilization if the indexing structure provides storage utilization guarantees. A suit-

able extension of the RKV algorithm could use a semi-sorted heap with k entries. Each

entry is either a cpc or a MAXDIST estimation or a MINMAXDIST estimation. The

heap entry with the greatest distance to the query point q is used for branch pruning. It is

called the pruning element. Whenever new points or estimations are encountered, they

are inserted into the heap if they are closer to the query point than the pruning element.

Whenever a new page is processed, all estimations based on the according page region

have to be deleted from the heap. They are replaced by the estimations based on the

regions of the child pages (or the contained points if it is a data page). This additional

deletion implies additional complexities because a priority queue does not efficiently

support the deletion of elements other than the pruning element. All these difficulties are

neglected in the original paper [RKV 95].

The HS Algorithm

The problems arising from the need to estimate the nearest neighbor distance are

elegantly avoided in the HS algorithm [HS 95]. The HS algorithm does not access the

pages in an order induced by the hierarchy of the indexing structure such as depth-first

or breadth-first. Rather, all pages of the index are accessed in the order of increasing

distance to the query point. The algorithm is allowed to jump between branches and

levels for processing pages.

The algorithm manages an active page list (APL). A page is called active if its parent

has been processed but not the page itself. Since the parent of an active page has been

loaded, the corresponding region of all active pages is known and the distance between

region and query point can be determined. The APL stores the background storage ad-

dress of the page as well as the distance to the query point. The representation of the page

34 Query Processing in High-Dimensional Data Spaces

region is not needed in the APL. A processing step of the HS algorithm comprises the

following actions:

• Select the page p with the lowest distance to the query point from the APL.

• Load p into the main memory.

• Delete p from the APL.

• If p is a data page: Determine whether one of the points contained in this page is

closer to the query point than the closest point found so far (called the closest point

candidate cpc).

• Otherwise: Determine the distances to the query point for the regions of all child

pages of p and insert all child pages and the corresponding distances into APL.

The processing step is repeated until the closest point candidate is closer to the query

point than the nearest active page. In this case, no active page is able to contain a point

closer to q than cpc due to the lower bounding property. Likewise, no subtree of any

active page may contain such a point. As all other pages have already been looked upon,

processing can stop. Again, the priority queue is the suitable data structure for APL.

For k-nearest neighbor processing, a second priority queue with fixed length k is

required for the closest point candidate list.

Discussion

Now, we compare the two algorithms in terms of their space and time complexity. In the

context of space complexity, we regard the available main memory as the most impor-

p312

p311

p31p32

p33

p3

p12

p111

p13
p112

p11

p2

p1

q

p3
p31
p1
p11
p311
p312
p33
p111

p112

p2

p32
p13
p12

APL:

Figure 18: The HS Algorithm for Finding the Nearest Neighbor.

Basic Algorithms 35

tant system limitation. We assume that the stack for recursion management and all prior-

ity queues are held in the main memory although one could also provide an implemen-

tation of the priority queue data structure suitable for secondary storage usage.

Lemma 1: Worst case space complexity of the RKV algorithm

The RKV algorithm has a worst case space complexity O (log n).

Proof (Lemma 1)

The only source of dynamic memory assignment in the RKV algorithm are the recur-

sive calls of the function RKV_algorithm. The recursion depth is at most equal to the

height of the indexing structure. The height of all high-dimensional index structures

presented in this chapter is of the complexity O (log n). Since a constant amount of

memory (one data or directory page) is allocated in each call, the claim of Lemma 1

follows.

❏

As the RKV algorithm performs a depth-first pass through the index structure, and no

additional dynamic memory is required, the space complexity is O (log n). Lemma 1 is

also valid for the k-nearest neighbor search if the additional space requirement for the

closest point candidate list with a space complexity of O (k) is allowed for.

Lemma 2: Worst case space complexity of the HS algorithm

The HS algorithm has a space complexity of O (n) in the worst case.

Proof (Lemma 2)

The following scenario describes the worst case: Query processing starts with the root

in APL. The root is replaced by its child nodes which are on the level h - 1 if h is the

height of the index. All nodes on level h - 1 are replaced by their child-nodes, and so

on, until all data nodes are in the APL. At this state, it is possible that no data page is

excluded from the APL because no data point was encountered yet. The situation

described above occurs, for example, if all data objects are located on a sphere around

the query point. Thus, all data pages are in the APL and the APL is maximal because

the APL grows only by replacing a page by its descendants. If all data pages are in the

APL, it has a length of O (n).

❏

36 Query Processing in High-Dimensional Data Spaces

In spite of the order O (n), the size of the APL is only a very small fraction of the size of

the data set because the APL contains only the page address and the distance between

page region and query point q. If the size of the data set in bytes is DSS, then we have a

number of DP data pages with

.

Then, the size of the APL is f times the data set size:

,

where a typical factor for a page size of 4 KBytes is f = 0.3 %, even shrinking with a

growing data page size. Thus, it should be no practical problem to hold 0.3 % of a

database in the main memory, although theoretically unattractive.

The complexity of the algorithm in terms of time is difficult to determine. We will

develop the required methods in chapter 3. Comparing the two algorithms, we will prove

optimality of the HS algorithm in the sense that it accesses as few pages as theoretically

possible for a given index. We will further show that the RKV algorithm does not gener-

ally reach this optimum.

Lemma 3: Page regions intersecting the nearest neighbor sphere

Let nndist be the distance between the query point and its nearest neighbor. All pages

that intersect a sphere around the query point having a radius equal to nndist (the so-

called nearest neighbor sphere) must be accessed for query processing. This condi-

tion is necessary and sufficient.

Proof (Lemma 3)

(1) Sufficiency: If all data pages intersecting the nn-sphere are accessed, then all

points in the database with a distance less than or equal to nndist are known to the

query processor. No closer point than the nearest known point can exist in the data-

base.

(2) Necessity: If a page region intersects with the nearest neighbor sphere but is not

accessed during query processing, the corresponding subtree could include a point

DP
DSS

sueff,data sizeof DataPage()⋅
--=

sizeof APL() f DSS⋅ sizeof float() sizeof address()+
sueff,data sizeof DataPage()⋅

-- DSS⋅= =

Basic Algorithms 37

that is closer to the query point than the nearest neighbor candidate. Therefore, ac-

cessing all intersecting pages is necessary.

❏

Lemma 4: Schedule of the HS algorithm.

The HS algorithm accesses pages in the order of increasing distance to the query

point.

Proof (Lemma 4)

Due to the lower bounding property of page regions, the distance between the query

point and a page region is always greater or equal to the distance of the query point

and the region of the parent of the page. Therefore, the minimum distance between the

query point and any page in the APL can only be increased or remain unchanged;

never be decreased by the processing step of loading a page and replacing the corre-

sponding APL entry. Since always the active page with minimum distance is access-

ed, the pages are accessed in the order of increasing distances to the query point.

❏

Lemma 5: Optimality of HS algorithm.

The HS algorithm is optimal in terms of the number of page accesses.

Proof (Lemma 5)

According to Lemma 4, the HS algorithm accesses pages in the order of increasing

distance to the query point q. Let m be the lowest MINDIST in the APL. Processing

stops if the distance of q to the cpc is less than m. Due to the lower bounding property,

processing of any page in the APL cannot encounter any points with a distance to q

less than m. The distance between the cpc and q cannot fall below m during process-

ing. Therefore, exactly the pages with a MINDIST less or equal to the nearest neigh-

bor distance are processed by the HS algorithm. According to Lemma 3, these pages

must be loaded by any correct nearest neighbor algorithm. Thus, the HS algorithm

yields an optimal number of page accesses.

❏

Now, we will demonstrate by an example that the RKV algorithm does not always yield

an optimal number of page accesses. The main reason is that once a branch of the index

has been selected, it has to be completely processed before a new branch can start. In the

38 Query Processing in High-Dimensional Data Spaces

example of figure 19, both algorithms choose pr1 to load first. Some important MIND-

ISTs and MINMAXDISTs are marked in the figure with solid and dotted arrows, respec-

tively. While the HS algorithm loads pr2 and pr21, the RKV algorithm has first to load

pr11 and pr12, because no MINMAXDIST estimate can prune the according branches. If

pr11 and pr12 are not data pages, but represent further subtrees with larger heights, many

of the pages in the subtrees will have to be accessed.

We have to summarize that the HS algorithm for nearest neighbor search is superior

to the RKV algorithm when counting the page accesses. On the other side, it has the

disadvantage of dynamically allocating main memory of the order O (n), although with

a very small factor less than 1% of the database size. Additionally, the extension to the

RKV algorithm for a k-nearest neighbor search is difficult to implement.

An open question is whether minimizing the number of page accesses will minimize

the time needed for the page accesses, too. We will observe later that statically construct-

ed indexes yield an inter-page clustering, meaning that all pages in a branch of the index

are laid out contiguously on the background storage. Therefore, the depth-first search of

the RKV algorithm could yield fewer disk-head movements than the distance-driven

search of the HS algorithm. A new challenge could be to develop an algorithm for the

nearest neighbor search directly optimizing the processing time rather than the number

of page accesses.

2.3.5 Ranking Query

Ranking queries can be seen as generalized k-nearest neighbor queries with a previously

unknown result set size k. A typical application of a ranking query requests the nearest

neighbor first, then the second closest point, the third and so on. The requests stop ac-

q

Figure 19: Schedules of RKV and HS Algorithm.

pr12

pr2pr11

pr1 pr21

pr23

pr22

MINDIST

MINMAXDIST

NN-sphere

Previous Approaches to High-Dimensional Indexing 39

cording to a criterion which is external to the index-based query processing. Therefore,

neither a limited query range nor a limited result set size can be assumed before the

application terminates the ranking query.

In contrast to the k-nearest neighbor algorithm, a ranking query algorithm needs an

unlimited priority queue for the candidate list of closest points (cpcl). A further differ-

ence is that each request of the next closest point is regarded as a phase that ends report-

ing the next resulting point. The phases are optimized independently. In contrast, the k-

nearest neighbor algorithm searches all k points in a single phase and reports the com-

plete set.

In each phase of a ranking query algorithm, all points encountered during the data

page accesses are stored in the cpcl. The phase ends if it is guaranteed that unprocessed

index pages cannot contain a point closer than the first point in cpcl (the corresponding

criterion of the k-nearest neighbor algorithm is based on the last element of cpcl). Before

beginning the next phase, the leading element is deleted from the cpcl.

It does not appear very attractive to extend the RKV algorithm for processing ranking

queries due to the fact that effective branch pruning can be performed neither based on

MINMAXDIST or MAXDIST estimates nor based on the points encountered during the

data page accesses.

In contrast, the HS algorithm for nearest neighbor processing needs only the modifi-

cations described above to be applied as a ranking query algorithm. The original propos-

al [HS 95] contains these extensions.

The major limitation of the HS algorithm for ranking queries is the cpcl. It can be

proven, similarly as in Lemma 2, that the length of the cpcl is of the order O (n). In

contrast to the APL, the cpcl contains the full information of possibly all data objects

stored in the index. Thus, its size is bounded only by the database size questioning the

applicability not only theoretically, but also practically. From our point of view, a prior-

ity queue implementation suitable for background storage is required for this purpose.

2.4 Previous Approaches to High-Dimensional Indexing

In this section, we will introduce and briefly discuss the most important index structures

for high-dimensional data spaces. First, we will describe index structures using mini-

mum bounding rectangles as page regions such as the R-tree, the R*-tree, and the X-tree.

40 Query Processing in High-Dimensional Data Spaces

We continue with the structures using bounding spheres such as the SS-tree and the TV-

tree and conclude with two structures using combined regions. The SR-tree uses the

intersection solid of MBR and bounding sphere as page region. The page region of a

space filling curve is the union of not necessarily connected hypercubes.

Multidimensional access methods which have not been investigated for query pro-

cessing in high-dimensional data spaces such as the R+-tree [SSH 86, SRF 87], the hB-

tree [LS 89, LS 90, Eva 94] or hashing-based methods [KS 86, KS 87, KS 88, Oto 84,

NHS 84, Hin 85, HSW 88a, HSW 88b, KW 85, KS 88, Ouk 85, Fre 87] are excluded

from our discussion. In the VAMSplit R-tree [JW 96] and in the Hilbert-R-tree [KF 94],

methods for statically constructing R-trees are presented. Since these approaches are

rather construction methods than indexing structures of its own, the presentation is de-

layed to chapter 6 where several construction methods are investigated.

2.4.1 R-tree

The R-tree [Gut 84] uses solid minimum bounding rectangles (MBR) as page regions.

An MBR is a multidimensional interval of the data space, i.e. axis-parallel multidimen-

sional rectangles. MBRs are minimal approximations of the enclosed point set. There

exists no smaller axis-parallel rectangle also enclosing the complete point set. Therefore,

every ()-dimensional surface area must contain at least one data point. Space par-

titioning is neither complete nor disjoint. Parts of the data space may be not covered at

all by data page regions. Overlapping between regions in different branches is allowed,

although overlaps deteriorate the search performance especially for high-dimensional

data spaces [BKK 96]. The region description of an MBR comprises for each dimension

a lower and an upper bound. Thus, 2 d floating point values are required. This descrip-

tion allows an efficient determination of MINDIST, MINMAXDIST and MAXDIST

using any Lp metric.

R-trees have originally been designed for spatial databases, i.e. for the management

of 2-dimensional objects with a spatial extension (e.g., polygons). In the index, these

objects are represented by the corresponding MBR. In contrast to point objects, it is

possible that no overlap-free partition for a set of such objects exists at all. The same

problem occurs also when R-trees are used to index data points but only in the directory

part of the index. Page regions are treated like spatially extended, atomic objects in their

d 1–

Previous Approaches to High-Dimensional Indexing 41

parent nodes (no forced split). Therefore, it is possible that a directory page cannot be

split without creating an overlap among the newly created pages [BKK 96].

According to our framework of high-dimensional index structures, two heuristics

have to be defined to handle the insert operation: The choice of a suitable page to insert

the point and the management of page overflow. When searching for a suitable page, one

out of three cases may occur:

• The point is contained in exactly one page region.

In this case, the corresponding page is used.

• The point is contained in several different page regions.

In this case, the page region with the smallest volume is used.

• No region contains the point.

In this case, the region is chosen which yields the smallest volume enlargement. If

several such regions yield a minimum enlargement, the region with the smallest

volume among them is chosen.

The insert algorithm starts with the root and chooses in each step a child node by apply-

ing the rules above. Therefore, the suitable data page for the object is found in O (logn)

time by examining a single path of the index.

Page overflows are generally handled by splitting the page. Four different algorithms

have been published for the purpose of finding the right split dimension (also called split

axis) and the split hyperplane. They are distinguished according to their time complexity

with varying page capacity C:

• The exponential algorithm [Gut 84]:

This algorithm encounters all 2C distributions and determines the distribution with

the lowest volume.

• The quadratic algorithm [Gut 84]:

Here, the distribution process starts with the two objects which would waste the

largest volume put in one group (the seeds). Iteratively, two groups are built by

determining the volume enlargement in group 1 and group 2 (ve1 and ve2, respec-

tively) for each object not yet assigned to a group. The element where the differ-

ence between ve1 and ve2 reaches its maximum is assigned to the group with the

smaller enlargement.

• The linear algorithm [Gut 84]:

42 Query Processing in High-Dimensional Data Spaces

The linear algorithm is identical with the quadratic algorithm up to the seed deter-

mination. For each dimension, the rectangle with the smallest lower boundary and

the rectangle with the highest upper boundary are chosen. The distance is normal-

ized by the sum of the extensions of all rectangles. The pair having the largest nor-

malized distance is used as seed.

• Greene’s algorithm [Gre 89]:

First, the split axis is chosen. Then, the objects are distributed into two equally

sized groups by sorting according to the lower boundary of the object in the corre-

sponding dimension. The choice of the split axis is handled similar to the determi-

nation of the seeds in the quadratic algorithm.

While Guttman [Gut 84] reports only slight differences between the linear and the qua-

dratic algorithm, an evaluation study performed by Beckmann, Kriegel, Schneider and

Seeger [BKSS 90] reveals disadvantages for the linear algorithm. The quadratic algo-

rithm and Greene’s algorithm are reported to yield similar search performance.

2.4.2 R*-tree

The R*-tree [BKSS 90] is an extension of the R-tree based on a careful study of the R-

tree algorithms under various data distributions. In contrast to Guttman who optimizes

only for a small volume of the created page regions, Beckmann, Kriegel, Schneider and

Seeger identify the following optimization objectives:

• minimize overlap between page regions

• minimize the surface of page regions

• minimize the volume covered by internal nodes

• maximize the storage utilization.

The heuristic for the choice of a suitable page to insert a point is modified in the third

alternative: No page region contains the point. In this case, the distinction is made

whether the child page is a data page or a directory page. If it is a data page, then the

region is taken which yields the smallest enlargement of the overlap. In case of a tie,

further criteria are the volume enlargement and the volume. If the child node is a direc-

tory page, the region with the smallest volume enlargement is taken. In case of doubt, the

volume decides.

Like in Greene’s algorithm, the split heuristic has two phases. In the first phase, the

split dimension is determined as follows:

Previous Approaches to High-Dimensional Indexing 43

• For each dimension, the objects are sorted according to their lower bound and

according to their upper bound.

• A number of partitionings with a controlled degree of asymmetry is encountered.

• For each dimension, the surface areas of the MBRs of all partitionings are summed

up and the least sum determines the split dimension.

In the second phase, the split plane is determined, minimizing the following criteria:

• overlap between the page regions

• in doubt, least coverage of dead space.

Splits can often be avoided by the concept of forced re-insert. If a node overflow occurs,

a defined percentage of the objects with the highest distances from the center of the

region are deleted from the node and inserted into the index again, after the region has

been adapted. By this means, the storage utilization will grow to a factor between 71 %

and 76 %. Additionally, the quality of partitioning improves because unfavorable deci-

sions in the beginning of the index construction can be corrected in this way.

Performance studies report improvements between 10 % and 75 % over the R-tree. In

higher-dimensional data spaces, the split algorithm proposed in [BKSS 90] leads to a

deteriorated directory. Therefore, the R*-tree is not adequate for these data spaces, rather

it has to load the entire index in order to process most queries. A detailed explanation of

this effect is given in [BKK 96].

2.4.3 X-tree

The R-tree and the R*-tree have primarily been designed for the management of spatially

extended 2-dimensional objects, but also been used for high-dimensional point data.

Empirical studies [BKK 96, WJ 96], however, showed a deteriorated performance of the

R*-trees for high-dimensional data. The major problem of R-tree-based index structures

in high-dimensional data spaces is the overlap. In contrast to low-dimensional spaces,

there exists only few degrees of freedom for splits in the directory. In fact, in most

situations there exists only a single “good” split axis. An index structure that does not

use this split axis will produce highly overlapping MBRs in the directory and thus show

a deteriorated performance in high-dimensional spaces. Unfortunately, this specific split

axis might lead to unbalanced partitions. In this cases, a split should be avoided in order

to avoid underfilled nodes.

44 Query Processing in High-Dimensional Data Spaces

The X-tree [BKK 96] is an extension of the R*-tree which is directly designed for the

management of high-dimensional objects and based on the analysis of problems arising

in high-dimensional data spaces. It extends the R*-tree by two concepts:

• overlap-free split according to a split-history

• supernodes with an enlarged page capacity

If one records the history of data page splits in an R-tree based index structure, this

results in a binary tree: The index starts with a single data page A covering almost the

whole data space and inserts data items. If the page overflows, the index splits the page

into two new pages A’ and B. Later on, each of these pages might be split again into new

pages. Thus, the history of all splits may be described as a binary tree, having split

dimensions (and positions) as nodes and having the current data pages as leave nodes.

Figure 20 shows an example for such a process. In the lower half of the figure, the

according directory node is depicted. If the directory node overflows, we have to divide

the set of data pages (the MBRs A” , B” , C, D, E) into two partitions. Therefore, we have

to choose a split axis first. Now, what are potential candidates for split axis in our exam-

ple? Say, we choose dimension 5 as a split axis. Then, we had to put A” and E into one

of the partitions. However, A” and E have never been split according to dimension 5.

Thus, they span almost the whole data space in this dimension. If we put A” and E into

one of the partitions, the MBR of this partition in turn will span the whole data space.

Obviously, this leads to a high overlap with the other partition, regardless of the shape of

the other partition. If one looks at the example in figure 20, it becomes clear that only

Figure 20: Example for the Split History.

A

A

2

54

1

B A’ B’ C A’ B” C D A” B” C D E

A” E C

B” D

2

5

1 C

B” D

2

5

CB’

2

A’ B A’

Nodes

Split Tree

A’

A’

Previous Approaches to High-Dimensional Indexing 45

dimension 2 may be used as a split dimension. The X-tree generalizes this observation

and uses always the split dimension with which the root node of the particular split tree

is labeled. This guarantees an overlap free directory. However, the split tree might be

unbalanced. In this case it is advantageous not to split at all because splitting would

create one underfilled node and another almost overflowing node. Thus, the storage

utilization in the directory would decrease dramatically and the directory would degen-

erate. In this case the X-tree does not split and creates an enlarged directory node instead

– a supernode. The higher the dimensionality, the more supernodes will be created and

the larger the supernodes become. To also operate on lower-dimensional spaces effi-

ciently, the X-tree split algorithm also includes a geometric split algorithm. The whole

split algorithm works as follows: In case of a data page split, the X-tree uses the R*-tree

split algorithm or any other topological split algorithm. In case of directory nodes, the X-

tree first tries to split the node using a topological split algorithm. If this split would lead

to highly overlapping MBRs, the X-tree applies the overlap-free split algorithm based on

the split history as described above. If this leads to a unbalanced directory, the X-tree

simply creates a supernode.

The X-tree shows a high performance gain compared to the R*-trees for all query

types in medium-dimensional spaces. For small dimensions, the X-Tree shows a behav-

ior almost identical to the R-trees, for higher dimensions the X-tree also has to visit such

a large number of nodes that a linear scan is less expensive. It is impossible to provide

the exact values here because many factors such as the number of data items, the dimen-

sionality, the distribution, and the query type have a high influence on the performance

of an index structure.

s1

s2

s1

s2

s3

s4

s3

s4

Figure 21: The kd-tree.

46 Query Processing in High-Dimensional Data Spaces

2.4.4 k-d-B-tree

Like the R-tree and its variants, the k-d-B-tree [Rob 81] uses hyperrectangle shaped

page regions. An adaptive kd-tree [Ben 75, Ben 79] is used for space partitioning (cf.

figure 21). Therefore, complete and disjoint space partitioning is guaranteed. Obviously,

the page regions are (hyper-) rectangles, but not minimum bounding rectangles. The

general advantage of kd-tree based partitioning is that the decision which subtree is used

is always unambiguous. The deletion operation is also supported in a better way than in

R-tree variants because the leave nodes with a common parent exactly comprise a hyper-

rectangle of the data space. Thus, they can be merged without violating the conditions of

complete and disjoint space partitioning.

Complete partitioning has the disadvantage that page regions are generally larger than

necessary. Therefore, these pages are more often accessed during query processing than

minimum bounding page regions. The second problem is that kd-trees usually are unbal-

anced. Therefore, it is not directly possible to pack contiguous subtrees into directory

pages. The k-d-B-tree approaches this problem by a concept involving forced splits.

If some page has an overflow condition, it is split by an appropriately chosen hyper-

plane. The entries are distributed among the two pages and the split is propagated up the

tree. Unfortunately, regions on lower levels of the tree may be also intersected by the

split plane which must be split (forced split). As every region on the subtree can be

affected, the time complexity of the insert operation is O (n) in the worst case. A mini-

mum storage utilization guarantee cannot be provided. Therefore, theoretical consider-

ations about the index size are difficult.

Figure 22: The k-d-B-tree.

Previous Approaches to High-Dimensional Indexing 47

2.4.5 LSDh-tree

The directory of the LSDh-tree [Hen 98, HSW 89] is also an adaptive kd-tree

[Ben 75, Ben 79]. In contrast to R-tree variants and k-d-B-tree, the region description is

coded in a sophisticated way leading to reduced space requirement for the region de-

scription. A specialized paging strategy collects parts of the kd-tree into directory pages.

Some levels on the top of the kd-tree are assumed to be fixed in the main memory. They

are called internal directory in contrast to the external directory which is subject to

paging. In each node, only the split axis (e.g. 8 bit for up to 256-dimensional data spaces)

and the position where the split-plane intersects the split axis (e.g. 32 bit for a float

number) have to be stored. Two pointers to child nodes require 32 bit each. To describe

k regions, nodes are required, leading to a total amount of bit for

the complete directory. R-tree like structures require for each region description two

float values for each dimension plus the child node pointer. Therefore, only the lowest

level of the directory needs bit for the region description. While the

space requirement of R-tree directory grows linearly with increasing dimension, it is

constant (theoretically logarithmic, for very large dimensionalities) for the LSDh-tree.

For 16-dimensional data spaces, R-tree directories are more than ten times larger than

the corresponding LSDh-tree directory.

The rectangle representing the region of a data page can be determined from the split

planes in the directory. It is called the potential data region and not explicitly stored in

the index.

One disadvantage of the kd-tree directory is that the data space is completely covered

with potential data regions. In cases where major parts of the data space are empty, this

results in performance degeneration. To overcome this drawback, a concept called coded

s1

s2

p2

p3

p1

s1

s2p1

p2 p3 data pages

external
directory

internal
directory

Figure 23: The LSDh-tree.

k 1–() 104 k 1–()⋅

32 64 d⋅+() k⋅

48 Query Processing in High-Dimensional Data Spaces

actual data regions cadr is introduced. The cadr is a multidimensional interval conser-

vatively approximating the MBR of the points stored in a data page. To save space in the

description of the cadr, the potential data region is quantized into a grid of cells.

Therefore, only bits are additionally required for each cadr. The parameter z can

be chosen by the user. Good results are achieved by using a value of z = 5.

The most important advantage of the complete partitioning using potential data re-

gions is that they allow a maintenance guaranteeing no overlap. The description page

regions in terms of splitting planes forces the regions to be overlap-free, anyway. When

a point has to be inserted into an LSDh-tree, there exists always a unique potential data

region in which the point has to be inserted. In contrast, the MBR of an R-tree may have

to be enlarged for an insert operation which causes an overlap between data pages in

some cases. A situation where no overlap-free enlargement is possible, is depicted in

figure 25. The coded actual data regions may have to be enlarged during an insert oper-

ation. Since they are completely contained in a potential page regions an overlap cannot

arise.

The split strategy for LSDh-trees is rather simple. The split dimension is increased by

one compared to the parent node in the kd-tree directory. The only exception from this

potential data region

coded actual data region

actual data region (MBR)

Figure 24: Region Approximation Using the LSDh-tree.

2
z d⋅

2 z d⋅ ⋅

Figure 25: Situation in R-tree Variants where no Overlap-Free Insert is Possible.

Previous Approaches to High-Dimensional Indexing 49

rule is that a dimension having too few distinct values for splitting is left out of consid-

eration.

As reported in [Hen 98], the LSDh-tree shows a performance that is very similar to

that of the X-tree, except the fact that inserts are done much faster in an LSDh-tree

because no complex computation takes place. Using a bulk-loading technique to con-

struct the index, both index structures are equal in the performance. Also from an imple-

mentation point of view, both structures are of similar complexity: The LSDh-tree has a

rather complex directory structure and simple algorithms, whereas the X-tree has a rath-

er straightforward directory and complex algorithms.

2.4.6 SS-tree

In contrast to all previously introduced index structures, the SS-tree [WJ 96] uses

spheres as page regions. For efficiency, the spheres are not minimum bounding spheres.

Rather, the centroid point (i.e. the average value in each dimension) is used as center for

the sphere and the minimum radius is chosen such that all objects are included in the

sphere. Therefore, the region description comprises the centroid point and the radius.

This allows an efficient determination of the MINDIST and the MAXDIST, but not of

the MINMAXDIST. The authors suggest using the RKV algorithm, but they do not

provide any hints how to prune the branches of the index efficiently.

For insert processing, the tree is descended choosing the child node whose centroid is

closest to the point, regardless of volume or overlap enlargement. Meanwhile, the new

centroid point and the new radius is determined. When an overflow condition occurs, a

forced reinsert operation is raised, like in the R*-tree. 30% of the objects with the highest

distances from the centroid are deleted from the node, all region descriptions are updat-

ed, and the objects are reinserted into the index.

Figure 26: Situation in the SS-tree where no Overlap-Free Split is Possible.

50 Query Processing in High-Dimensional Data Spaces

The split determination is merely based on the criterion of variance. First, the split

axis is determined as the dimension yielding the highest variance. Then, the split plane

is determined by encountering all possible split positions which fulfill the space utiliza-

tion guarantees. The sum of the variances on each side of the split plane is minimized.

The general problem of spheres is that they are not amenable to an easy, overlap-free

split as depicted in figure 26. Therefore, the SS-tree outperforms the R*-tree by a factor

of 2, however, it does not reach the performance of the LSDh-tree and the X-tree.

2.4.7 TV-tree

The TV-tree [LJF 95] is designed especially for real data that are subject to the Kar-

hunen-Loève-Transform (also known as principal component analysis), a mapping

which preserves distances and eliminates linear correlations. Such data yield a high vari-

ance and therefore, a good selectivity in the first few dimensions while the last few

dimensions are of minor importance for query processing. Indexes storing KL-trans-

formed data tend to have the following properties:

• The last few attributes are never used for cutting branches in query processing.

Therefore, it is not useful to split the data space in the corresponding dimensions.

• Branching according to the first few attributes should be performed as early as pos-

sible, i.e. in the topmost levels of the index. Then, the extension of the regions of

lower levels (especially of data pages) is often zero in these dimensions.

Regions of the TV-tree are described by so-called Telescope Vectors (TV), i.e. vectors

which may be dynamically shortened. A region has k inactive dimensions and active

dimensions. The inactive dimensions form the greatest common prefix of the vectors

stored in the subtree. Therefore, the extension of the region is zero in these dimensions.

In the active dimensions, the region has the form of an Lp-sphere where p may be 1, 2

or . The region has an infinite extension in the remaining dimensions which are sup-

posed either to be active in the lower levels of the index or to be of minor importance for

query processing. Figure 27 depicts the extension of a telescope vector in space.

The region description comprises floating point values for the coordinates of the

center point in the active dimensions and one float value for the radius. The coordinates

of the inactive dimensions are stored in higher levels of the index (exactly in the level

where a dimension turns from active into inactive). To achieve a uniform capacity of

directory nodes, the number of active dimensions is constant in all pages. The concept

α

α
∞

α

α

Previous Approaches to High-Dimensional Indexing 51

of telescope vectors increases the capacity of the directory pages. It was experimentally

determined that a low number of active dimensions () yields the best search per-

formance.

The insert-algorithm of the TV-tree chooses the branch to insert a point according to

the following criteria (with decreasing priority):

• minimum increase of the number of overlapping regions

• minimum decrease of the number of inactive dimensions

• minimum increase of the radius

• minimum distance to the center.

To cope with page overflows, the authors propose to perform a re-insert operation, like

in the R*-tree. The split algorithm determines the two seed-points (seed-regions in case

of a directory page) which have the least common prefix or (in case of doubt) the maxi-

α 2=

R1

R2

Rn-1

Rn

c→

Rk = Rd-α
Rk+1 = Rd-α+1

Rd

Rd+1

k
in

ac
tiv

e
di

m
en

si
on

s
(c

om
m

on
 p

re
fix

)

α
ac

tiv
e

di
m

en
si

on
s

r

TMBR

feat re space R R
n

∏ p

Figure 27: Telescope Vectors.

52 Query Processing in High-Dimensional Data Spaces

mum distance. The objects are then inserted into one of the new subtrees using the above

criteria for the subtree choice in insert processing while the storage utilization guaran-

tees are considered.

The authors report a good speed-up in comparison for to the R*-tree when applying

the TV-tree to data that fulfills the precondition stated in the beginning of this section.

Other experiments [BKK 96] however show that the X-tree and the LSDh-tree outper-

form the TV-tree on uniform or other real data (not amenable to the KL transformation).

2.4.8 SR-tree

The SR-tree [KS 97] can be regarded as the combination of the R*-tree and the SS-tree.

It uses the intersection solid between a rectangle and a sphere as page region. The rect-

angular part is, like in R-tree variants, the minimum bounding rectangle of all points

stored in the corresponding subtree. The spherical part is, like in the SS-tree, the mini-

mum sphere around the centroid of the stored objects. Figure 28 depicts the resulting

geometric object. Regions of SR-trees have the most complex description among all

index structures presented in this chapter: It comprises 2d floating point values for the

MBR and d + 1 floating point values for the sphere.

The motivation for using a combination of sphere and rectangle as presented by the

authors is that according to the analysis presented in [WJ 96], spheres are basically bet-

ter suited for processing nearest neighbor queries and range queries using the L2-metric.

We will present the theoretical framework for a more careful evaluation of this aspect in

chapter 3. On the other hand, spheres are difficult to maintain and tend to produce much

Figure 28: Page Regions of an SR-tree.

Previous Approaches to High-Dimensional Indexing 53

overlap in splitting as depicted previously in figure 26. The authors believe therefore that

a combination of R-tree and SS-tree will overcome both disadvantages.

The authors define the following function as the distance between a query point q and

a region R:

This is not the correct minimum distance to the intersection solid, as depicted in

figure 29 (which is drawn slightly too extreme, to make the problem visible): Both dis-

tances to the MBR and the sphere (meeting the corresponding solids at the points MMBR

and MSphere, respectively) are smaller than the distance to the intersection solid which is

met in point MR where the sphere intersects the rectangle. However, it can be shown that

the above function is a lower bound of the correct distance function.

Therefore, it is guaranteed that processing of range queries and nearest neighbor queries

produces no false dismissals. But still, the efficiency can be worsened by the incorrect

distance function. The MAXDIST function can be defined to be the minimum among the

MAXDIST functions applied to MBR and sphere although a similar error is made as in

the definition of MINDIST. Since no MINMAXDIST definition exists for spheres, the

MINMAXDIST function for the MBR must be applied. This is also correct in the sense

that no false dismissals are guaranteed but in this case no knowledge about the sphere is

exploited at all. Some potential for performance increase is wasted.

Using the definitions above, range query processing and nearest neighbor query pro-

cessing using both RKV algorithm and HS algorithm is possible.

Insert processing and split algorithm are taken from the SS-tree and only modified in

a few details of minor importance. Additionally to the algorithms for the SS-tree, the

MBRs have to be updated and determined after inserts and node splits. Information of

MINDIST q R,() max MINDIST q R.MBR,() MINDIST q R.Sphere,(),()=

MR

Figure 29: Incorrect MINDIST in the SR-tree.

q

MSphere

MMBR

MINDIST q R,()

54 Query Processing in High-Dimensional Data Spaces

the MBRs is neither considered in the choice of branches nor in the determination of the

split.

The reported performance results, compared to the SS-tree and the R*-tree, suggest

that the SS-tree outperforms both index structures. It is, however, open if the SR-tree

outperforms the X-tree or the LSDh-tree. No experimental comparison has been done yet

to the best author’s knowledge. Comparing the index structures indirectly by comparing

both to the performance of the R*-tree, we could draw the conclusion that the SR-tree

does not reach the performance of the LSDh-tree or the X-tree.

2.4.9 Space Filling Curves

Space filling curves [Sag 94] like Z-Ordering [Mor 66, FB 74, AS 83, OM 84], Gray

Codes [Fal 85, Fal88] or the Hilbert Curve [FR 89, Jag 90] are mappings from a d-

dimensional data space (original space) into a one-dimensional data space (embedded

space). Using space filling curves, distances are not exactly preserved but points that are

close to each other in the original space are likely to be close to each other in the embed-

ded space. Therefore, these mappings are called distance-preserving mappings.

Z-Ordering is defined as follows: The data space is first partitioned into two halves of

identical volume perpendicular to the d0-axis.The volume on the side of lower d0-values

gets the name <0> (as a bit string), the other volume gets the name <1>. Then, each of

the volumes is partitioned perpendicular to the d1-axis, and the resulting sub-partitions

of <0> get the names <00> and <01>, the sub-partitions of <1> get the names <10> and

<11>, respectively. When all axis are used for splitting, d0 is used for a second split, and

so on. The process stops when a user-defined basic resolution br is reached. Then, we

have a total number of 2br grid cells, each with an individual bit string identified. If only

grid cells with the basic resolution br are considered, all bit strings have the same

Figure 30: Examples of Space Filling Curves.

Z-Ordering Hilbert Curve Gray Codes

Previous Approaches to High-Dimensional Indexing 55

lengths, and can therefore be interpreted as binary representations of integer numbers.

The other space-filling curves are defined similarly but the numbering scheme is slightly

more sophisticated. This has been done in order to achieve that more neighboring cells

get subsequent integer numbers. Some two-dimensional examples of space filling

curves are depicted in figure 30.

Data points are transformed by assigning the number of the grid cell they are located

in. Without presenting the details, we let SFC (p) be the function that assigns p to the

corresponding grid cell number. Vice versa, SFC-1(c) returns the corresponding grid cell

as a hyperrectangle. Then, any one-dimensional indexing structure capable of process-

ing range queries can be applied for storing SFC(p) for every point p in the database. We

assume in the following that a B+-tree [Com 79] is used.

Processing of insert and delete operations and exact match queries is very simple

because the points inserted or sought have merely to be transformed by the SFC func-

tion.

In contrast, range queries and nearest neighbor queries are based on distance calcula-

tions of page regions which have to be determined accordingly. In B-trees, before a page

is accessed, only the interval I = [lb .. ub] of values in this page is known. Therefore, the

page region is the union of all grid cells having a cell number between lb and ub. The

region of an index based on a space filling curve is a combination of rectangles. Based

on this observation, we can define a corresponding MINDIST and analogously a

MAXDIST function:

q q q q

Figure 31: MINDIST Determination Using Space Filling Curves.

I I2
I1

I21

I22I1

I21

MINDIST q I,() MIN
lb c ub≤ ≤

MINDIST q SFC
1–

c(),(){ }=

MAXDIST q I,() MAX
lb c ub≤ ≤

MAXDIST q SFC 1–
c(),(){ }=

56 Query Processing in High-Dimensional Data Spaces

Again, no MINMAXDIST function can be provided because there is no minimum

bounding property to exploit. The question is, how these functions can be evaluated

efficiently without enumerating all grid cells in the interval [lb .. ub]. This is possible by

splitting the interval recursively into two parts [lb .. s[and [s .. ub] where s has the form

<p100...00>. Here, p stands for the longest common prefix of lb and ub. Then, we deter-

mine the MINDIST and the MAXDIST to the rectangular blocks numbered with the bit-

strings <p0> and <p1>. Any interval having a MINDIST greater than the MAXDIST of

any other interval or greater than the MINDIST of any terminating interval (see later)

can be excluded from further consideration. The decomposition of an interval stops

when the interval covers exactly one rectangle. Such an interval is called a terminal

interval. MINDIST (q, I) is then the minimum among the MINDISTs of all terminal

intervals. An example is presented in figure 31. The shaded area is the page region, a set

of contiguous grid cell values I. In the first step, the interval is split into two parts I1 and

I2, determining the MINDIST and MAXDIST (not depicted) of the surrounding rectan-

gles. I1 is terminal, because it comprises a rectangle. In the second step, I2 is split into I21

and I22 where I21 is terminal. Since the MINDIST to I21 is smaller than the other two

MINDIST values, I1 and I22 are discarded. Therefore MINDIST (q, I21) is equal to

MINDIST (q, I).

A similar algorithm to determine MAXDIST (q, I) would exchange the roles of

MINDIST and MAXDIST.

2.4.10 Summary

Table 1 shows the index structures described above in an overview. As the most impor-

tant properties we identified the shape of the page regions, disjointedness and complete-

ness and the most relevant decisions in the construction and maintenance of the index.

As shape of the regions, we have rectangles, spheres and intersections and unions. If the

rectangles are minimum bounding rectangles, this is marked in the table. Disjointedness

means that the regions are not allowed to overlap. This is only guaranteed in the k-d-B-

tree, the LSDh-tree and in space-filling curves. Completeness means that the whole data

space is covered with page regions. Also large empty parts of the data space are assigned

to some data page. The LSDh-tree has both, complete covering page regions and addi-

tionally page regions which are not extended over empty space. The criteria for choosing

a subtree in performing an insert operation are based on proximity, volume, volume

enlargement etc. The complete, and disjoint coverage of the data space with page regions

Previous Approaches to High-Dimensional Indexing 57

yields the advantage that the page where the point must be inserted, is always unique.

Therefore, no heuristics must be applied. When more than one criterion is mentioned,

the first has the highest weight, subsequent criteria are only applied if the first criterion

yields a tie. The next row in the table summarizes the criteria for the choice of the split

axis and the split plane. The last information in the table is if the index structure tries to

perform a forced re-insert operation before splitting a page.

Name Region Disjoint Complete Criteria for Insert Criteria for Split Reinsert

R-tree MBR no no
volume enlargement

volume
(various algorithms) no

R*-tree MBR no no
overlap enlargement
volume enlargement

volume

surface area
overlap

dead space coverage
yes

X-tree MBR no no
overlap enlargement
volume enlargement

volume

split history
surface/overlap

dead space coverage
no

k-d-B-
tree

rectangle yes yes
(unique due to com-
plete, disjoint part.)

cyclic change of dim. no

LSDh-
tree

kd-tree
region

yes no/yes
(unique due to com-
plete, disjoint part.)

cyclic change of dim.
of distinct values

no

SS-tree sphere no no proximity to centroid variance yes

TV-tree

sphere
with

reduced
dimension

no no

overlapping regions
inactive dimensions

radius of region
distance to center

seeds with least com-
mon prefix

maximum distance
yes

SR-tree
intersect.
sphere/
MBR

no no proximity to centroid variance yes

space
filling
curves

union of
rectangles

yes yes
(unique due to com-
plete, disjoint part.)

according to space
filling curve

no

Table 1: High-dimensional index structures and their properties

58 Query Processing in High-Dimensional Data Spaces

59

Chapter 3
A Cost Model for Query
Processing in High-Dimensional
Data Spaces

The aim of this chapter is to provide an introduction to the basic principles of cost mod-

eling and to develop a cost model for high-dimensional query processing applicable to

the R-tree like indexing structures. The basic principles presented in this chapter will be

used later for modeling the performance of query processing techniques which are de-

veloped in this thesis.

There are various factors which have an influence on the performance of index based

query processing. First of all the data set. The efficiency of index-based query process-

ing depends on the dimension of the data space, the number of points in the database and

on the data distribution from which the points are taken. Especially the correlation of

dimensions is of high importance for the efficiency. Correlation means that the attributes

of some dimensions are statistically not independent from each other. The value of one

attribute is more or less determined by the values of one or more other attributes. In most

cases, this dependency is not strict, but rather observable by the means of statistics. From

a geometric point of view, correlation means that the data points are not spread over the

complete data space. Instead, they are located on a lower-dimensional subset of the data

space which is not necessarily a single linear subspace of the data space. There are

indexing techniques which take profit from the fact that this actual dimension of the data

60 A Cost Model for Query Processing in High-Dimensional Data Spaces

set is lower than the dimension of the data space. Other indexing techniques deteriorate

in performance when a high correlation is inherent to the data set.

The metric for measuring the distance between two data points (Euclidean metric,

Manhattan metric, maximum metric) has an important influence on the query perfor-

mance, too.

A second set of influence factors is connected with the index structure. Most impor-

tant is the shape of the page regions: It can be a rectangle, a sphere or a composed page

region. If it is a rectangle, it can be a minimum bounding rectangle or is it part of a

complete decomposition of the data space such as in the k-d-B-tree or in the LSDh-tree.

Most difficult to capture in a model are the various heuristics which are applied during

insert processing and index construction. The impact of the heuristic on the volume and

extension of page regions is very hard to quantify. A further influence factor is the layout

of pages on the secondary storage. If the layout is clustered, i.e. pairs of adjacent pages

are likely to be near by each other on disk, the performance can be improved if the query

processing algorithm is conscious of this clustering effect.

A third set of influence factors is due to the choice of the query processing algorithm.

As we pointed out in chapter 2, the HS algorithm a yields better performance in terms of

page accesses than the RKV algorithm. Disk clustering effects can be exploited by algo-

rithms considering the relative positions of pages on the background storage.

The outline of this chapter is as follows: After reviewing some related work on cost

models, we start with the introduction of modeling range queries assuming an indepen-

dent and uniform distribution of the data points. Moreover, we assume in the beginning

that queries do not touch the boundary of the data space. Range queries are transformed

into equivalent point queries by accordingly adapting the page regions. The central con-

cept for this compensating adaptation is called Minkowski sum or Minkowski enlarge-

ment. We determine from the Minkowski sum the access probability of pages and use

this access probability to develop an expectation for the number of page accesses. In the

next section, nearest neighbor queries evaluated by the HS algorithm are modeled. This

is conceptually done by a reduction step which transforms nearest neighbor queries into

an equivalent range query. The corresponding range r can be estimated by a probability

density function p(r) using r as variable.

The simplifying assumptions of a uniform and independent data distribution and the

ignorance of data space boundaries will be dropped step by step in the subsequent sec-

61

tions. First, the so-called boundary effects are introduced and shown to be important in

high-dimensional data spaces. Our model is modified to take boundary effects into ac-

count. Then, we consider non-uniform data distributions which are independent in all

dimensions. As the last step, we formalize correlations by the means of the fractal di-

mension and integrate this concept into our cost models for range queries and nearest

neighbor queries.

In the last section, we will show, how the number of page accesses corresponds to the

processing time of query processing. For this purpose, we introduce a model for data

access in large, independent blocks from secondary storage (disk drive modeling).

Due to the high variety of cost estimates we will develop in this chapter the notions

and the identifiers we have to use are complex. There are a few general identifiers for

basic cost measures which will be used throughout this chapter:

V for some volume

R for the expected distance between a query point and its nearest neighbor

P for some probability distribution function

X for the access probability of an individual page

A for the expectation of the number of page accesses.

The boundary conditions for the corresponding cost measure such as the distance metric

and basic assumptions such as uniformity or independence in the distribution of data

points are marked by subscripted indices of the general identifiers. For instance,

Xnn,em,ld,ui means the access probability for a nearest neighbor query (nn) using the

Euclidean metric (em) on a low-dimensional data space (ld) under uniformity and inde-

pendence assumption (ui). We distinguish:

- the query type: range query (r), nearest neighbor (nn) and k-nearest neighbor (knn)

- the applied metric: Euclidean metric (em) and maximum metric (mm)

- the assumed dimensionality: low-dimensional (ld) and high-dimensional (hd)

- the data distribution assumption: uniform/independent (ui), correlated (cor).

Especially the metric identifier (em or mm) is sometimes left out if an equation is valid

for all applied metrics. In this case, all terms lacking the metric specification are under-

stood to be substituted by the same metric, of course. The volume V is specified by a few

indices indicating the geometric shape of the volume. Basic shapes are the hyper-sphere

(s), the hyper-cube (c) and the hyper-rectangle (r). The Minkowski sum (cf. section 3.2)

of two solids o1 and o2 is marked by a plus symbol (). The clipping operation (cf.

section 3.4) is marked by the intersection symbol ().

o1 o2⊕
o1 o2∩

62 A Cost Model for Query Processing in High-Dimensional Data Spaces

3.1 Review of Related Cost Models

Due to the high practical relevance of nearest neighbor queries, cost models for estimat-

ing the number of necessary page accesses have already been proposed several years

ago. The first approach is the well-known cost model proposed by Friedman, Bentley

and Finkel [FBF 77] for nearest neighbor query processing using maximum metric. The

original model estimates leaf accesses in a kd-tree, but can be easily extended to estimate

data page accesses of R-trees and related index structures. This extension was published

in 1987 by Faloutsos, Sellis and Roussopoulos [FSR 87] and with slightly different as-

pects by Aref and Samet in 1991 [AS 91], by Pagel, Six, Toben and Widmayer in 1993

[PSTW 93] and by Theodoridis and Sellis in 1996 [TS 96]. The expected number of

page accesses in an R-tree is

.

The assumptions of the model, however, are unrealistic for nearest neighbor queries

on high-dimensional data for several reasons. First, the number N of objects in the data-

base is assumed to converge to the infinity. Second, effects of high-dimensional data

spaces and correlations are not considered by the model. Cleary [Cle 79] extends the

model of Friedman, Bentley and Finkel [FBF 77] by allowing non-rectangular page re-

gions, but still does not consider boundary effects and correlations. Eastman [Eas 81]

uses the existing models for optimizing the bucket size of the kd-tree. Sproull [Spr 91]

shows that the number of data points must be exponential in the number of dimensions

for the models to provide accurate estimates. According to Sproull, boundary effects

significantly contribute to the costs unless the following condition holds:

where is the volume of a hypersphere with radius r which can be computed as

with the gamma-function which is the extension of the faculty operation into the

domain of real numbers: , and .

Ann,mm,FBF
1

Ceff
---------d 1+

d

=

N >> Ceff
1

Ceff VS
1
2

 ⋅

d

1+

 d

⋅

VS r()

VS r() πd

Γ d 2⁄ 1+()
---------------------------- r

d⋅=

Γ x()

Γ x 1+() x Γ x()⋅= Γ 1() 1= Γ 1
2
---() π=

Review of Related Cost Models 63

Unfortunately, Sproull still assumes for his analysis uniformity and independence in

the distribution of data points and queries.

The assumptions made in the existing models do not hold in the high-dimensional

case. The main reason for the problems of the existing models is that they do not consid-

er boundary effects. “Boundary effects” stands for an exceptional performance behav-

ior, when the query reaches the boundary of the data space. As we show later, boundary

effects occur frequently in high-dimensional data spaces and lead to pruning of major

amounts of empty search space which is not considered by the existing models. To ex-

amine these effects, we performed experiments to compare the necessary page accesses

with the model estimates. Figure 32 shows the page accesses versus the estimates of the

model of Friedman, Bentley and Finkel. For high-dimensional data, the model com-

pletely fails to estimate the number of page accesses.

The basic model of Friedman, Bentley and Finkel has been extended in two different

directions. The first is to take correlation effects into account by using the concept of the

fractal dimension [Man 77, Sch 91]. There are various definitions of the fractal dimen-

sion which all capture the relevant aspect (the correlation), but are different in the details,

how the correlation is measured. We will not distinguish between these approaches in

our subsequent work.

Faloutsos and Kamel [FK 94] used the box-counting fractal dimension (also known

as the Hausdorff fractal dimension) for modeling the performance of R-trees when pro-

cessing range queries using maximum metric. In their model they assume to have a

correlation in the points stored in the database. For the queries, they still assume a uni-

form and independent distribution. The analysis does not take into account effects of

Figure 32: Evaluation of the model of Friedman, Bentley and Finkel.

64 A Cost Model for Query Processing in High-Dimensional Data Spaces

high-dimensional spaces and the evaluation is limited to data spaces with dimensions

less or equal to 3. Belussi and Faloutsos [BF 95] used in a subsequent paper the fractal

dimension with a different definition (the correlation fractal dimension) for the selectiv-

ity estimation of spatial queries. In this paper, range queries in low-dimensional data

spaces using Manhattan metric, Euclidean metric and maximum metric were modeled.

Unfortunately, the model only allows the estimation of selectivities. It is not possible to

extend the model in a straightforward way to determine expectations of page accesses.

Papadopoulos and Manolopoulos used the results of Faloutsos and Kamel and the

results of Belussi and Faloutsos for a new model published in a recent paper [PM 97].

Their model is capable of estimating data page accesses of R-trees when processing

nearest neighbor queries in a Euclidean space. They estimate the distance of the nearest

neighbor by using the selectivity estimation of Belussi and Faloutsos [BF 95] in the

reverse way. We will point out in section 3.3 that this approach is problematic from a

statistical point of view. As it is difficult to determine accesses to pages with rectangular

regions for spherical queries, they approximate query spheres by minimum bounding

and maximum enclosed cubes and determine upper and lower bounds of the number of

page accesses in this way. This approach makes the model inoperative for high-dimen-

sional data spaces, because the approximation error grows exponentially with increasing

dimension. A further asset of the model of Papadopoulos and Manolopoulos is that que-

ries are no longer assumed to be taken from a uniform and independent distribution.

Instead, the authors assume that the query distribution follows the data distribution.

The concept of fractal dimension is also widely used in the domain of spatial databas-

es, where the complexity of stored polygons is modeled [Gae 95, FG 96]. These ap-

proaches are of minor importance for point databases.

The second direction, where the basic model of Friedman, Bentley and Finkel needs

extension, are the boundary effects occurring when indexing data spaces of higher di-

mensionality.

Arya, Mount and Narayan [AMN 95, Ary 95] presented a new cost model for pro-

cessing nearest neighbor queries in the context of the application domain of vector quan-

tization. Arya, Mount and Narayan restricted their model to the maximum metric and

neglected correlation effects. Unfortunately, they still assume that the number of points

is exponential with the dimension of the data space. This assumption is justified in their

application domain, but it is unrealistic for database applications.

Range Query 65

Berchtold, Böhm, Keim and Kriegel [BBKK 97] presented in 1997 a cost model for

query processing in high-dimensional data spaces. It provides accurate estimates for

nearest neighbor queries and range queries using the Euclidean metric and considers

boundary effects and avoids the disadvantages. To cope with correlation, the authors

propose to use the fractal dimension without presenting the details. The main limitation

of the model are (1) that no estimate for the maximum metric is presented, (2) that the

number of data pages is assumed to be a power of two and (3) that a complete, overlap-

free coverage of the data space with data pages is assumed. Weber, Schek and Blott

[WSB 98] use the cost model by Berchtold et al. without the extension for correlated

data to show the superiority of the sequential scan in sufficiently high dimensions. They

present the VA-file, an improvement of the sequential scan.

In contrast to previous publications, the goal of this chapter is to present the basic

principles of cost estimation and to derive cost models for various purposes. We derive

models for both query types, range queries and nearest neighbor queries, and we present

all formulas for maximum and Euclidean metric. We show how to cope with boundary

effects, non-uniformity and correlation.

3.2 Range Query

In this section, we assume uniformity and independence in the distribution of both, data

and query points. Moreover, we ignore the existence of a boundary of the data space or

assume at least that page regions and queries are distant enough from the space boundary

that the boundary is not touched. We start with a given page region and a given query

range r and determine the probability with which the page is accessed, when the query

point is assumed to be uniformly and independently chosen from the data space.

Figure 33: The Minkowski Sum.

66 A Cost Model for Query Processing in High-Dimensional Data Spaces

3.2.1 The Minkowski Sum

The corresponding page is accessed, whenever the query sphere intersects with the page

region. To illustrate this, cf. figure 33. In all figures throughout this chapter, we will

symbolize queries by spheres and page regions by rectangles. Also our notions (“query

sphere”, for example) will often reflect this symbolization. We should note that queries

using the maximum metric rather correspond to hypercubes than hyperspheres. We

should further note that not all known index structures use hyperrectangles as page re-

gions. Our concepts presented here are also applicable if the shape of the query is cubical

or the shape of the page region is spherical.

We transform the range query into an equivalent point query by the following consid-

eration: We call the center point of the range query the query anchor. Let us determine

the set of all positions in the data space, from which the anchor must be taken such that

the page is accessed. It is obvious from the diagram that the page region becomes en-

larged by a sphere of the same radius r whose center point is drawn over the surface of

the page region. As all marked positions are the positions of the query anchor, where the

page is accessed, and as all unmarked positions are the positions of the query anchor,

where the page is not accessed, the marked volume divided by the data space volume

directly corresponds to the access probability of the corresponding page. As we assume

for simplicity that the unit hypercube [0..1]d is the data space, the data space volume

corresponds to 1.

For the determination of the volume, we have to distinguish various cases. The most

simple case is that both volumes are hyperrectangles with side lengths ai and bi, for

, respectively. In this case, the volume of the Minkowski enlargement corre-

sponds to the volume of the hyperrectangle with side lengths ci, where each ci corre-

sponds to the sum of ai and bi:

.

If both volumes, query and region are hyperspheres with radius rq and rp, the Minkowski

enlargement corresponds to a hypersphere with radius rq+rp. The corresponding volume

of the hypersphere can be evaluated by the following formula:

.

0 i d<≤

VR R⊕ a0 … ad 1–, ,() b0 … bd 1–, ,(),() ai bi+()
0 i d<≤
∏=

VS S⊕ rq rp,() πd

Γ d
2
--- 1+

---------------------- r q rp+()d⋅=

Range Query 67

The evaluation of the volume becomes complex if query and page region are differently

shaped. In this case, every vertex of the hyperrectangle is enlarged by a part of a hyper-

sphere. Every edge connecting two vertices of the hyperrectangle is enlarged by a certain

part of a hypercylinder which is spherical in dimensions. A hyperrectangle has

surfaces of various dimensionalities. Each surface with dimensionality k is enlarged by

a part of a hypercylinder which is spherical in dimensions. In the remaining di-

mensions, the hypercylinder has the shape of the surface segment to which it is connect-

ed.

Before we determine the volume of the Minkowski enlargement in the most complex

case of a hypersphere and a hyperrectangle, let us solve it for the simpler case that the

rectangle is a hypercube with side length a. In this case, all k-dimensional surface seg-

ments have the volume ak. Still open is the question, how many such surface segments

exist and what the volume of the assigned part of the hypercylinder is. The number of

surface segments can be determined by a combinatorial consideration. All surface seg-

ments (including the corners and the hyperrectangle itself) can be represented by a d-

dimensional vector over the symbols ‘L’, ‘U’ and ‘*’. Here, the symbol ‘L’ stands for the

lower boundary, ‘U’ for the upper boundary and the star stands for the complete edge

connecting the lower and upper boundary. Using this notation, the vertices have no star,

the edges have one star, the 2-dimensional surfaces have two stars in the vector, and so

on. The hyperrectangle itself has d stars, no ‘L’ and no ‘U’ in its description vector. The

number of k-dimensional surface segments corresponds to the number of different de-

scription vectors having k stars. The positions of the stars can be arbitrarily selected from

d positions in the vector, yielding a binomial number of possibilities. The remaining d-k

positions are filled with the symbols ‘L’ and ‘U’. Therefore, the number of surface seg-

ments SSEGM(k) equals to:

.

The fraction of the hypercylinder at each surface segment is 1/2d-k. Therefore, we get the

following formula for the Minkowski sum of a hypersphere with radius r and a hyper-

cube with side length a:

d 1–

d k–

SSEGMk() d

k

2d k–⋅=

68 A Cost Model for Query Processing in High-Dimensional Data Spaces

=

= .

In the most complex case of non-cubical hyperrectangles, the k-dimensional surface

segments must be summed up explicitly, which is a costly operation. Instead of the

binomial multiplied with ak, we have to summarize over all k combinations of the side

lengths of the hyperrectangle:

.

We should note that in most cases the determination of the Minkowski sum of a hyper-

sphere and a hyperrectangle is an operation which is too costly, because it involves a

number of basic operations (multiplications), which is exponential in the dimension. The

explicit determination of the Minkowski sum of a real hyperrectangle and a hypersphere

of high dimensionality must be avoided, even if exactness is sacrificed.

If the page region is a composition of rectangles such as in the approaches using space

filling curves, it is also difficult to determine the volume of the Minkowski enlargement.

It is possible to take the sum of the Minkowski enlargements of the elements of the

composition and to use this sum as an upper bound. If the Minkowski enlargements of

the elements overlap each other, this approach is not a good approximation. It is also

very hard to provide a compensation for the approximation error, especially if the L2

metric is applied, because the volume of the intersection among several spheres has to be

estimated.

In both cases, where the determination of a Minkowski sum is difficult, a usual work-

around is to transform the rectangle or the composition into a hypercube with equivalent

volume. However, exactness is sacrificed in this approach, because the Minkowski sum

of a non-cubical hyperrectangle is larger than the Minkowski sum of a volume-equiva-

lent hypercube.

VS C⊕ r a,() a
d

SSEGM k() a
k 1

2d k–

πd k–

Γ d k–
2

----------- 1+

------------------------------ r
d k–⋅ ⋅ ⋅ ⋅

0 k d<≤
∑+

d

k

a
k πd k–

Γ d k–
2

----------- 1+

------------------------------ r
d k–⋅ ⋅ ⋅

0 k d≤ ≤
∑

VS R⊕ r a,() aij

j 1=

k

∏

i1…ik{ } 2 0…d 1–{ }∈

∑

 πd k–

Γ d k–
2

----------- 1+

------------------------------ r()d k–⋅ ⋅
0 k d≤ ≤

∑=

Range Query 69

3.2.2 Estimating Rectangular Page Regions

The heuristics of R-tree variants such as the R*-tree and the X-tree strive to create page

regions which yield low overlaps and are hypercube shaped. Therefore, our modeling

approach assumes hypercubes as page regions. As we assume a uniform, independent

data distribution, we can also assume that the volume of an arbitrarily selected region is

directly proportional to the number of points enclosed in this region. We get the follow-

ing proportionality law for hypercube page regions:

.

It follows that

.

In this formula for the side length of a typical page region, we assume a complete cover-

age of the data space with page regions. This assumption is not meaningful for minimum

bounding rectangles. Usually, there is a small gap between two neighboring page re-

gions. An expectation for the breadth of this gap under uniformity and independence

assumption can be determined by projecting all points of a page onto the coordinate axis

which is perpendicular to the gap. The average distance between two neighboring pro-

jections is obviously times the side length of the region. This is also the expected

value for the breadth of the gap by which the side length of the page region is decreased

compared with anobound. Therefore, the side length of a minimum bounding rectangle

can be estimated as:

.

The consideration of gaps between page regions is particularly important if the effective

page capacity is low. Figure 34 shows the impact of the compensation factor on the

volume of the page region. It shows the factor which decreases the volume of a page

region when gaps are considered. The left diagram shows the compensation factor for a

fixed dimension d=16 with varying Ceff. The strongest decrease occurs for low capaci-

ties. For a usual capacity between 20 and 40 points per data page, the compensation

factor ranges between 40% and 70%. The right diagram shows the compensation factor

Ceff

N

VR,nonbound

VDS

anonbound
d

1
--------------------= =

anonbound

Ceff

N
---------d=

1 Ceff⁄

a 1
1

Ceff
---------–

 anobound⋅ 1
1

Ceff
---------–

 Ceff

N
---------d⋅= =

70 A Cost Model for Query Processing in High-Dimensional Data Spaces

for a fixed effective page capacity (30 points) and varying dimension. Most compensa-

tion is necessary for large dimensions.

3.2.3 Expected Number of Page Accesses

By inserting the expected side length a into the formulas for the Minkowski enlarge-

ment, it is possible to determine the access probabilities of typical data pages under

uniformity and independence assumption. This is for the maximum metric:

.

For Euclidean metric, the access probability for range queries with radius r evaluates to:

 =

= .

From these access probabilities, the expected number of page accesses can be deter-

mined by multiplying the access probability with the number of data pages :

.

Figure 34: The Compensation Factor for Considering Gaps.
C

om
pe

ns
at

io
n

Fa
ct

or

C
om

pe
ns

at
io

n
Fa

ct
or

Capacity Ceff Dimension d

Xr,mm,ui r() 2r a+()d
2r 1

1
Ceff
---------–

 Ceff

N
---------d⋅+

d

= =

Xr,em,ui r() d

k

a
k πd k–

Γ d k–
2

----------- 1+

------------------------------ r
d k–⋅ ⋅ ⋅

0 k d≤ ≤
∑

d

k

1
1

Ceff
---------–

 Ceff

N
---------d⋅

k
πd k–

Γ d k–
2

----------- 1+

------------------------------ r
d k–⋅ ⋅ ⋅

0 k d≤ ≤
∑

N Ceff⁄

Ar,mm,ui r() 2r
N

Ceff
---------d⋅ 1

1
Ceff
---------–+

d

=

Nearest Neighbor Query 71

For Euclidean metric, the corresponding result is:

.

3.3 Nearest Neighbor Query

In chapter 2, the optimality of the HS algorithm for nearest neighbor search was proven.

The HS algorithm yields exactly the same page accesses as an equivalent range query,

i.e. a range query using the distance to the nearest neighbor as query range. This provides

us with a concept to reduce the problem of modeling nearest neighbor queries to the

problem of modeling range queries, which was solved in section 3.2. Therefore, we have

to estimate the nearest neighbor distance.

Like in section 3.2 we start with the assumptions of an independent, uniform data

distribution and we will ignore boundary effects. These effects will be investigated in

depth in section 3.4 and section 3.5.

3.3.1 Coarse Estimation of the Nearest Neighbor Distance

A simple way to estimate the nearest neighbor distance is to choose a sphere in the data

space such that an expected value of one data point is contained according to the current

point density and to use the radius of this sphere as an approximation of the actual

nearest neighbor distance. In the case of the maximum metric, we get the following

formula:

.

For Euclidean metric, the corresponding formula is:

.

Unfortunately, this approach is not correct from the point of view of stochastics, because

the operation of building an expectation is not invertible, i.e. the expectation of the

radius cannot be determined from the expectation of the number of points in the corre-

Ar,em,ui r()
N

Ceff
--------- d

k

1
1

Ceff
---------–

 Ceff

N
---------d⋅

k
πd k–

Γ d k–
2

----------- 1+

------------------------------ r
d k–⋅ ⋅ ⋅

0 k d≤ ≤
∑⋅=

1
N
---- Vq 2r()d= = r

1

2 Nd
-----------=

1
N
---- Vq

πd

Γ d 2⁄ 1+()
---------------------------- r

d⋅= = r
Γ d 2⁄ 1+()

N
----------------------------d

1

π
-------⋅=

72 A Cost Model for Query Processing in High-Dimensional Data Spaces

sponding sphere. The approximation determined by this formula is rather coarse and can

be used if a fast and simple evaluation is of higher importance than the accuracy of the

model. The general problem is that even under uniformity and independence assumption

the nearest neighbor distance yields a certain variance, when several range queries are

executed.

3.3.2 Exact Estimation of the Nearest Neighbor Distance

A stochastically correct approach is to determine a distribution function for the nearest

neighbor distance, and to derive an expectation of the nearest neighbor distance from the

corresponding probability density function. From this probability density function, the

expectation of the number of page accesses can also be derived.

The distribution function P(r) determines the probability that the nearest neighbor

distance is smaller than the variable r. The nearest neighbor distance is larger than r if

and only if no data point is contained in the sphere with radius r. The event ‘distance is

larger than r’ is the opposite of the event needed in our distribution function. Therefore,

P(r) is as follows:

.

Due to the convergence of the limit

the distribution function can be approximated for a large number of objects N by the

following formula:

.

This approximation yields negligible relative errors for a large N (starting from 100) and

will facilitate the evaluation later.

For maximum metric and Euclidean metric, the probability distribution function P(r)

can be evaluated in the following way:

,

.

P r() 1 1 V r()–()N–=

1
k
ν
---+

 ν

ν ∞→
lim ek=

P r() 1 e N V r()⋅––≈

Pmm r() 1 1 2r()d–()
N

–=

Pem r() 1 1
πd

Γ d 2⁄ 1+()
---------------------------- r

d⋅–

N

–=

Nearest Neighbor Query 73

From the distribution function P(r) a probability density function p(r) can be derived by

differentiation:

.

For maximum and Euclidean metric, this evaluates to:

,

.

Figure 35 shows some probability density functions for 100,000 uniformly distributed

data points in a two-dimensional and an 8-dimensional data space, respectively.

To determine the expected value of the nearest neighbor distance, the probability

density function multiplied with r must be integrated from 0 to infinity:

,

,

p r() ∂P r()
∂r

--------------=

pmm r()
∂Pmm r()

∂r

d N⋅
r

----------- 1 2r()d
–()

N 1–
2r()d⋅ ⋅= =

pem r()
∂Pem r()

∂r

d N⋅
r

----------- 1
πd

Γ d 2⁄ 1+()
----------------------------r

d–

N

πd

Γ d 2⁄ 1+()
----------------------------r

d⋅ ⋅= =

r r

d = 2 d = 8

pmm(r)

pem(r)
pmm(r) pem(r)

Figure 35: Probability Density Functions.

R r p r()∂r⋅

0

∞

∫=

Rmm d N 1 2r()d–()
N 1–

2r()d⋅ ∂r

0

∞

∫⋅ ⋅=

74 A Cost Model for Query Processing in High-Dimensional Data Spaces

.

The integration variable is denoted by ‘∂’ instead of the more usual ‘d’ to avoid confu-

sion with the identifier ‘d’ standing for the dimension of the data space. The integral is

not easy to evaluate analytically.

3.3.3 Numerical Evaluation

We present two numerical methods to evaluate the integral presented in this chapter

numerically. The first is based on the binomial theorem. Basically, the probability den-

sity function p(r) is a polynomial of the degree . It can be transformed into the

coefficient form using the binomial theorem. We

demonstrate this for the maximum metric:

= ;

= .

This alternating series can be approximated with low error bounds by the first few sum-

mands () if the absolute value of the summands is monotonically decreasing.

This is possible if the power of r decreases in a steeper way with increasing i than the

binomial increases. This is guaranteed if the following condition holds:

; ; .

Therefore, we approximate our formula for the expected nearest neighbor distance in the

following way:

≈

Rem d N 1
πd

Γ d 2⁄ 1+()
----------------------------r

d
–

N

πd

Γ d 2⁄ 1+()
----------------------------r

d⋅

∂r

0

∞

∫⋅ ⋅=

d N⋅
p r() a0r

d N⋅
a1r

d N⋅ 1– …+ +=

1 2r()d
–()

N 1– N 1–

i

1–()i
2r()d i⋅⋅ ⋅

0 i N 1–≤ ≤
∑

pmm r()
d N⋅

r
----------- 2r()d N 1–

i

1–()i 2r()d i⋅⋅ ⋅
0 i N 1–≤ ≤

∑⋅ ⋅

0 i imax≤ ≤

N
2

1

2r()d
------------≤ r

1
2
--- 2

N
----d⋅≤ pmm r()

d N⋅
r

----------- 2r()d N 1–

i

1–()i
2r()d i⋅⋅ ⋅

0 i imax≤ ≤
∑⋅ ⋅≈

Rmm d N 2r()d N 1–

i

1–()i 2r()d i⋅⋅ ⋅
0 i imax≤ ≤

∑⋅

0

1
2
--- 2

N
----d⋅

∫⋅ ⋅

Nearest Neighbor Query 75

≈

≈ .

The same simplification can be applied for the Euclidean metric. However, an alterna-

tive way based on a histogram-approximation of the probability density function yields

lower approximation errors and causes even a lower effort in the evaluation.

To facilitate numerical integration methods such as the middlebox approximation, the

trapezoid approximation or the combined method according to Simpson’s rule

[PFTV 88], we must determine suitable boundaries, where the probability density func-

tion has values which are substantially greater than 0. If we consider for example figure

35, we observe that for d=8, pmm(r) is very close to 0 in the two ranges and

. Only the range between the lower bound rlb=0.05 and the upper bound rub

contributes significantly. The criterion for a sensible choice of lower and upper bounds

is based on the distribution function which corresponds to the area below the density

function. We choose the lower bound rlb such that the area in the ignored range [0..rlb]

corresponds to a probability less than 0.1% and do the same for the upper bound rub. We

get the following two conditions, resulting from the approximation of the distribution

function:

.

Integration can therefore be bounded to the interval from rlb to rub. The integral can be

approximated by a sum of trapezoids or by a sum of rectangles:

R =

 d N N 1–

i

1–()i 2r()d i 1+()⋅

0

1
2
--- 2

N
----d⋅

∫⋅ ⋅
0 i imax≤ ≤

∑⋅ ⋅

N 1–

i

 1–()i

i 1
1
d
---+ +

2
N

i

1
d
---+

⋅ ⋅
0 i imax≤ ≤

∑

0 r 0.05≤ ≤

0.16 r ∞≤ ≤

P r() 1≈ e N V r()⋅–– 0.001≥ P r() 1≈ e N V r()⋅–– 0.999≤

r rlb V= 1– 0.999ln–
N

 ≥ r rub≤ V

1– 0.001ln–
N

 =

r p r()∂r⋅

0

∞

∫

76 A Cost Model for Query Processing in High-Dimensional Data Spaces

≈

≈ .

As we bound the integration to a small interval, a small number of rectangles or trape-

zoids is sufficient for a high accuracy. To achieve a relative error less than 1.0%, an

approximation by imax = 5 rectangles was required in our experiments.

3.3.4 K-Nearest Neighbor Query

The cost model developed in the previous sections can also be extended for estimating

k-nearest neighbor queries. For the coarse model, this is straightforward since the vol-

ume is to choose such that k objects are contained rather than one. Therefore, the term

 must be replaced by . For maximum metric, the estimated distance is:

.

For Euclidean metric, the result is analogous:

.

For the exact model, the probability distribution must be modeled as a summation of

Bernoulli-chains with lengths ranging from 1 to k. The probability that at least k points

are inside the volume V(r) corresponds to the following formula:

.

For k = 1, the formula corresponds to the distribution function P(r) for nearest neighbor

queries. The probability density function and the expectation of the nearest neighbor

distance are determined analogously to section 3.3.2.

We should note that the peak in the probability density function of a k-nearest neigh-

bor query becomes steeper with increasing k (decreasing variance). Therefore, the ap-

proximation by the coarse model which is bad for high, asymmetric variances, becomes

r p r()∂r⋅

rlb

rub

∫

rub rlb–

imax

rub rlb–

imax
------------------ i⋅ rlb+

 p
rub rlb–

imax
------------------ i⋅ rlb+

 ⋅
0 i imax<≤

∑⋅

1 N⁄ k N⁄

Rmm k()
1
2
--- k

N
----d⋅≈

Rem k()
k Γ d 2⁄ 1+()⋅

N
-----------------------------------d

1

π
-------⋅≈

Pk r() 1 n

i

V r()i 1 V r()–()n i–⋅ ⋅
0 i k<≤
∑–=

Nearest Neighbor Query 77

better with increasing k. For sufficiently large the coarse model and the exact

model yield comparable accuracy.

3.3.5 Expectation of the Number of Page Accesses

As initially mentioned, the number of page accesses of a nearest neighbor query is equiv-

alent to the number of page accesses of a range query when the nearest neighbor distance

is used for the query range. An obvious approach to modeling is therefore to use the

expectation of the nearest neighbor distance and to insert it into the expectation of the

number of page accesses using range queries:

.

However, this approach reveals similar statistical problems and leads to similar inac-

curacies as the approach in section 3.3.1. The problem is that the number of page access-

es is not linear in the query range. Therefore, nearest neighbor distances over the average

nearest neighbor distance R are not sufficiently considered. Once again, the approach

can be taken if high accuracy is not required or if the variance of the nearest neighbor

distance is low.

Instead, we have once again to apply the distribution function P(r) to determine an

expectation of the number of page accesses by integration as follows:

.

For maximum and Euclidean metric, this formula evaluates to:

,

· .

k 10>

Ann Ar R()≈

Ann Arange r() p r()∂r⋅

0

∞

∫=

Ann,mm 2r
N

Ceff
---------d⋅ 1

1
Ceff
---------–+

d

1 2r()d–()
N 1–

2r()d⋅()∂r⋅

0

∞

∫=

Ann,em
N

Ceff
--------- d

k

1
1

Ceff
---------–

 Ceff

N
---------d⋅

k
πd k–

Γ d k–
2

----------- 1+

------------------------------ r
d k–⋅ ⋅ ⋅

0 k d≤ ≤
∑⋅

0

∞

∫=

d N⋅
r

----------- 1
πd

Γ d 2⁄ 1+()
----------------------------r

d–

N

πd

Γ d 2⁄ 1+()
----------------------------r

d∂r⋅ ⋅

78 A Cost Model for Query Processing in High-Dimensional Data Spaces

This result can be simplified by a similar technique as in section 3.3.3.

3.4 Effects in High-Dimensional Data Spaces

In this section, we describe some effects occurring in high-dimensional data space which

are not accordingly considered in our models of the previous sections. We still assume a

uniform and independent distribution of data and query points in this section. The mod-

els developed in the previous sections will be modified to take the described effects into

account.

3.4.1 Problems specific to High-Dimensional Data Spaces

The first effect occurring especially in high-dimensional data space is that all data and

query points are likely to be near by the boundary of the data space. The probability that

a point randomly taken from a uniform and independent distribution in a d-dimensional

data space has a distance of r or below to the space boundary can be determined by the

following formula:

.

As figure 36 shows, the probability that a point is inside a 10% border of the data space

boundary increases rapidly with increasing dimension. It reaches 97% for a 16-dimen-

sional data space.

A second effect which is even more important, is the large extension of query regions.

If we use our model for determining an expected value of the nearest neighbor distance,

we observe that the expectation approaches fast surprisingly high values. Figure 37

Psurface r() 1 1 2 r⋅–()d
–=

0 0.1 0.9 1

1
0.9

0.1
0

dimension

p s
ur

fa
ce

(0
.1

)
Figure 36: Probability that a Point is Near by the Data Space Boundary.

Effects in High-Dimensional Data Spaces 79

shows the expected values for the nearest neighbor distance with varying dimension for

the maximum metric and the Euclidean metric for several databases containing between

10,000 and 10,000,000 points. Especially using the Euclidean metric, at a data space

dimension between 13 and 19, the nearest neighbor distance reaches a value of 0.5, i.e.

the nearest neighbor sphere has the same diameter as the complete data space. The size

of the database has a small influence on this effect.

The combination of the two effects described above leads us to the observation that

large parts of a typical nearest neighbor sphere must exceed the boundary of the data

space. The consequences arising from this fact are commonly referred to as boundary

effects. As we will investigate in depth in the subsequent sections, the most important

consequence is that in our models all volume determinations must consider clipping at

the boundary of the data space. On the one hand, the expectation of the nearest neighbor

distance increases by boundary effects, but on the other hand, access probabilities of data

pages decrease because large parts of the Minkowski sum are clipped away.

If dimension further increases, the typical nearest neighbor distance grows to values

by far greater than 1/2. In this case, it becomes very likely that the nearest neighbor

sphere exceeds most of the data space boundary areas.

A similar effect is observable for the page regions. If we assume, following our initial

model, hypercube shaped page regions, the side length of such a region quickly exceeds

0.5. However, it is impossible that the data space is covered only with pages having side

lengths between 0.5 and 1. Basically, the pagination arises from a recursive decomposi-

dimension

E
em

[N
N

-d
is

t]

Figure 37: Expected Nearest Neighbor Distance with Varying Dimension.

N= 10,000
N= 100,000
N= 1,000,000
N=10,000,000

E
m

m
[N

N
-d

is
t]

dimension

Euclidean Metric: Maximum Metric:

80 A Cost Model for Query Processing in High-Dimensional Data Spaces

tion of the data space into parts of approximately the same volume (for uniformity and

independence assumption). Therefore, each page is in each dimension split several

times. That means, only the side lengths 1, 1/2, 1/4, 1/8,... (approximately) can occur. In

high dimensions, it is simply impossible that a page has a side length of 1/2 or smaller in

all dimensions, because if every data page is split at least once in each dimension, we

need a total number of at least 2d data pages to cover the complete data space. For

example, in a 30-dimensional data space, we would need one billion data pages to reach

such a pagination, resulting in a database size of 4,000 GBytes.

Therefore, we will modify our cost models such that for database sizes N less than

NSinglesplit with

this effect is considered.

3.4.2 Range Query

We still assume uniformity and independence in the distribution of data and query

points. For sufficiently high dimension d (such that the inequation above is accom-

plished), we observe that the data space is only split in a number d’ < d of dimensions.

The maximum split dimension d’ can be determined by using the following formula:

.

N= 10,000
N= 100,000
N= 1,000,000
N=10,000,000

Si
de

 le
ng

th

dimension

Figure 38: Side Lengths of Page Regions for Ceff=30.

N NSinglesplit Ceff 2d⋅=≤

d′ log2
N

Ceff

 =

Effects in High-Dimensional Data Spaces 81

The data-pages have an average extension asplit with

in d’ dimensions and an average extension aunsplit with

in the remaining dimensions. Figure 39 clarifies the position of two typical page

regions in the data space for split (y-axis) and unsplit (x-axis) dimensions. The projection

on an axis of a split dimension shows 2 page regions. Between these two regions, there

is a gap of the average breadth 0.5/Ceff which is caused by the MBR property of the page

region (cf. section 3.2). The distance of 0.25/Ceff from the data space boundary is also

due to the MBR property. In contrast, the projection on an axis of an unsplit dimension

shows only one page region with a distance of 0.5/Ceff from the lower and from the upper

space boundary, respectively.

Now, we mark the Minkowski sum of the lower page region (cf. figure 40). We ob-

serve that large parts of the Minkowski sum are located outside the data space. The

Minkowski sum is the volume, from which a query point has to be taken such that the

corresponding page is accessed. On the other hand, we assume that only query points

inside the data space boundary are used as query points. Therefore, the Minkowski sum

has to be clipped at the data space boundary in order to determine the probability that a

asplit 0.5 1
1

Ceff
---------–

 ⋅=

aunsplit 1
1

Ceff
---------–=

d′ d–

0.25/Ceff

0.5/Ceff

0.25/Ceff

0.
5/

C
ef

f

0.
5/

C
ef

f1-1/Ceff

0.5(1-1/Ceff)

0.5(1-1/Ceff)

Figure 39: Side Lengths and Positions of Page Regions in the Modified Model.

82 A Cost Model for Query Processing in High-Dimensional Data Spaces

randomly selected query point accesses the page. We can express the clipping on the

boundary with the following integral formula which summarizes all points v in the data

space (i.e. all possible positions of query points) with a distance less or equal the query

range r from the page region R:

.

Unfortunately, this integral is difficult to evaluate. Therefore, it has to be simplified. The

first observation usable for this purpose is that the distance between the data space

boundary and the page region (0.5/Ceff for unsplit dimensions, 0.25/Ceff for split dimen-

sions) is small compared to a typical radius r (assuming reasonable selectivities). There-

fore, the corresponding gap is always filled, and unsplit dimensions can be ignored for

the determination of the access probability (cf. figure 40, right side).

For maximum metric, the clipped Minkowski sum can be determined in the following

way (cf. figure 41): We take the side length of the split dimension and fill the small gap

Figure 40: Minkowski Sum Outside the Boundary of the Data Space.

Minkowski sum: Clipped sum: Approximated sum:

Xr,hd,ui r() V R S⊕() DS∩ r() … 1 if δM v R,() r≤
0 otherwise

∂v0…∂vd 1–

0

1

∫
0

1

∫= =

0.5
0.5-0.25/Ceff

r
0.5-0.25/Ceff+r

0

1

Figure 41: The Modified Minkowski Sum for the Max. (l.) and Euclidean Metric (r.).

r

Effects in High-Dimensional Data Spaces 83

to the data space boundary. We add the query radius only one time instead of two times

(as we did in our initial model). The result is taken to the power of the number of dimen-

sions split:

.

For a radius greater than , the Minkowski enlargement reaches also the

data space boundary on the opposite. This is taken into account by the application of the

minimum function in the equation above. In this case, the page has an access probability

of 100%.

If we apply the Euclidean metric, an additional complication arises as depicted on the

right side of figure 41. The radius r is typically by far greater than 0.5 (cf. section 3.4.1

and figure 38). Therefore, the spherical part of the Minkowski sum must be clipped. This

volume cannot be determined analytically. However, we will show, how this volume can

be simplified such that a precomputed volume function can be applied to improve the

efficiency of the evaluation.

The basic idea of the precomputation of the clipped sphere volume is to standardize

the clipping process to clip only on the unit hypercube. We scale our clipping region such

that it is mapped to the unit hypercube. Then, we determine the corresponding volume

by looking up in a table of precomputed volumes. After that, we apply the inverse scal-

ing to the volume in the table.

By Vcsi (d,r) we define the volume of the intersection of a sphere with radius r and the

unit hypercube in the d-dimensional space. We let the origin be the center of the sphere.

Obviously, Vcsi (d,0) = 0 and . Between these points, Vcsi is monotoni-

Xr,mm,hd,ui r() min 0.5
0.25
Ceff
----------– r+ 1,

 d′

min 0.5
0.25
Ceff
----------– r+ 1,

log2
N

Ceff

= =

0.5 0.25 Ceff⁄+

Figure 42: The Volume of the Intersection between Sphere and the Unit Hypercube.

r

Vcsi(2,r)

0 1

1

Vcsi d d2,() 1=

84 A Cost Model for Query Processing in High-Dimensional Data Spaces

cally increasing. Figure 42 depicts the intersection volume Vcsi (2, r) in the 2-dimension-

al data space.

Definition 7: Cube-Sphere Intersection

Vcsi(d,r) denotes the intersection volume between the unit hypercube [0..1]d and a d-

dimensional sphere with radius r around the origin:

.

Vcsi(d,r) can be materialized into an array of all relevant dimensions d (e.g. ranging from

1 to 100) and for a discretization of the relevant r between 0 and in a sufficiently high

number of steps (e.g. 10,000). For the determination of the discretization of Vcsi(d,r), the

Montecarlo integration [Kal 86] using the integral formula can be used. Sufficient accu-

racy is achievable with 100,000 points.

Figure 43 depicts Vcsi(d,r) for various dimensions d.

Vcsi(d,r) is used to determine the access probability of a page when a range query

using the Euclidean metric is performed. As we pointed out in the previous discussion,

the range query behaves like a range query in the d’-dimensional space, because all

Vcsi d r,() … 1 if P r≤
0 otherwise

∂v0…∂vd 1–

0

1

∫
0

1

∫=

d

Figure 43: The Volume of the Intersection between a Sphere and the Unit Hypercube.

r d⁄

V
cs

i(
d,

r)

d = 2 4 8 16 32

Effects in High-Dimensional Data Spaces 85

dimensions, where the page region has full extension, can be projected without affecting

the volume of the Minkowski enlargement.

However, the query sphere is not clipped by the unit hypercube, but rather by the

hypercube representing the empty space between the page region and the opposite

boundary of the data space. The side length of this cube aempty is (cf. figures 39-40):

.

To determine clipping on such a hypercube, we have to scale the radius accordingly

before applying Vcsi(d,r):

.

The resulting formula for the access probability using Euclidean range queries is:

.

To show the impact of the effects in high-dimensional spaces to the estimation of the

access probability, figure 44 compares our new function Xr,em,hd,ui(r) with the low-di-

mensional estimate Xr,em,ld,ui(r) and with an intermediate form, where the volume func-

tion Vcsi is still replaced by the normal sphere volume Vs. In the intermediate form only

hypersphere segments completely lying outside the data space are clipped. The database

contains in this experiment 280,000 points in a 16-dimensional data space. Whereas the

aempty
1
2

1
4Ceff
------------+=

Vcsi d r a, ,() a
d

Vcsi d
r
a
---,()⋅=

Xr,em,hd,ui d′ r,() d′
k

 1

2

1
4Ceff
------------–

 k 1
2

1
4Ceff
------------+

 d′ k–
Vcsi k

r
1
2

1
4Ceff
------------+

----------------------,()⋅ ⋅ ⋅
0 k d′≤ ≤

∑=

Figure 44: Various Models in High-Dimensional Data Spaces.

Query Range r

A
cc

es
s

P
ro

ba
bi

lit
y

P
(r

)

m
od

el
 f

or
 lo

w
-d

im
en

si
on

al

in
te

rm
ed

ia
te

 m
od

el

m
od

el
 fo

r h
ig

h-
di

m
en

sio
na

l

86 A Cost Model for Query Processing in High-Dimensional Data Spaces

cost model for low-dimensional query processing quickly yields unrealistic access prob-

abilities larger than 100%, the intermediate model is accurate for ranges less than

r = 0.6. The intermediate model is simpler and more efficient to evaluate, because it does

not depend on the precomputed discretization of the volume function Vcsi.

The expected number of page accesses can be easily estimated if the number of data

pages N / Ceff is a power of two. In this case, the number of split dimensions is equal for

all data pages (although the dimensions, in which the data pages are actually split, may

vary). Otherwise, a number of data pages not equal to a power of two requires some data

pages to be split once more than the rest. As the number of all data pages is

, the number of data pages split once more than the others nd’ is equal to:

.

Likewise, the number of data pages split one time fewer nd’-1 is equal to:

.

Then, the expected number of page accesses is equal to:

.

This equation holds for maximum metric as well as Euclidean metric and for range

queries as well as nearest neighbor queries.

Figure 45: Accuracy of the Models in a 16-dimensional Data Space.

Query Range

N
um

be
r

of
 P

ag
e

A
cc

es
se

s

X-tree
high-dimensional model
low-dimensional model

ndp N Ceff⁄=

nd′ 2
N

Ceff
--------- 2

log2
N

Ceff
--------()

–

⋅=

nd′ 1– ndp nd′–=

Ahd r() nd ′ Xhd log2
N

Ceff
---------() r,()⋅ nd′ 1– Xhd log2

N
Ceff
---------() r,()⋅+=

Effects in High-Dimensional Data Spaces 87

The accuracy of the low-dimensional and the high-dimensional cost model for range

query processing was compared by using a database of 100,000 points taken from a

uniform, independent data distribution in the 16-dimensional data space. The query

range was varied from 0.1 to 0.5 using the maximum metric, yielding selectivities be-

tween and 11.8%. The results are depicted in figure 45. As expected, the

high-dimensional model yields a reasonable accuracy, whereas the low-dimensional

model completely fails in this case.

3.4.3 Nearest Neighbor Query

Typically, query spheres exceed the data space boundary in high-dimensional query pro-

cessing. For range queries, the consequence is a smaller result set compared with the

expectation when neglecting this boundary effect, because only the part of the sphere

inside the data space is able to contribute to the result set. In contrast, nearest neighbor

queries have a fixed result set size (1 point for a 1-nearest neighbor query). The conse-

quence here is that a greater radius is needed to achieve the same result set size in the

presence of boundary effects. The nearest neighbor distance is increased by boundary

effects.

First, we develop an expectation for the volume Vcsi,a(d,r) of the intersection volume

of the unit hypercube and a sphere with radius r, whose center is arbitrarily chosen in the

unit hypercube. We note that this task is similar to the intersection volume Vcsi(d,r) in the

previous subsection. However, the center of the sphere is now arbitrarily chosen and not

fixed in the origin. Vcsi,a(d,r) corresponds to the probability that two points arbitrarily

chosen from the unit hypercube have a distance less or equal to r from each other.

6.5 10 12–⋅

0 1

1

0 r 1-r 1

r

2r

x (position)

in
te

rs
ec

tio
n

(1
-d

im
.)

Figure 46: The Intersection Volume for Maximum Metric and Arbitrary Center Point.

q1

q2

q3

88 A Cost Model for Query Processing in High-Dimensional Data Spaces

When the maximum metric is used for the query, the expectation for the intersection

volume, which is an intersection of two hypercubes, can be determined analytically.

Figure 46 depicts three different positions of queries in the data space. First, we consider

only the projection on the x-axis. The center point of q1 lies exactly on the lower space

boundary. Therefore, only half of the side length (r) is inside the data space. The center

point of q2 has a distance greater than r from the data space boundary. Therefore, the

complete side length of the cube (2r) is inside the data space. Query q3 intersects the

right space boundary, but more than half of the side length is inside the data space. The

right diagram of figure 46 depicts the progression of the part of the side length which is

inside the data space with varying position of the query point. It is r at the points 0 and

1, 2r between the positions r and . Between 0 and r, the intersection increases

linearly. The average of the intersection over all positions is:

.

We can extend this result to the d-dimensional case simply by taking the power of d:

.

This result can be used to determine the expectation of the nearest neighbor distance. A

completely analytical solution is possible if we apply our coarse estimation by equaliz-

ing Vcci,a(d,r) with 1/N:

.

considering boundary effects
neglecting boundary effects

dimension

ex
pe

ct
ed

 d
is

ta
nc

e

Figure 47: The Impact of Boundary Effects on the Nearest Neighbor Distance.

1 r–

Vcci,a 1 r,() 2 r⋅ r
2

2
----–=

Vcci,a d r,() Vcci,a 1 r,()d 2 r⋅ r
2

2
----–

d

= =

1
N
---- Vcci,a d r,() 2 r⋅ r

2

2
----–

d

= = r 2 4 2
1
N
----d⋅––=

Effects in High-Dimensional Data Spaces 89

The impact of boundary effects on the nearest neighbor distance is shown in figure 47.

As expected, boundary effects do not play an important role in low dimensions up to 10.

With increasing dimension, the effect becomes more important. Neglecting boundary

effects, we underestimate the nearest neighbor distance by 10% in the 30-dimensional

space.

The new volume determination Vcci,a(d,r) can also be applied in our exact model for

nearest neighbor estimation. The corresponding probability distribution is in this case:

.

The probability density pmm,hd(r), the expectation for the nearest neighbor distance

Rmm,hd, and the expectation of the number of page accesses Ann,mm,hd can be derived

from the probability distribution as described in section 3.3.

When Euclidean metric is applied, the same problem arises as in section 3.4.2. It is

difficult to determine the intersection volume between the unit hypercube and a sphere

with arbitrary center in an analytical way. To cope with this problem, a similar precom-

putation of the volume may be used. Again, we define the Cube-Sphere Intersection with

Arbitrary Center, Vcsi,a(d,r) by a multidimensional integral which can be evaluated by

using the Montecarlo integration [Kal 86]. The result can be stored in an array for use by

the model.

r d⁄

V
cs

i(d
,r

)

d = 2 4 8 16 32

Figure 48: The Intersection Volume for Euclidean Metric and Arbitrary Center Point.

Pmm,hd r() 1 1 Vcci,a d r,()–()N
– 1 1 2 r⋅ r

2

2
----–

d

–

N

–= =

90 A Cost Model for Query Processing in High-Dimensional Data Spaces

Definition 8: Cube-Sphere Intersection with Arbitrary Center

Vcsi,a(d,r) denotes the intersection volume between the unit hypercube [0..1]d and a d-

dimensional sphere with radius r around a point arbitrarily chosen from the unit hy-

percube:

.

Figure 48 shows Vcsi,a(d,r) for the dimensions 2, 4, 8, 16 and 32. The intersection vol-

ume was determined for all dimensions between 1 and 100 for each radius between 0 and

 in 10,000 intervals using 100,000 steps of the Montecarlo integration [Kal 86]. The

10,000 intervals can be used for an efficient numerical evaluation of the expectation:

The probability distribution of the nearest neighbor distance r considering boundary

effects is for the Euclidean metric:

.

The corresponding density function is:

.

Provided that Vcsi,a[d,i] is an array with the range [1..dmax,0..imax] which contains the

precomputed values of Vcsi,a(d,r) for r ranging from 0 to with

,

we are able to replace integral formulas such as the expected value of the nearest neigh-

bor distance by a finite summation:

=

=

Vcsi,a d r,() 1 if v w– r≤
0 otherwise

∂v∫
0 … 0, ,()

1 … 1, ,()

∫

∂w∫
0 … 0, ,()

1 … 1, ,()

∫=

d

Pem,hd r() 1 1 Vcsi,a d r,()–()N–=

pem,hd r()
∂Pem,hd r()

∂r
------------------------ N 1 Vcsi,a d r,()–()N 1– ∂Vcsi,a d r,()

∂r
---------------------------⋅ ⋅= =

d

i
r imax⋅

d
----------------=

Rem,hd r pem,hd r()∂r⋅

0

∞

∫

N r 1 Vcsi,a d r,()–()N 1– ∂Vcsi,a d r,()

∂r
---------------------------⋅ ∂r⋅

0

d

∫⋅

Effects in High-Dimensional Data Spaces 91

≈

= .

The infinite upper bound of the integral can be replaced by , because the derivative

of Vcsi,a(d,r) is constantly 0 for r larger than , while all other terms have finite values.

The derivative is replaced by the local difference.

The expected value of the number of page accesses can be determined in the same

way:

=

= .

The evaluation of these formulas is efficient, because the required volume functions

Vcsi,a(d,r) and Vcsi(d,r) are independent of any database specific setting such as the num-

ber of points in the database, the point density or the effective page capacity Ceff. The

predetermined discretization of these functions requires a few megabytes of storage and

can be statically linked with the programs evaluating cost models. Costly Montecarlo

integration processes are run only at compile time, not at run-time. Further improvement

is achievable if we consider that the probability density only contributes in the interval

between rlb and rub (cf. section 3.3.3). Integration and summation can be bounded to this

area:

≈ .

To evaluate the cost formula for query processing using nearest neighbor queries, we

constructed indexes with varying data space dimensionality. All databases contained

N
i d⋅
imax
2

--------- 1 Vcsi,a d i,[]–()N 1– Vcsi,a d i,[] Vcsi,a d i 1–,[]–

d imax⁄()
--⋅ ⋅

i 1=

imax

∑⋅

N d⋅
imax

--------------- i 1 Vcsi,a d i,[]–()N 1–
Vcsi,a d i,[] Vcsi,a d i 1–,[]–()⋅ ⋅

i 1=

imax

∑⋅

d

d

Ann,em,hd Ar,em,hd r() pem,hd r()∂r⋅

0

∞

∫

N Ar,em,hd
i d
imax
---------() 1 Vcsi,a d i,[]–()N 1–

Vcsi,a d i,[] Vcsi,a d i 1–,[]–()⋅
i 1=

imax

∑⋅

Rem,hd N
i d⋅
imax

------------- 1 Vcsi,a d i,[]–()N 1– Vcsi,a d i,[] Vcsi,a d i 1–,[]–

d imax⁄
--⋅ ⋅

i rlb imax⋅

d
------------------=

rub imax⋅

d

∑⋅

92 A Cost Model for Query Processing in High-Dimensional Data Spaces

100,000 points taken from a uniform and independent distribution. The effective capac-

ity of the data pages was 48.8 in all experiments (the block-size was chosen correspond-

ingly). The dimension varied from 4 to 20. We performed nearest neighbor queries using

maximum metric and Euclidean metric on all these indexes and compared the observed

page accesses with the predictions of the low-dimensional and the high-dimensional

model developed in this chapter. The results are depicted in figure 49. The diagram on

the left side shows the results for maximum metric, the right diagram shows the results

for Euclidean Metric. Whereas the cost model for high-dimensional query processing

provides accurate estimates over all dimensions, the low-dimensional model is only

accurate in the low-dimensional area up to d = 8. Beyond this area, the low-dimensional

model completely fails to predict the number of page accesses. Not even the order of

magnitude is correctly revealed by the low-dimensional model. We should note that the

low-dimensional model is mainly related to the original model of Friedman, Bentley and

Finkel [FBF 77] and the extension of Cleary [Cle 79].

3.5 Data Sets from Real-World-Applications

It has been extensively investigated that data sets from real applications consistently

violate the assumptions of uniformity and independence [FK 94, BF 95]. In this section,

we describe the effects and adapt our models to take non-uniformity and correlation into

account.

Low-d Model
High-d Model
X-Tree

N
um

be
r

of
 P

ag
e

A
cc

es
se

s

Dimension Dimension

Figure 49: Accuracy of the Cost Models for Nearest Neighbor Queries.

Data Sets from Real-World-Applications 93

3.5.1 Independent Non-Uniformity

It was already proven in the well-known cost model by Friedman, Bentley and Finkel

[FBF 77] that non-uniformity has no influence on the cost of nearest neighbor query

processing if no correlation occurs and if the data distribution is smooth. Smoothness

means in this context that the point density does not vary severely inside the Minkowski

enlargement of a page region. The intuitive reason is the following: Query points are

assumed to be taken from the same distribution as data points. For the access probability

of a page, we have to determine the fraction of query points which are inside the

Minkowski enlargement of the page. If the point density is over the average in some

region (say by a factor c) due to non-uniformity, then both, the average volume of the

page regions and the average volume of the query regions are scaled by the factor 1/c.

This means that the Minkowski sum is scaled by 1/c. But then, the number of points

inside a given volume is by a factor of c higher than in the uniform case. Therefore, the

number of points in the Minkowski enlargement is the same as in the uniform case.

Range queries are difficult to model in the case of non-uniformity, because in the

same way as the point density changes with varying location, the size of the result set and

the number of page accesses will change.

3.5.2 Correlation

For real data both the assumption of independent non-uniform data distribution is as

unrealistic as the assumption of independent uniform distribution. One of the most im-

portant properties of real data is the correlation.

Correlation means that one or more attribute values are dependent on the values of

one or more other attributes. Typically, the dependence is not strict in the sense that the

depending value can be directly determined from the other attributes. We can observe a

small interval or a small set of possible values where the depending attribute is located

with high probability.

The geometrical meaning of a correlation is the following: The d-dimensional space

is not completely covered with data points. Instead, all points are collected on a lower-

dimensional area which is embedded in the data space. An example is shown in

figure 50, where all data points are located on a 1-dimensional line which is embedded

in the 2-dimensional data space. As depicted, the line is not necessarily a straight line. It

is also possible that there are several lines which are not connected, or that the data

points are located in a cloud around the line.

94 A Cost Model for Query Processing in High-Dimensional Data Spaces

A concept which is often used to handle correlation is the singular value decomposi-

tion (SVD) [DH 73, Fuk 90, GL 89] or the principal component analysis (PCA) [FL 95,

PFTV 88, Str 80]. These techniques transform the data points directly in a lower-dimen-

sional data space by rotation operations and eliminate the correlation in this way. The

point set is indexed in the lower-dimensional space, and query processing can be mod-

eled by using our techniques presented in section 3.2 - 3.5.

However, SVD and PCA can only detect and eliminate linear correlations. A linear

correlation means a single straight line in our example. If there are, for example, two

warped lines where data points are located on, SVD and PCA will completely fail. We

will show later that the performance of query processing anyway takes benefit from the

fact that the actual dimension of the point set is lower than the dimension of the data

space. Therefore, an explicit transformation is not required.

The general problem of correlations is also depicted in figure 50. If we blow up a

circle around some data point, we observe that the number of points is not proportional

to the area of the circle as we would expect. Because the actual dimension of the data set

is 1, the number of points enclosed in a circle with radius r is proportional to the radius

r. The same observation is valid if we blow up a cube or some other d-dimensional object

which does not prefer single dimensions for the extension.

This provides us with a means to define the actual dimension of the data set. Under

uniformity and independence assumptions the number of points enclosed in a hypercube

with side length s is proportional to the volume of the hypercube:

.

Figure 50: Correlations and their Problems.

nencl ρ s
d⋅ ρ V⋅= =

Data Sets from Real-World-Applications 95

Real data sets form a similar power law using the fractal dimension DF of the data set:

where is the fractal analogue to the point density . The power law was used by

Faloutsos and Kamel [FK 94] for the ‘box counting’ fractal dimension. We use this

formula directly for the definition of the fractal dimension:

Definition 9: Fractal Dimension

The fractal dimension DF of a point set is the exponent which the following power law

is valid for:

.

Basically, the fractal dimension is not constant over all scales. It is possible that the

fractal dimension changes, depending on the size of the volume V. In practice, the fractal

dimension is often constant over the wide range of the relevant scales. It is also possible

that the fractal dimension is not location-invariant, i.e. a subset of the data set forms a

different fractal dimension than the rest of the data set. Intuitively, a reason for this

behavior can be that our database contains different kinds of objects (e.g. oil paintings

and photos in an image database).

3.5.3 Model Dependence on the Fractal Dimension

Our first consequence to the observation of a fractal dimension DF is that it is dependent

on DF rather than on the embedding dimension d which model is to use. If DF is small,

then most data points and most queries are far away from the data space boundary.

Therefore, we need not apply clipping on the data space boundary and we must not

consider clipping in our model. For this case, we have to adapt the cost model for low-

dimensional data spaces (cf. section 3.2-3.3). In contrast, if DF is large, effects of high-

dimensional data spaces occur. Therefore, the model for high-dimensional data spaces

must be adapted for this case (cf. section 3.4). For moderate DF both basic models can

be applied. For reasons of practicability, we assume boundary effects if the fractal di-

mension DF is greater or equal to the maximum split dimension d’:

.

nencl ρF s
DF⋅ ρF V

DF d⁄
⋅= =

ρF ρ

nencl ρF V
DF d⁄

⋅=

DF d′ log2
N

Ceff

 =≥

96 A Cost Model for Query Processing in High-Dimensional Data Spaces

3.5.4 Range Query

First, we want to determine, how the access probability of a page changes in presence of

a correlation described by the fractal dimension DF. Let us assume that the fractal point

density is constant throughout the area of the page region and its Minkowski enlarge-

ment. In the case of low DF, we can estimate the side length a of a page region according

to the power law:

; .

In the high-dimensional case, we have still d’ splits explicitly applied to achieve data

pages with a suitable number of points (Ceff). However, we must take into account that a

split in some dimension automatically leads to a reduced extension in some correlated

dimension. We assume the extension

(cf. section 3.4.2) in a number of dimensions with

and full extension (up to MBR effects, cf. section 3.4.2)

in the remaining dimensions.

The Minkowski sum of the page region and a query range r corresponds to the access

probability of the page under the assumptions that data points are correlated and that

query points are taken from a uniform, independent distribution. Following our discus-

sion in section 3.4.2, we get the following access probabilities for Euclidean metric and

maximum metric and for the high-dimensional and the low-dimensional case, respec-

tively:

= ,

ρF

Ceff ρF

ald

1
1

Ceff
---------–

 DF

⋅= ald

Ceff

ρF
---------DF 1

1
Ceff
---------–

 ⋅=

asplit 0.5 1
1

Ceff
---------–

 ⋅=

d″

d″ d′ d⋅
DF

------------=

aunsplit 1 1 Ceff⁄–=

d d″–

Xr,mm,ld,c/ui r() min
Ceff

ρF
---------DF 1

1
Ceff
---------–

 ⋅ r 1,+

d

Data Sets from Real-World-Applications 97

= ,

= ,

= .

Starting from this point, the expectation for the number of page accesses can be easily

determined by multiplication with the number of pages .

For real applications, uniform distribution of the query points is not a realistic as-

sumption. A better alternative is to assume that data points and query points are taken

from the same distribution and yield the same fractal dimension DF. Instead of taking the

volume of the Minkowski enlargement for the access probability, we should rather de-

termine the percentage of the query points lying in the Minkowski enlargement. The

power law can be used for this purpose, such as:

=

= .

The other equations can be modified in the same way.

3.5.5 Nearest Neighbor Query

Following our coarse model for the estimation of the nearest neighbor distance (cf. sec-

tion 3.3.1), we can easily determine a volume having an expectation of 1 point enclosed.

Like in the preceding section, we assume that the distribution of the query points follows

the distribution of the data points. The volume can then be estimated by using the power

law:

Xr,mm,hd,c/ui r() min 0.5
0.25
Ceff
----------– r 1,+

log2
N

Ceff

 d
DF
-------⋅

Xr,em,ld,c/ui r() d

k

1
1

Ceff
---------–

 Ceff

N
---------DF⋅

k
πd k–

Γ d k–
2

----------- 1+

------------------------------ r
d k–⋅ ⋅ ⋅

0 k d≤ ≤
∑

Xr,em,hd,c/ui r() d″
k

 1

2

0.25
Ceff
----------–

 k 1
2

0.25
Ceff
----------+

 d″ k–
Vcsi d″ r

1
2

0.25
Ceff
----------+

--------------------,()⋅ ⋅ ⋅
0 k d″≤ ≤

∑

N Ceff⁄

Xr,mm,ld,c r() Xr,mm,ld,c/ui r()
DF d⁄

min
Ceff

ρF
---------DF 1

1
Ceff
---------–

 ⋅ r 1,+

DF

1 ρF V
DF d⁄

⋅= Rmm,ld,cor
1

2 ρF
DF⋅

---------------------≈

98 A Cost Model for Query Processing in High-Dimensional Data Spaces

for the maximum metric and

for the Euclidean metric. If DF is sufficiently large (according to section 3.5.4), bound-

ary effects must be considered. For the maximum metric, we get the following formula:

.

For the Euclidean metric, we need the inverse function of the cube-sphere intersection

with arbitrary center, (cf. section 3.4.3). The corresponding discretization of

 can be gained in a single pass of the discretization of . The estima-

tion of the nearest neighbor distance is:

.

For our exact model, we have to adapt our distribution function in a suitable way.

Again, we have to apply the power law:

,

where V(r) is the volume of the d-dimensional hypersphere with radius r in the case of

the Euclidean metric and the volume of the d-dimensional hypercube with side length 2r

in the case of the maximum metric. We have to make a suitable distinction between the

low-dimensional and the high-dimensional case when choosing V(r). The rest is

straightforward and can be handled as in section 3.3-3.4: An expectation for the nearest

neighbor distance can again be gained by integrating r multiplied with the derivative of

P(r). The new distribution function must be multiplied with the Minkowski sum as in

section 3.3-3.4. For the maximum metric, we get the following formulas for the low-

dimensional and the high-dimensional case, respectively:

,

1
ρF
------ V

DF d⁄ π
DF

Γ d 2 1+⁄()
DF d⁄-------------------------------------- r

DF⋅= = Rem,ld,cor
Γ d 2 1+⁄()d

π
-------------------------------- 1

ρF
------DF⋅≈

1 ρF 2r
r

2

2
----–

DF

⋅= Rmm,hd,cor 2 4 2
1

ρF
------DF⋅––≈

Vcsi,a
1–

d r,()

Vcsi,a
1–

d r,() Vcsi,a d r,()

1
ρF
------ Vcsi,a r()

DF d⁄
= Rem,hd,cor Vcsi,a

1– 1
ρF

 d DF⁄
()≈

P r() 1 1
ρF

N
------ V r()

DF

d

⋅–

N

–=

Ann,mm,ld,c
N

Ceff
-------- min

Ceff

ρF
--------DF 1

1
Ceff
--------–

 ⋅ r 1,+

DF

∂
∂r
----- 1 1

ρF

N
------ 2r()

DF⋅–

N

–
 ⋅

∂r

0

∞

∫=

Data Sets from Real-World-Applications 99

.

For the Euclidean metric, the corresponding result is

· ,

· .

Rules facilitating the evaluation of these formulas were presented in section 3.3-3.4.

To evaluate our model extension, indexes on several data sets from real-world appli-

cations (cf. chapter 1) were constructed. Our first application is a similarity search sys-

tem for CAD drawings provided by a subcontractor of the automobile industry [BK 97].

The drawings were transformed into 16-dimensional fourier vectors. Our second appli-

cation is a content based image retrieval using color histograms with 16 histogram bins

[Sei 97]. Both databases contained 50,000 objects. Our third application contained 9-

dimensional vectors from weather observations. The fractal dimensions of our data sets

are 7.0 (CAD), 8.5 (Color Histograms) and 7.3 (Clouds). We performed nearest neigh-

bor queries using the Euclidean and the maximum metric and compared the results ob-

tained with the predictions of the following 3 cost models:

• The original models by Friedman, Bentley and Finkel [FBF 77] and Cleary

[Cle 79], cf. section 3.3

• our extension to high-dimensional query processing (cf. section 3.4)

Ann,mm,hd,c
N

Ceff
-------- min

1
2

0.25
Ceff
----------–

 r 1,+

log2
N

Ceff

∂
∂r
----- 1 1

ρF

N
------ 2r

r2

2
----–

DF

⋅–

N

–
 ⋅

∂r

0

∞

∫=

Ann,em,ld,c
N

Ceff
--------- d

k

1
1

Ceff
---------–

 Ceff

N
---------DF⋅

k
πd k–

Γ d k–
2

----------- 1+

------------------------------ r
d k–⋅ ⋅ ⋅

0 k d≤ ≤
∑

DF

d

0

∞

∫=

∂
∂r
----- 1 1

ρF

N

π
DF

Γ d 2 1+⁄()
DF d⁄-------------------------------------- r

DF⋅ ⋅–

N

–

∂r

Ann,em,hd,c
N

Ceff
--------- d″

k

 1

2

0.25
Ceff
----------–

 k 1
2

0.25
Ceff
----------+

 d″ k–
Vcsi d″ r

1
2

0.25
Ceff
----------+

--------------------,()⋅ ⋅ ⋅
0 k d″≤ ≤

∑

DF

d

0

∞

∫=

∂
∂r
----- 1 1

ρF

N
------ Vcsi,a d r,()

DF

d

⋅–

N

–

∂r

100 A Cost Model for Query Processing in High-Dimensional Data Spaces

• our extension to non-uniformity and correlation

The results are depicted in figure 51. In contrast to the low-dimensional and the high-

dimensional model, the new model considering correlation yields sufficient accuracy in

all performed experiments.

3.6 Modeling the Storage System

The physical structure of a disk drive [PH 90, Sie 90, SPG 91] is depicted in figure 52:

The disk drive consists of a row of magnetic disks which are fixed above each other on

a common axis. The disks rotate with high speed. Data stored on the disk is accessed by

a set of disk heads fixed on a common disk arm which can be moved orthogonally to the

rotation direction (i.e. in radial direction).

If some data is requested from a random position on the disk drive, the following

single actions are performed: First, the disk head is moved to the corresponding track

(positioning time). Then, the system waits until the requested data is positioned below

the disk head (rotational delay time). Finally, the data is transferred to the main memory

(transfer time). The unit of transfer between the disk drive and the main memory is a

sector or physical page. There is no positioning delay if the disk head is already posi-

tioned at the right track of the right disk. This case happens if contiguous blocks are read

in separate reading actions from disk. If the access is switched from one magnetic disk

to a different one, the disk heads have to be repositioned, because the tracks of different

disks are not exactly aligned.

X-tree
low-d model
high-d model
new model

N
um

be
r

of
 P

ag
e

A
cc

es
se

s

CAD Color Clouds

Figure 51: Accuracy for Data Sets from Real-World Applications.

Modeling the Storage System 101

For indexes which are dynamically constructed and which do not consider relative

positions of pages on disks in their construction algorithms and in their query processing

algorithms (such as all structures presented in chapter 2), we can make the following

simplifying assumptions:

All accesses have a constant logical blocksize which is not identical to the physical

page size. According to the author’s experience, it is not even important that logical

blocks are correctly aligned to physical blocks, because the additional time for contigu-

ously reading a superfluous sector is negligible compared to positioning time and delay

time.

Every access is independent of the preceding access. Therefore, the disk arm is repo-

sitioned for almost every access. We summarize the positioning time and the rotational

delay time to the seek time. To determine typical values for seek time and transfer time

for nowaday’s disk drives, we performed the following experiment: We measured block

accesses with varying block size and random position in a large file. The result is pre-

sented in figure 53 (access time plus/minus standard deviation). Obviously, the access

time is perfectly linear in the logical block size. We observe the following law for the

access time tacc:

,

Figure 52: Structure of a Disk Drive [SPG 91].

taccess tseek b ttransfer⋅+=

102 A Cost Model for Query Processing in High-Dimensional Data Spaces

where b is the size of the block in bytes.

We can determine seek time and transfer time by linear regression. In our example,

we get the following values:

tseek = 20 msec,

ttransfer = 975 nsec/Byte.

In these values, the overhead of the file system and the basic load of disk drives in a

typical UNIX system is considered. Neglecting the basic load leads to a seek time of

12 msec and a transfer time of 200 nsec/Byte.

Figure 53: Access Time of Disk Drive with Varying Logical Blocksize.

Logical Blocksize [Bytes]

A
cc

es
s

T
im

e
[S

ec
on

ds
]

103

Chapter 4
Dynamic Optimization
of the Logical Block Size

The first application of our cost model presented in chapter 3 is the optimization of the

logical block size used in the index. For this purpose, we propose a special new index

structure which is capable of adapting the logical block size dynamically and indepen-

dently in different pages of the index.

4.1 Motivation

In recent years, a general criticism on high-dimensional indexing has come up. Most

multidimensional index structures have an exponential dependency (with respect to the

time for processing range queries and nearest neighbor queries) upon the number of

dimensions. To illustrate this, figure 54 shows our model prediction of the processing

time of the X-tree for a uniform and independent data distribution (constant database

size 400 KBytes). With increasing dimension d, the processing time grows exponential-

ly until saturation comes into effect, i.e. a substantial ratio of all index pages is accessed.

In very high dimensions , virtually all pages are accessed, and the processing time

approaches thus an upper limit.

In recognition of this fact, an alternative approach is simply to perform a sequential

scan over the entire data set. The sequential scan causes substantially fewer effort than

d 25≥

104 Dynamic Optimization of the Logical Block Size

processing all pages of an index, because the reading operations in the index cause ran-

dom seek operations whereas the scan reads sequentially. The sequential scan causes

seldom disk arm movements or rotational delays which are of no consequence compared

to the transfer cost. Assuming a logical block size of 4 KBytes, contiguous reading of a

large file is by a factor >12 faster than reading the same amount of data from random

positions (cf. section 3.6).

A second advantage of the sequential scan over index-based query processing is its

storage utilization of 100%. In contrast, index pages have a storage utilization between

60% and 70% which causes a further performance advantage of about 50% for the se-

quential scan when reading the same amount of data. The constant cost of the sequential

scan is also depicted in figure 54. The third advantage of the sequential scan is the

lacking overhead of processing the directory. We can summarize that the index must not

access more than 5% of the pages in order to remain competitive with the sequential

scan.

In figure 54, the break-even point of the two techniques is reached at d = 7. The trade-

off between the two techniques, however, is not simply expressed in terms of the number

of dimensions. For instance when data sets are highly skewed (as real data sets often

are), index techniques remain more efficient than a scan up to a fairly high dimension.

Similarly, when there are correlations between dimensions, index techniques tend to

benefit compared with scanning. Obviously, the number of data objects currently stored

in the database plays an important role since the sequential scan is linear in the number

of objects whereas query processing based on indexes is sub-linear.

X-tree
Sequential Scan

To
ta

l E
la

ps
ed

 T
im

e
[S

ec
.]

Dimension

Figure 54: Performance of Query Processing With Varying Dimension.

Basic Idea 105

Figure 55 shows the model predictions of the X-tree for 10,000,000 points uniformly

and independently chosen from a 20-dimensional data space with varying block size

from 1 KByte to 1 GByte. In this setting, the performance is relatively bad for usual

block sizes between 1 KBytes and 4 KBytes, fast improving when increasing the block

size. A broad and stable optimum is reached between 64 KBytes and 256 KBytes. Be-

yond this optimum, the performance deteriorates again. Due to the storage utilization

below 100%, the sequential scan outperforms the X-tree for very large block sizes. This

result shows that block size optimization is the most important advice to improve high-

dimensional indexes.

The rest of this chapter is organized as follows: Section 4.2 explains the general idea

and an overview of our technique. Section 4.3 shows the architectural structure of the

DABS-tree. The following sections show how operations such as insert, deletion and

search are handled. In section 4.7 we show how our model developed in chapter 3 can be

applied for a dynamic and independent optimization of the logical block size. Finally, we

present an experimental evaluation of our technique.

4.2 Basic Idea

As we pointed out in section 4.1, there are three disadvantages for query processing

based on index structures compared to the sequential scan:

• data is read in too small portions

0

50

100

150

200

250

300

1K 4K

16
K

64
K

25
6K 1M 4M

16
M

64
M

25
6M 1G

Block-Size

T
ot

al
 E

la
ps

ed
 T

im
e

[S
ec

.]

X-tree

Sequential Scan

Figure 55: Block Size Optimization.

106 Dynamic Optimization of the Logical Block Size

• index structures have a substantially lower storage utilization

• processing of the directory causes overhead

In this chapter, we will present the DABS-tree (Dynamic Adaptation of the Block Size)

which tackles all three problems. We propose a new index structure claiming to outper-

form the sequential scan in virtually every case. In dimensions where index-based tech-

niques are superior to the sequential scan, the efficiency of these techniques is retained

unchanged. In an area of moderate dimensionality, both approaches, conventional in-

dexes as well as the scan, are outperformed.

The first problem is solved by a suitable page-size optimization. As we face the prob-

lem that the actual optimum of the logical block size is dependent on the number of

objects currently stored in the database and on the data distribution (which may also

change over time), the block size has to be adapted dynamically. After a page has been

affected by a certain number of inserts or deletions, the page is checked whether the

number of points currently stored in the page is close enough to the optimum. Otherwise,

the page is split or a suitable partner is sought for balancing or merging.

This means that pages with different logical block size are at the same time stored in

the index. Although a constant block size facilitates management, no principal problem

arises when sacrificing this facilitation. To solve the second problem, storage utilization,

we propose to allow continuously growing block sizes, i.e. we also give up the require-

ment that the logical block size is a multiple of some physical block size or a power of

two or the demand that the block size is only changed by doubling or division by two.

Instead, every page has exactly the size which is needed to store its current entries. When

an entry is inserted to a page, the block size increases, and the page must usually be

stored to a new position in the index file. To avoid fragmentation of the file, we propose

garbage collection.

The third problem, directory overhead, cannot be completely avoided by our tech-

nique since we do not want to cancel the directory. The directory overhead, however, is

weakened, because we simplify the directory. Instead of a hierarchical directory, we only

maintain a linear single-level directory which is sequentially scanned. The block size

optimization also helps to reduce the directory overhead, because this overhead is taken

into account by the optimization.

Structure of the DABS-Tree 107

4.3 Structure of the DABS-Tree

The structure of the DABS-tree is depicted in figure 56. Each directory entry contains

the following information: The page region in form of a minimum bounding rectangle,

the reference (i.e. the background storage address) to the page and additionally the num-

ber of entries currently stored in the page. The number of entries is also used to deter-

mine the corresponding block size of a data page before loading.

The directory consists simply of a linear array of directory entries. We intentionally

cancel the hierarchically organized directory, because the efficiency of query processing

is not increased by hierarchies but rather decreased. We confirm this effect by the follow-

ing consideration:

In our experiment presented in section 4.1 (cf. figure 55, too), we determined an

optimum block size of 64 KBytes. For 10,000,000 data points in a 20-dimensional space,

we need 20,000 data pages to store the points. Using a hierarchical directory, we need 78

index pages at the first directory level and the root-page. Even if we assume no overlap

among the directory pages, query processing requires an average of 44 directory page

accesses. The cost for these accesses are 1.14 seconds of I/O time. A sequential scan of

page region mbr0
number of entr. n0

p0
p1
p2

...

pn0-1

mbr1
n1

mbr2
n2

mbr3
n3

pn0
pn0+1

...

... ...

Directory

Data Pages

Figure 56: Structure of the DABS-Tree.

reference to page

108 Dynamic Optimization of the Logical Block Size

a linear directory, however, requires 0.71 seconds. Both kinds of directory cost are neg-

ligible compared to 49 seconds of cost for accessing the data pages. Even though, the

sequential scan of a linear directory causes fewer effort than a hierarchical directory.

This observation even holds for fairly low dimensions.

The data pages contain only data-specific information. Besides the point data and

eventually some additional application-specific information, no management informa-

tion is required. The data pages are stored in random order in the index file. Convention-

al index structures usually do not utilize the space in the data pages to 100% in order to

leave empty space for future insert operations. In contrast, the DABS-tree stores the data

pages generally without any empty position inside a data page and without any gap

between different pages. Whenever a new entry is inserted to a data page, the page is

stored at a new position. The empty space in the file where the data page formerly used

to be is passed to a free memory management. A garbage collection strategy is applied

to build larger blocks of free memory, and, thus to avoid fragmentation (cf. section 4.5).

Temporarily, the free blocks decrease the storage utilization of the index structure below

100%. The free blocks, however, are never subject to a reading operation during insert

processing. Therefore, the performance of query processing cannot be negatively affect-

ed.

In order to guarantee overlap-free page regions, we hold additionally to the linear

directory a kd-tree [Ben 75, Ben 79]. As we explained in section 2.4.4, a kd-tree parti-

tions the data space in a disjoint and overlap-free way. The page regions of the DABS-

tree are always located inside a single kd-tree region. The kd-tree facilitates insert pro-

cessing, because it offers unambiguously a data page for the insert operation. In contrast,

the heuristics for choosing a suitable page in the X-tree cannot guarantee that no overlap

occurs. The kd-tree is also used for the merging operation which may be necessary due

to delete operations, or because the optimal page size has increased on the basis of a

changed data distribution. The kd-tree is not used for search.

4.4 Search in the DABS-Tree

Point queries and range queries are handled in a straightforward way. First, the directory

is sequentially scanned. All data pages qualifying for the query (i.e. containing the query

point or intersecting with the query range, respectively) are determined, loaded and pro-

cessed.

Search in the DABS-Tree 109

Nearest neighbor queries and k-nearest neighbor queries are processed by a variant

of the HS algorithm (cf. section 2.3.4, [HS 95]). As the directory is flat, the algorithm

can even be simplified, because the active page list (APL) is static in absence of a hier-

archy. For hierarchically organized directories, query processing requires permanent in-

sert operations to the APL, because in each processing step the pivot page is replaced by

its child pages. Therefore, the APL must be re-sorted after processing a page.

In our case, the nearest neighbor algorithm works in two phases: The first phase scans

the directory sequentially. During the scan, the distance between the query point and

each page region is determined and stored in an array. Finally the distances in the array

are sorted by the Quicksort algorithm, for instance [Hoa 62, Sed 78]. In the second

Point DABS_nearest_neighbor_query (Point q) {
typedef struct {float distance, int pageno, int num_objects} AplEntry ;
AplEntry apl [number_of_pages]
int i, j;
Point cpc ;
float pruning_dist = +infinity ;

// First Phase
DIRECTORY dir = read_directory () ;
for (i = 0 ; i < number_of_pages ; i ++) {

apl [i] . distance = mindist (q, dir [i] . mbr) ;
apl [i] . pageno = dir [i] . pageno ;
apl [i] . num_objects = dir [i] . num_objects ;

}
qsort (apl, number_of_pages, sizeof (AplEntry), cmp_float) ;

// Second Phase
for (i = 0 ; i < number_of_pages && apl [i] . distance < pruning_dist ; i ++) {

Page p = LoadData (apl [i] . pageno, apl [i] .num_objects) ;
for (j = 0 ; j < apl [i] . num_objects ; j ++)

if (dist (q, p . object [j] . point) < pruning_dist) {
cpc = p . object [j] . point ;
pruning_dist = dist (q, p . object [j] . point) ;

}
}
return cpc ;

}

Figure 57: Algorithm for Exact Match Queries.

110 Dynamic Optimization of the Logical Block Size

phase, the data pages are loaded and processed in the order of increasing distances. The

closest point candidate determines the pruning distance. Query processing stops when

the current page region is farther away from the query point than the closest point candi-

date. Figure 57 depicts the algorithm for nearest neighbor queries. The k-nearest neigh-

bor algorithm works analogously with the only difference that a closest point candidate

list consisting of k entries is maintained and that the last entry in this list determines the

pruning distance.

4.5 Handling Insert Operations

4.5.1 Searching the Data Page

To handle an insert operation, we search in the kd-tree, which is held in addition to the

linear directory, for a suitable data page. The kd-tree has the advantage to partition the

data space in a complete and disjoint fashion which makes the choice of the correspond-

ing page unambiguous. Eventually, the MBR in the linear directory which is always

located inside the corresponding kd-tree region (cf. figure 58) must be slightly enlarged.

The page is loaded to the main memory, and the point is inserted. Usually, the page

cannot be stored at its old position since we enforce a 100% storage utilization of pages.

Therefore, it is appended to the end of the index file. The empty block at the former

position of the page is passed to a free storage manager which performs garbage collec-

Figure 58: The Additional kd-tree.

a

b

c

3 1

24

a

b c

1 2 3 4

kd-tree:

Handling Insert Operations 111

tions if the overall storage utilization of the index file decreases below a certain thresh-

old value (e.g. 90%).

Note that in contrast to conventional index structures, the overall storage utilization

can never decrease the efficiency of query processing, because empty parts of the index

file are not subject to reading operations. By a low storage utilization, we only waste

storage memory, but not processing time.

4.5.2 Free Storage Management

The free storage manager currently observes the storage utilization of the index file.

When the storage utilization reaches some threshold value sumin, the next new page is

not appended to the end of the index file. Instead, a local garbage collection is raised

which performs local restructuring of the file to collect empty pages as follows:

Let the size of the next page to be stored be s. The storage manager searches for the

shortest interval of subsequent pages in the index file covering s Bytes of empty space.

With a suitable data structure to organize the empty space, this search can be performed

in O (log n) time for the average case. Once the shortest interval with s Bytes of empty

space is found, we load all pages in this interval to the main memory and restore them

densely, thus creating a contiguous empty space of at least s Bytes. We store the new

page to this space.

Now we will claim an important property of the restructuring action: Locality. We

show that the size of the interval in the file which is to be restructured is bounded by the

size s of the new page multiplied with some factor depending on the storage utilization

sumin.

Lemma 6: Locality of Restructuring

In an index file with a storage utilization , there exists an interval with the

length

containing at least s Bytes of free storage.

Proof (Lemma 6)

Assume that all intervals of the length l have less than s Bytes of free storage. Then,

the number e of free Bytes in the file with length f is bounded by:

su sumin≤

l
s

1 sumin–
---------------------=

112 Dynamic Optimization of the Logical Block Size

By the definition of the storage utilization, we get the following inequation

which contradicts the initial condition .

❏

If we choose, for instance, a storage utilization of sumin = 50%, Lemma 6 tells us that

restructuring is bounded to an interval twice as large as the size s of the page we want to

store. For a storage utilization of sumin = 90%, the interval is at most ten times as large

as the new page.

As there are no specific overflow conditions in our index structure, the pages are

periodically checked by using a cost estimation whether they must be split. For the

details, cf. section 4.7.

4.6 Handling Delete Operations

Deleting in the DABS-tree is straightforward. The point is deleted from the correspond-

ing page and a small block is passed to the free storage manager. If the storage utilization

falls below the threshold sumin, a local restructuring action is raised for the last data page

in the file.

Since there is no clear underflow condition in the DABS-tree, the pages are periodi-

cally tested by using a cost model whether they are to merge.

4.7 Dynamic Adaptation of the Block Size

In this section, we will first show the dynamic adaptation from an algorithmic point of

view. Then, we will show how the cost model developed in chapter 3 is modified and

applied to take split and merging decisions, respectively.

e
f
l
- s⋅<

su 1
e
f
--–= 1

s
l
--–> sumin=

su sumin≤

Dynamic Adaptation of the Block Size 113

4.7.1 Split and Merge Management

Basically, it is possible to evaluate the cost model after every insert or delete operation

and to determine whether a page must be split or merged with some neighbor. This is,

however, not very economic, because the optimum is generally broad. Therefore, we

have to check rather seldom if the current page size still is close to the optimum.

We choose the following strategy: For each page, we have an update counter variable

which is increased in each insert or delete operation the page is subject to. We perform

our model evaluations when the value of the update counter reaches some user defined

threshold which may be defined as a fixed number (e.g. 20 operations) or as a ratio of the

current page capacity (e.g. 25% of the points in the page).

Note that it is theoretically possible (although not very likely) that pages must be

merged after performing insert operations or that pages must be split after performing

delete operations. This is not intuitive, as conventional index structures with a fixed

block size know to split only after inserts and to merge after deletions. In our dynamic

optimization, however, any of these operations can change the distribution of the data

points and thus change the page size optimum into each direction.

Whenever the threshold of update operations is reached, a cost estimate for the cur-

rent page with respect to query processing is determined. Then, some split algorithm is

run tentatively. The page regions of the created pages are determined, and the query

processing cost for the new pages is estimated. If the performance has decreased, the

split is undone, and merging is tested in the same way.

A merging operation can only be performed if a suitable partner is available. In order

to maintain overlap-free page regions, only two leaf pages with a common parent node

in the kd-tree are eligible for merging. If the current page does not have such a counter-

part, merging is not considered. Otherwise, the cost estimates for the two single pages

and for the resulting page are determined and compared. If the performance estimate

improves, the merge is performed.

Finally, the relevant update counters are reset to 0.

4.7.2 Model Based Local Cost Estimation

For our local cost optimization, we must estimate how cost of query processing changes

when performing some split or merge operation. Generally, we assume as reference

query the nearest neighbor query with the maximum metric, because this assumption

causes the lowest effort in the model computation. Practically, the difference in the page

114 Dynamic Optimization of the Logical Block Size

size optimum is low when changing the reference query to the Euclidean metric or to

some k-nearest neighbor query.

In both cases, when taking a split or a merge decision, we compare the cost caused by

one page with the cost caused by two pages with the half capacity. At the one hand, this

action changes the accessing cost, because the transfer cost decreases with decreasing

capacity. The access probability is also decreased by splitting. At the other hand, it is

unpredictable whether the sum of the costs caused by the two smaller pages is really

lower than the cost of the larger page.

Therefore, it is reasonable, to draw the following balance for the split decision:

,

where C0 and X0 are the capacity and the access probability of the larger page, and C1

and C2 (X1 and X2) the capacities (access probabilities) of the two smaller pages. The

time tPoint is the transfer time for a point, i.e. . If the cost

balance is positive, the larger page causes fewer cost than the two smaller pages. In

this case, a split should be avoided and a merge should be performed.

It is possible to estimate the access probability according to our formulas for

Xnn,mm,ld,c and Xnn,mm,hd,c presented in chapter 3. This approach, however, assumes no

knowledge about the regions of the pages currently stored in the index. In our local cost

optimization, the exact coordinates of the relevant page regions are known. Therefore,

we can achieve higher accuracy if this information is considered. Additionally, it is

possible to take into account the local exceptions in the data distribution.

First, we determine the local point density according to the volume and the capacity

of the larger page:

From the local point density, we can derive an estimation of the nearest neighbor dis-

tance:

Here we apply here the simple model, because in this context, efficiency of evaluation is

of higher importance than accuracy. Now, we are able to determine the Minkowski sum

of the nearest neighbor query and the page region. If MBR0 is given by a vector of lower

∆T tSeek C1 tPoint⋅+() X1⋅ tSeek C2 tPoint⋅+() X2⋅ tSeek C0 tPoint⋅+() X0⋅–+=

tPoint ttransfer sizeof (Point)⋅=

∆T

ρF

C0

V MBR0()DF d⁄---------------------------------=

r
1
2
--- 1

ρF
------DF⋅=

Dynamic Adaptation of the Block Size 115

bounds (lb0, ... lbd-1) and upper bounds (ub0, ... ubd-1), the Minkowski sum is determined

by:

This Minkowski sum can be explicitly clipped at the data space boundary (here for

simplicity assumed to be the unit hypercube):

We assume that the query distribution follows the data distribution. Therefore, the access

probability X0 corresponds to the ratio of points in the Minkowski sum with respect to

all points in the database:

Analogously, the access probabilities for the smaller pages X1 and X2 are determined by

their page regions MBR1 and MBR2. The access probabilities are used in the cost bal-

ance for taking split or merge decisions.

4.7.3 Monotonicity Properties of Splitting and Merging

The most important precondition for the correctness of a local optimization is the mono-

tonicity of the first derivative of the cost function with respect to the page capacity. If the

first derivative is not monotonically increasing, the cost function may have various local

optima where the optimization easily could get caught in.

As depicted in figure 55, the cost function indeed forms a single local optimum which

is also the global optimum. Cost are very high for block sizes which are either too small

or too large. Minimum cost arise in a relatively broad area between these extremes.

Under several simplifying assumptions, it is also possible to prove that the derivative

of the cost function is monotonically increasing. From this monotonicity, we can con-

clude that there is at most one local minimum. The assumptions required for this proof

are uniformity and independence as well as neglecting boundary effects. For this simpli-

fied model

,

VR C⊕ MBR0 2r,() ubi lbi 2r+–()
0 i d<≤
∏=

V R C⊕() DS∩ MBR0 2r,() min ubi r 1,+{ } max lbi r 0,–{ }–()
0 i d<≤
∏=

X0

ρF

N
------ V R C⊕() DS∩ MBR0 2r,()

DF d⁄
⋅=

T C()
1
C
----d 1+

d

tSeek
C

sizeof(point)
------------------------------ ttransfer⋅+

 ⋅=

116 Dynamic Optimization of the Logical Block Size

it is possible to show that the second derivative of the cost function is positive:

.

The intermediate results in this proof, however, are very complex and thus not presented

here.

4.8 Experimental Evaluation

To demonstrate the applicability and the practical relevance of our technique, we per-

formed an experimental evaluation on both, synthetic and real data. The improvement

potential was already shown in figure 55 where a clear optimum for page sizes was

found at 64 KBytes outperforming the X-tree with a standard page of 4K by a factor of

2.7 and the sequential scan by a factor of 3.6.

The intention of our next experiment is to show that the optimum is not merely a

hardware constant but to a large extent dependent on the data to be indexed. For this

purpose, we constructed a DABS-tree on several data files containing uniformly and

independently distributed points of varying dimension. The number of objects was fixed

in this experiment to 12,000. We observed the block size which was generated by the

local optimization. The results are depicted on the left side of figure 59. In the two-

dimensional case, quite a usual block size of 3,000 Bytes was found to be optimal. In the

high-dimensional case, however, the optimum block size reaches values up to 192

KBytes with even increasing tendency.

∂2

∂C
2

---------T C() 0≥

Figure 59: Optimal block size for Uniform Data.

0

50000

100000

150000

200000

250000

0 4 8 12 16

Dimension

O
pt

im
um

 [
B

yt
es

]

0

50000

100000

150000

200000

250000

0 25000 50000 75000 100000

Number of Points

O
pt

im
um

 [
B

yt
es

]

Experimental Evaluation 117

In our next experiment, depicted on the right side of figure 59, we show the usefulness

of dynamic optimization. We used the 16-dimensional index of the preceding experi-

ments and increased the number of objects to 100,000. Hereby, the optimum page size

decreased from 192 KBytes to 112 KBytes.

In our next experiment, depicted in figure 60, we compared the DABS-tree with the

X-tree and the sequential scan. As expected, the performance in low-dimensional cases

is similar to the X-tree; in high-dimensional cases it is similar to the sequential scan. In

any case, both approaches are clearly outperformed. In the 4-dimensional example, the

DABS-tree is 43% faster than the X-tree and 157% faster than the sequential scan. In the

16-dimensional example, the DABS-tree outperforms the sequential scan by 17% and

the X-tree by 462%.

In case of a moderate dimensionality, and provided that the number of points stored

in the databases is high, both techniques, the X-tree as well as the sequential scan, are

clearly outperformed. This is demonstrated in the example of our 16-dimensional data-

base with 100,000 points. Here, the improvement factor over the X-tree is 2.78. The

improvement over the sequential scan is with 2.44 in the same order of magnitude.

Figure 60: Performance for 4-Dimensional (left) and 16-Dimensional (right) Data.

0

10

20

30

40

50

60

X-tree DABS-tree Sequential

0

100

200

300

400

500

600

700

800

900

1000

X-tree DABS-tree Sequential

P
ro

ce
ss

in
g

T
im

e
[m

se
c]

P
ro

ce
ss

in
g

T
im

e
[m

se
c]

118 Dynamic Optimization of the Logical Block Size

The intention of our last experiment is to confirm that our optimization technique is

also applicable to real data and that high performance gains are reachable. For this pur-

pose, we constructed a DABS-tree with 50,000 points from our CAD application (cf.

section 1.1.1). We measured again the performance of nearest neighbor queries. As que-

ry points, we also used points from the same application which were not stored in the

database. The data space dimension was 16 in this example. We outperformed the X-tree

by a factor of 2.8 and the sequential scan by 6.6.

Figure 61: Sequential Scan and X-tree are Outperformed.

0

200

400

600

800

1000

1200

1400

1600

1800

X-tree DABS-tree Sequent ial

P
ro

ce
ss

in
g

T
im

e
[m

se
c]

Figure 62: Query Processing Using CAD Data.

0

100

200

300

400

500

600

700

800

X -tree D A BS-tree Sequential

P
ro

ce
ss

in
g

T
im

e
[m

se
c]

119

Chapter 5
Optimizing the Dimension
Assignment

5.1 Introduction

One of the simplest techniques for multidimensional indexing is the inverted-list-ap-

proach. The basic idea of inverted lists is to use a one-dimensional index such as the B-

tree [BM 72] or one of its variants for each attribute. In order to answer a given range

query with s attributes specified, it is necessary to access s one-dimensional indexes and

to perform a costly merge of the partial results obtained from the one-dimensional index-

es. Inverted lists are available in most commercial database systems and thus are widely

applied. For queries involving many attributes, however, the merging step is prohibitive-

ly expensive and is the major drawback of the inverted-lists approach.

It is well-known that multidimensional index structures are very efficient for databas-

es with a small number of attributes and outperform inverted lists if the query involves

multiple attributes [Kri 84]. In many real-life database applications, however, we have

to handle databases with a large number of attributes. For databases with a larger number

of attributes, the performance of traditional multidimensional index structures rapidly

deteriorates. Therefore, specific index structures for high-dimensional data have been

proposed. For high dimensions (larger than 12), however, even the performance of spe-

cialized high-dimensional index structures decreases.

120 Optimizing the Dimension Assignment

In this chapter, we propose a new approach, called tree striping, for an efficient multi-

attribute retrieval. The basic idea of tree striping is to divide the data space into disjoint

subspaces of lower dimensionality such that the cross-product of the subspaces is the

original data space. The subspaces are organized by using an arbitrary multidimensional

index structure. Tree striping is a generalization of the inverted lists and multidimension-

al indexing approaches.

The rest of this chapter is organized as follows: Section 5.2 introduces the basic idea

of tree striping including the algorithm necessary for query processing. Then in

section 5.3, we provide a theoretical analysis of our technique and show that optimal

query processing is obtained for tree striping. We also show that optimal tree striping

outperforms the traditional inverted lists and multidimensional indexing methods. In

section 5.4, we then discuss the more elaborate query processing algorithms which make

use of the specific advantages of “striped” trees and therefore further improve the per-

formance. Section 5.5 provides the details of our experimental evaluation which in-

cludes comparisons of tree striping to inverted lists and two multidimensional index

structures, namely the R-tree and the X-tree. The results of our experimental analysis

confirm the theoretical results and show substantial improvements over the multidimen-

sional indexing and the inverted-lists approaches.

5.2 Tree Striping

Our new idea presented in this chapter is to use the benefits of both the inverted lists and

high-dimensional indexing approaches in order to achieve an optimal multidimensional

query processing. Our approach, called tree-striping, generalizes both previous ap-

proaches. A first experiment on uniformly distributed 16-dimensional data presented in

figure 63 shows significant improvement factors of our method over the inverted lists

and multidimensional indexing approaches. Our comprehensive experimental evalua-

tion in section 5.5 will partly yield even more impressive improvement factors.

5.2.1 Basic Idea

The basic idea of tree-striping is to divide the data space into disjoint subspaces of lower

dimensionality such that the cross-product of the subspaces is the original data space.

(Note that a division of the data space into disjoint subspaces is different from a parti-

tioning of the data space where the partitions have the same dimensionality as the origi-

Tree Striping 121

nal data space whereas subspaces have a lower dimensionality.) This means that each

subspace contains a number of attributes (dimensions) and each object of the database

occurs in all subspaces. For example, the three-dimensional data space (customer_no,

discount, turnover) may be divided into the one-dimensional subspace (customer_no)

and the two-dimensional subspace (discount, turnover). Obviously, the dimensionality

of the subspaces is smaller than the dimensionality of the data space, and hence, we are

able to index the subspaces more efficiently using any multidimensional index structure.

Figure 63: Improvement over Inverted Lists and Multidimensional Indexing

Inverted List
Mult. Index

Im
pr

ov
em

en
t (

%
)

Figure 64: Tree Striping

a0 a1 … ad 1–, , ,()

b0 b1 … bd0 1–, , ,() c0 c1 … cdk 1– 1–, , ,()

a0 a1 … ad 1–, , ,()

Query

Subquery

Merge of Results

Index0 Indexk-1

122 Optimizing the Dimension Assignment

To insert an object, we divide the object into subobjects according to the division of

the data space. Then, we insert the subobjects in the multidimensional index structure

managing the corresponding subspace. To process a query, we divide the query accord-

ing to the division of the data space and issue the subqueries to the relevant multidimen-

sional indexes. In a second step, we merge the results which have been produced by the

indexes using an external sorting algorithm such as merge sort. The general idea and

query processing strategy of tree striping is presented in figure 64.

Note that, in contrast to inverted lists, in general, the selectivity of subspace indexes

is relatively high because each index manages information about more than one at-

tribute. Therefore, the amount of partial results produced in the first step is rather small

which means that the cost for the merging step are not significant. Our formal model

which will be presented in section 5.3, confirms this fact.

It is clear that the number and dimensionality of the data space divisions are important

parameters for the performance of our technique. The optimal division mainly depends

on the dimension, the number of data items, and the data distribution. The parameters

have to be chosen adequately to achieve an optimal performance. For a uniform data

distribution, the parameters for an optimal division into subspaces can be obtained easily

from the theoretical analysis (cf. section 5.3).

5.2.2 Definition of Tree Striping

In this section, we formally define the tree striping technique. In the following, we con-

sider objects as vectors in a vector space and attributes as components of the vectors.

Given is a data space of dimension d and extension [0..1]d, N vectors v having the com-

ponents v0 ... vd-1 and an arbitrary multidimensional index structure MIS supporting the

relevant query types. First, we need a mapping which assigns the dimensions to the

different subtrees.

Definition 10: Dimension Assignment

The dimension assignment DA is a mapping of a d-dimension-

al vector v to a vector of k dl-dimensional vectors wl, , such that the following

conditions hold:

1)

R
d

R
d0 … R

dk 1–, ,()→
0 l k<≤

dl

l 0=

k 1–

∑ d=

Tree Striping 123

2)

3)

Note that denotes the i-th component in the l-th index. To clarify the definition of

dimension assignment, we provide a simple example: Given a 5-dimensional data space

(d=5). We may define a dimension assignment DAodd_even such that k = 2, d0 = 3, and d1

= 2, i.e. DAodd_even divides the data space into two subspaces of dimensionality 3 and 2.

Explicitly, DAodd_even maps even dimensions to the first subspace and odd dimensions

to the second subspace, more formally, DAodd_even(v) = (w0, w1), w0 = (v0, v2, v4), w1 =

(v1, v3). Thus, a vector v = (0, 4, 6, 5, 1) is mapped to DAodd_even((0, 4, 6, 5, 1)) = ((0, 6,

1), (4, 5)). Obviously, DAodd_even meets the conditions specified in definition 10 because

all dimensions of the data space have been mapped to a subspace and vice versa.

Using the definition of dimension assignment, we are now able to formally define

tree-striping:

Definition 11: Tree Striping

Given a database DB of N d-dimensional vectors and a dimension assignment DA.

Then, a tree-striping TS is defined as a vector of k dl-dimensional indexes

, ,

with , .

Tree striping as defined in definition 11 is a generalization of the previous approaches.

For the special case of k = d, tree striping corresponds to inverted lists because the

dimension assignment produces d one-dimensional data objects; and for the special case

of k = 1, tree striping corresponds to the traditional multidimensional indexing approach

because we have one d-dimensional index. The most important question is whether there

exists a tree striping which provides better results than the extremes (the well-known

inverted lists and multidimensional indexing approaches). In particular, we have to de-

termine whether there exists a k (1 < k < d) such that tree striping outperforms the other

approaches. In the next section, we introduce a theoretical model showing that an opti-

mal k exists. Our experimental analysis presented in section 5.5 confirms the results of

our theoretical model and shows performance improvements of up to a factor of 120

times over the inverted lists and up to 280% over the multidimensional indexing ap-

proach. A second open question is how the attributes (dimensions) are assigned to the

j 0 j d l ∃ 0 l k i 0 i dl<≤∃ : vj wi
l=,<≤,<≤ ∀

l 0 l k ,<≤ i∀ 0 i dl j∃,<≤ 0 j d: wi
l

vj=<≤∀

wi
l

MIS
l

w
l{ }= 0 l k<≤

w
l

DA
l= v() v DB∈

124 Optimizing the Dimension Assignment

different trees such that the performance improvement is optimal. In section 5.4, we

discuss the implications of different dimension assignments and also introduce opti-

mized algorithms for query processing using striped trees.

Note that tree striping as defined so far is independent of the multidimensional index

structure used. Any multidimensional index structure such as the R-tree [Gut 84] and its

variants (R+-tree [SRF 87], R*-tree [BKSS 90], P-tree [Jag 90b]), Buddy-tree [SK 90],

linear quadtrees [Gar 82], z-ordering [Ore 90] or other space-filling curves [Jag 90], and

grid-file based methods [NHS 84, Fre 87] may be used for this purpose.

Before we describe our theoretical model, we first provide a simple algorithm for

processing queries using striped trees. As the single indexes do not have all information

about an object, but only about some attributes of the object, in general, we have to query

all indexes in order to process a query. Therefore, we divide the query specification qs

into sub-query specifications sqs[l] according to the dimension assignment. Then, we

query each single index with the sub-query specification sqs[l] and record the results. In

a final step, we have to merge the results by sorting the single results according to the

primary key of the objects or any object identifier. Figure 65 shows a first version of a

query processing algorithm. An optimized version for querying striped trees is provided

in section 5.4.

Figure 65: A First Query Processing Algorithm

SetOfObject query(TreeStrip ts, QuerySpec qs)
{

int i;
SetOfSubObject sst[ts.num];
SubQuerySpec sqs[ts.num];
SetOfObject st;

// for all indexes
for (i = 0; i < ts.num; i++)
{

// query i-th index with sub-query
sqs[i] = ts.opt_dim_assign(i, qs);
sst[i] = ts.index[i].query(sqs[i]);
// sort result by primary key
sst[i].sort();

}
// now merge single results
st = merge(sst, ts.num);
return st;

}

Analytical Model 125

5.3 Analytical Model

As already mentioned, most of the multidimensional indexing approaches efficiently

solve the multi-attribute retrieval problem on low-dimensional data. From our experi-

ence in real-life database projects, we have learned that even for relational database

systems handling relatively high numbers of attributes (more than 10) is necessary, for

which the performance of traditional index structures deteriorates. To process arbitrary

queries (e.g., point, range, and partial match queries) efficiently on those databases, we

have to equally index all the attributes which means that we have to deal with a high-

dimensional data space.

Unfortunately, some mathematical problems arise in high-dimensional spaces which

are usually summarized by the term ‘curse of dimensionality.’ A basic effect in high-

dimensional space is the exponential growth of the volume: Let us assume a database of

1,000,000 uniformly distributed objects consisting of 20 numerical attributes in the

range [0...1]. Let us further assume that we are interested in a query which provides 10

result objects located around the midpoint of the data space (0.5, 0.5, 0.5, ..., 0.5). Which

range do we have to query in order to obtain 10 result objects? Obviously, we have to

assure that the volume of our query range is equal to

,

as the volume of the data space is equal to 1. This leads to a query range of

in each attribute. So we have to query the range (0.22-0.78, 0.22-0.78, ..., 0.22-0.78).

That means a query with a selectivity of 10-5 leads to a query range of 0.56 in each

attribute in a 20-dimensional data space.

Considering these effects, we are able to provide a concise cost model of processing

range queries in a high-dimensional data space using the tree striping technique. For the

following, we assume a uniformly distributed set of N vectors in a d-dimensional space

of extension [0..1]d. Note that even if we assume a uniform distribution of the data, our

model can be applied to real data as well (cf. section 5.5). We will use the cost model to

determine the optimal number of trees and accordingly the dimensions of the trees for a

given data set, i.e. the optimal dimension assignment.

10
1,000,000
------------------------ 10 5–=

10 5–20 0.56≈

126 Optimizing the Dimension Assignment

Our cost model is divided into two parts: First, the cost arising from querying the

striped trees, and second, the cost for merging the results of the striped trees into one

final result.

Both cost functions are highly influenced by the dimensions of the striped trees. The

lookup cost in the index is growing superlinearly with growing tree dimension. The

merging cost, however, is growing superlinearly with the size of the result which is, in

turn, falling with the dimension of the trees. This fact implies the assumption that the

total cost could form a minimum where both costs are moderate. This minimum should

be located anywhere between the d-dimensional index and the inverted-lists approaches.

We assume that the multidimensional index structure aggregates a fixed number of

Ceff vectors into a data page such that the bounding box containing the vectors forms a

square-shaped hyperrectangle with the (hyper-) volume

.

Thus, Ceff denotes the actual fan-out of the index. From that, the edge length σ of a

typical bounding box is

.

Analogously, we compute the edge length q of Vq as . The expected number of

page accesses Aindex(d,N,q) is determined according to our cost model in chapter 3:

=

=

The number Ceff of data vectors in a data page also depends on the dimension d of the

vectors. Assuming that each coordinate value is stored as a 32-bit floating point value

and that there is an additional unique object identifier which also requires 32 bit, we

determine Ceff as:

The cost for combining the results of the multidimensional index accesses mostly de-

pend on the selectivities of the indexes. If |FRS| is the size of the final result set of query

VBB

Ceff d()

N
----------------=

σ VBB
d

Ceff d()

N
----------------d= =

q Vq
d=

Aindex d N q, ,()
Ceff d()

N

Ceff d()

N
----------------d q+

d

⋅

1 q
N

Ceff d()
----------------d⋅+

d

Ceff
pagesize storageutilization⋅

4 d 1+()⋅
--=

Analytical Model 127

Q then |IRSi| is the intermediate result set produced by the i-th index having dimension

di. Thus:

Note that we have to sort each intermediate result set according to the object identifiers

in order to be able to merge them into the final result set. We have to apply an external

sorting algorithm since, for larger q or minor di, the result set will exceed the available

main memory. According to Ullman [Ull89], the cost for performing multi-way merge-

sort on a relation of B blocks is where M is the number of cache pages

available to the sorting process. We can store the object identifiers in a densely packed

fashion such that |IRSi| object identifiers require

pages. From that, the cost for sorting the result set of a single index are:

To determine the total cost, Asort and Aindex have to be summed up for all striped trees.

For merging the result sets, each of them has to be scanned once more. Total cost is:

= +

 +

In the following, we assume that the d dimensions of our data space are striped into k

divisions:

For d0,, dk-1, only whole numbers are meaningful. This effect is handled later, but is

of minor importance for our cost model. In this case, our cost function can be simplified

to:

IRSi

N

FRS
N

di

d

q
di= =

2B logM B()⋅

4 IRSi⋅
page-size

Asort di N q, ,()
8 N q

di⋅ ⋅
page-size
---------------------- logM

4 N q
di⋅ ⋅()

page-size
---------------------------()⋅=

A di N q, ,() 1 q
N

Ceff d()
----------------di⋅+

di

i 1=

k

∑

4 N q
di⋅ ⋅

page-size
---------------------- 1 2+ logM

4 N q
di⋅ ⋅()

page-size
---------------------------()⋅

 ⋅

d0 d1 ... dk 1–
d
k
---= = = =

128 Optimizing the Dimension Assignment

= +

 + .

Figure 66 shows the total cost over k in a typical setting with a database of 1,000,000

uniformly distributed objects in a 15-dimensional data space. The selectivity of the que-

ry is 0.01%. There is a clear minimum between k=2 and k=3.

Thus, we are able to determine an optimal k by solving the following equation:

(*)

The analytic evaluation of this equation yields a rather large formula which is omitted

due to space limitations. A function in the C language automatically generated by some

math program (MATHEMATICA, MAPLE) determining the derivative can be used to

calculate the optimum.

Unfortunately, the cost model presented so far is accurate only in the low-dimensional

case. This is caused by the fact that in high-dimensional data spaces the data pages

cannot be split in each dimension. If we split a 20-dimensional data space once per

dimension, we obtain 220=1,000,000 data pages. Obviously, the number of data objects

would have to grow exponentially with the dimension in order to allow one split per

dimension. Therefore, we provide a special high-dimensional adaptation of our cost

A d k N q, , ,() k 1 q
N

Ceff d k⁄()

 k d⁄
⋅+

 d k⁄
⋅

4 N q
d k⁄⋅ ⋅

page-size
-------------------------- 1 2+ logM

4 N q
d k⁄⋅ ⋅

page-size

 ⋅
 ⋅

Figure 66: Total Cost for Query Processing

Number of Indexes k

P
ag

e
A

cc
es

se
s

k∂
∂

A d k N q, , ,() 0=

Analytical Model 129

model. Our extension assumes that data pages are split only in the first d’ dimensions

where d’ is the logarithm of the number of data pages to the basis of two:

.

The data pages have the average extension 1/2 in d’ dimensions and extension 1 in all

remaining dimensions (d-d’). When determining the Minkowski sum, we additionally

have to consider that only a part of the volume is located inside the data space because

in the dimensions which have not been split, the extension of the Minkowski sum is

still 1 rather than (1+q):

.

Thus, the expected number of data pages accessed in the high-dimensional case is:

.

Adding the sort cost we obtain the following total cost for high-dimensional data spaces:

= k ⋅ [+

 +].

Figure 67: Optimal Dimension Assignment

v0 … vdopt
vdopt 1+, , … vd 1–, , ,()

w0
0 … wdopt

0, ,() w0
1 … wdopt 1–

1, ,() w0
kopt … wdopt 1–

kopt, ,()

Optimal Dimension Assignment

d′ log2
N

Ceff di()
-----------------()=

HiDiMink VBB Vq,() 1
2

q
2
---+

 d′
1

d d’–⋅=

Aindex, HiDi d N q, ,() N
Ceff di()
----------------- 1

2

q
2
---+

log2

N
Ceff d()
---------------()

⋅=

AHiDi d k N q, , ,() N
Ceff di()
----------------- 1

2

q
2
---+

log2

N
Ceff di()
-----------------()

⋅

4 N q
d k⁄⋅ ⋅

page-size
-------------------------- 1 2+ logM

4 N q
d k⁄⋅ ⋅

page-size
--------------------------()⋅

 ⋅

130 Optimizing the Dimension Assignment

5.4 Query processing

For optimal response times, we have to make two decision: We first have to choose an

adequate dimension assignment and second, we have to choose the right strategy for

processing queries.

As a result of the theoretical analysis presented in section 5.3, there exists an optimal

number k of striped trees which can be determined according to our cost model (cf.

equation (*)). Since k is a real number, however, we cannot directly use k as a parameter

for our query processor. Instead, we use the floor of k

and then determine the optimal dimensionality of our trees given by

.

Since in general, is smaller than d, we have to distribute the remaining

attributes to our trees. Thus, we obtain trees with dimensionality and

 trees with dimensionality . In the following, we have to distinguish

between two cases: The first case is that we have additional information about the selec-

tivity of the attributes which usually occurs for relational databases. The second case is

that we have no additional information which usually occurs in indexing multimedia

data using feature vectors. Let us first consider the more general case that we do not have

any additional information and therefore assume that all attributes have the same selec-

tivity. In this case, the optimal dimensionality dopt of our trees may be used to define the

following Optimal Dimension Assignment.

Definition 12: Optimal Dimension Assignment

The dimension assignment DAopt is a dimension assignment according to definition

10 such that:

,

where , , and .

kopt k=

dopt d k⁄=

kopt dopt⋅()

drem d kopt dopt⋅()–=

drem dopt 1+()
kopt drem–() dopt

DA
l

v()i wi
l

vl dopt 1+() i +

vdrem dopt 1+() l drem–()dopt i+ +

 if l drem<

otherwise
= =

0 l kopt<≤ dl

dopt 1+ if l drem<

dopt otherwise

= 0 i dl<≤

Query processing 131

Intuitively, the optimal dimension assignment assigns the i-th component of the original

vector v to a component of one of the vectors wl such that the first vector w0 receives the

first d0 components , the second vector w1 accommodates the components

 and so on.

Using the optimal dimension assignment according to definition 12, now we are able

to present the insert algorithm of our tree striping technique as depicted in figure 68. In

order to insert an object t, we simply divide t into a set of kopt sub-objects st[l] (using the

optimal dimension assignment) and insert them into the according striped tree ts.index[l]

.

A more complex algorithm is required for processing queries on striped trees. A rath-

er simple query processing algorithm has already been presented in section 5.2. The

algorithm depicted in figure 65, however, has a major drawback: Let us assume that we

have to process a partial range query PRQ which specifies the attributes a, b and c:

.

Let us further assume that all these three attributes are located in the first of the striped

trees. Obviously, it does not make sense to query any tree other than the first tree because

all other trees do not have any selectivity. The algorithm presented in figure 65, however,

executes queries on all trees ignoring the expected selectivity of the trees. In order to

process queries efficiently, we have to take the selectivity of a tree into account and

query a tree only if the expected gain in selectivity is worth the cost of querying the tree.

Another potential improvement of the query processing algorithm can be exemplified

by the following situation: Assume that the three specified attributes a, b and c in the

v0…vd0 1–()
vd0

…vd0 d1 1–+()

Figure 68: Insertion Algorithm

void insert(TreeStrip ts, object t)
{ int l;

SubObject st[ts.num];

// for all indexes
for (l = 0; l < ts.num; l++)
{ // determine sub-objects

st[l] = ts.opt_dim_assign(l, t);
// insert sub-objects into l-th index
ts.index[l].insert(st[l]);

}
}

0 l kopt<≤()

PRQ *,*, al au,[] *,*, bl bu,[] *,*, cl cu,[] *,*,,,{ }=

132 Optimizing the Dimension Assignment

above example are spread over two striped trees (T0 managing attributes a and b, and T1

managing attribute c). After querying tree T0, we will typically receive a set of answers

(candidates) which may contain some false hits. This assumption holds because the se-

lectivity of T0 is much higher than the selectivity of T1. If we furthermore assume to have

meaningful queries, i.e. queries having a good selectivity on all attributes, in general the

set of candidates will be small. In this case, the cost for loading the candidate objects

Figure 69: Query Processing Using Tree Striping

SetOfObject query(TreeStrip ts, QuerySpec qs)
{

int i, cost_index, cost_linear;
SetOfSubObject sst[ts.num];
SubQuerySpec sqs[ts.num];
SetOfObject st; // set of candidates

// sort indexes according to selectivity
ts.sort_index(qs);

// determine sub-queries
for (i = 0; i < ts.num; i++)

sqs[i] = ts.opt_dim_assign(i, qs);

i = 0;
// estimate cost
cost_index = cost_modell(sqs[0]);
cost_linear = cost_linear_scan(sqs[0]);
while (i < ts.num &&

 cost_index < cost_linear)
{ // query index

sst[i] = ts.index[i].query(sqs[i]);
// sorted merge of result
sst[i].sort();
merge(st, sst, ts.num);

// estimate cost
if (i < ts.num)
{ cost_index = cost_modell(st, sqs[i+1]);

cost_linear = cost_linear(st);
}

}

if (i < ts.num)
{ // load attributes

database.load(st);
remove_false_hits(st, qs);

}

return st;
}

Query processing 133

from the secondary storage and checking if the objects fulfill the query specification

may be lower than the cost of querying additional trees.

Let us now consider the second case where we do have some additional information

about the selectivity of the attributes. A different selectivity of the attributes may be

induced by the attributes of different data types (e.g., a Boolean attribute usually has a

selectivity of 50%) and by different data distributions. We can use this information to

adapt the optimal dimension assignment. If we are able to query the tree containing the

attributes with the highest selectivity first, the resulting set of candidates will be rather

small and will contain only a few false hits. Therefore, query processing can be finished

without querying the other trees. This means that if we have information about the selec-

tivity of attributes, we should sort the attributes according to their selectivity before

applying the dimension assignment. Note that this operation does not only involve query

processing but also the dimension assignment since we have to ensure that the attributes

with the best selectivity are assigned to the first trees. In some cases, a non-uniform

division may lead to better results. For example, let us assume that we have objects with

9 attributes (a, b, ... i) that kopt is equal to 3, and that the attributes a to d have a high

selectivity whereas the selectivity of attributes e to i is rather low. Then, it is beneficial

to divide the objects into sub-objects (a, b, c, d), (e, f), and (g, h, i) which would be a sub-

optimal division assuming no a priori knowledge about the selectivity of attributes.

Considering all these effects, we are now able to provide a more sophisticated algo-

rithm for query processing on striped trees. The algorithm (cf. figure 69) first determines

whether a linear search of the database is expected to be cheaper than a search using trees

which may be the case for very large queries. The algorithm then sorts the striped trees

according to their selectivity, i.e. the tree which probably provides the smallest set of

candidates is queried first. If the querying of the first tree leads to a small set of candi-

dates, we determine whether loading these candidates from the secondary storage is

cheaper than querying the second tree. If this is the case, we load the attributes and

output all candidates fulfilling the query specification. Otherwise, we query the second

tree. This process iterates until all trees have been queried or the candidates are loaded

and processed.

As the implementation of multidimensional index structures is complex, the assign-

ment of different data types such as strings and floating numbers into one tree is not

practicable. The division of a object may therefore be induced not only by the expected

performance improvement but also by other considerations. Obviously, this can lead to

134 Optimizing the Dimension Assignment

sub-optimal dimension assignments. Our practical experience, however, shows that a

slightly sub-optimal dimension assignment performs nearly as well as the optimal di-

mension assignment.

5.5 Experimental Analysis

To show the practical relevance of our method, we performed an extensive experimental

evaluation of tree striping and compared it to the inverted lists and the multidimensional

indexing approach. All experimental results have been computed on an HP9000/780

workstation with several GBytes of secondary storage. For the experiments, we used an

object-oriented implementation (C++) of the R*-tree [BKSS 90] and the X-tree

[BKK 96].

The test data used for the experiments are real data consisting of text data describing

substrings of a large database of texts, and synthetic data consisting of uniformly distrib-

uted points in high-dimensional space. The block size used for our experiments is

4 KByte, and all query processing techniques were allowed to use the same amount of

cache. For a realistic evaluation, we used very large amounts of data (up to 80 MBytes)

in our experiments. The total amount of disk space occupied by the created indexes

(inverted lists, multidimensional indexes and tree-striped indexes) is about 2 GByte and

the CPU-time for inserting the data adds up to about one week.

Figure 70: Comparison of Measured Optimum and Model Prediction

Cost Model
Measured

O
pt

im
al

 I
nd

ex
 D

im
en

si
on

 d
op

t

Experimental Analysis 135

In a first experiment, we confirmed our theoretical result (cf. section 5.3) that the tree

striping technique as a generalization of the lists and multidimensional indexing ap-

proaches outperforms both other techniques. For the experiment, we used 1,000,000

uniformly distributed data objects of varying dimensionality (d = 2..16). We built the

according indexes (R*-tree) and queried the indexes with a selectivity of 10-5 which

corresponds to an expected result of about 10 hits. In order to avoid statistical effects, we

used the average cost of 100 uniformly distributed query windows. The observed vari-

ance was rather small. We compared different tree stripings (varying the value of k) and

determined the optimal dimension assignment (optimal value of k). The tested dimen-

sion assignments for the 16-dimensional data set are (16), (8, 8), (6, 5, 5), (4, 4, 4, 4), (2,

2, 2, 2, 2, 2, 2, 2), and (1, 1, ..., 1, 1). The data sets of other dimensionality have been

a. Improvement over Inverted Lists

b. Improvement over Multidimensional Indexing

Figure 71: Improvement of Tree Striping for a Varying Dimension of the Data Space

Im
pr

ov
em

en
t (

%
)

Im
pr

ov
em

en
t (

%
)

Dimension d

Dimension d

136 Optimizing the Dimension Assignment

tested analogously. In figure 70, we show the optimal dimensionality (dopt) of striped

trees depending on the dimensionality of the data. For d=2 and d=4, the optimal dimen-

sion assignment of tree striping provides one d-dimensional index, i.e. it is identical to

multidimensional indexing. As expected according to our theoretical analysis, for higher

dimensions the optimal dimension assignment of tree striping is between the extreme

cases: For d=12, we obtain two 6-dimensional indexes and for d=16, we obtain a divi-

sion into 3 indexes with dimensionality (6, 5, 5). Note that in all experiments, the optimal

dimension assignment estimated by our cost model exactly matches the measured opti-

mum. For our experiments, we use the optimal dimension assignment as determined by

our cost model.

Figure 72: Improvement of Tree Striping for an Increasing Number of Data Items

a. Improvement over Inverted Lists

b. Improvement over Multidimensional Indexing

Number of Data Items

Number of Data Items

Im
pr

ov
em

en
t (

%
)

Im
pr

ov
em

en
t (

%
)

Experimental Analysis 137

In the next experiment, we determined the improvement achieved by the tree striping

technique. Again, we used 1,000,000 uniformly distributed data objects of varying di-

mensionality (d=2..16) and a query selectivity of 10-5. Figure 71 depicts the results of

this experiment. As expected, the improvement factor achieved over the inverted lists is

much higher than the improvement over multidimensional indexing. The maximum im-

provement 12,300% (i.e., tree striping is 123 times faster than inverted lists) occurs for

a dimensionality of 4. The tree striping technique is at least 10 times faster than the

inverted lists for any experiment. The improvement over the multidimensional indexing

increased with increasing dimensionality of the data space. For dimensions smaller than

8 there was no or only a negligible improvement. This means that for low dimensionali-

ty, tree striping corresponds to multidimensional indexing. For higher dimensions, how-

ever, the improvement rapidly increases and reaches about 200% for a dimensionality of

16. Thus, for high-dimensional data the tree striping technique is more than twice as fast

as multidimensional indexing.

Another important criterion for the evaluation of indexing techniques is their scalabil-

ity, i.e. the behavior of the technique for an increasing size of the database. Therefore, we

performed an experiment using a fixed dimensionality (d=16) and a fixed query selec-

tivity of 10-5 and varied the number of data items from 10,000 to 1,000,000. Again, we

used our cost model to determine the optimal dimension assignment. The improvement

over multidimensional indexing starts with a moderate value of 107% for a small data-

base but, as the size of the database increases, the improvement also increases up to

230% over multidimensional indexing for the largest database of 1,000,000 objects (cf.

Figure 73: Performance for Varying

Inverted List
Mult. Index

Im
pr

ov
em

en
t (

%
)

138 Optimizing the Dimension Assignment

figure 72). The improvement over the inverted list approach starts with 228% and reach-

es its maximum by 2,000% (20 times faster) for the largest database of 1,000,000 objects

(cf. figure 72).

The intention of the experiment depicted in figure 73 is to show that the high improve-

ments are independent from the selectivity of the queries. We repeated the previous

experiments for different dimensionality (shown are the experiment for d=12 and d=16)

using selectivities between 10-3 and 10-5. Again, we obtained an improvement factor of

210% to 220% over the multidimensional index and an improvement factor of 4 to 20

over the inverted lists.

Figure 74: Optimal Dimension Assignment for Real Data (Text Data)

Pa
ge

 A
cc

es
se

s

Dimension

Measured
Cost Model

Figure 75: Performance of Partial Range Queries

Pa
ge

 A
cc

es
se

s

Inverted List

Tree Striping

Mult. Index

Experimental Analysis 139

To show the practical relevance of our technique, we also evaluated the performance

of tree striping for other important query types. One of the most important query types is

the partial range query. In our experiments with partial range queries, again we used

1,000,000 uniformly distributed objects (d=15). We randomly generated partial range

queries specifying a query range on 6 attributes for the first experiment and 8 attributes

for the second experiment. All queries have a selectivity of 10-5 leading to an average

result of 10 objects. For the tree striping technique, we determined an optimal dimension

assignment of three 5-dimensional indexes. The results presented in figure 75 show that

the tree striping technique outperforms the inverted lists and the multidimensional in-

dex. The achieved improvement was 345% (for the partial range queries on 6 attributes)

and 303% (for the partial range queries on 8 attributes) over the inverted lists, and 166%

(6 attributes) and 160% (8 attributes) for the multidimensional indexing approach.

In a last series of experiments, we evaluated the tree striping technique using real data

which consists of text data describing substrings of a large database of texts. In figure 74,

we compare the measured performance for range queries with a selectivity of 0.2% to the

performance determined by our model (cf. section 5.3). The minima of the two curves

correspond to the optimal dimension assignment (dopt). Note that the model estimates

the optimal dimension assignment correctly (), although it assumes a uniform

distribution of the data. The difference between model and measurements for large di-

mensions (i.e. small k), however, may be explained by the non-uniform distribution of

the real data.

Figure 76: Improvement for Partial Range Queries

Inverted List
Mult. Index

Im
pr

ov
em

en
t (

%
)

dopt 5≈

140 Optimizing the Dimension Assignment

In figure 76, we present the improvement of tree striping over inverted lists and mul-

tidimensional indexing for partial range queries with a varying number of specified at-

tributes (s=4..8). It is interesting that for a partial range query with 4 specified attributes,

tree striping degenerates to inverted lists. If more than 4 attributes are specified, tree

striping becomes better than both, inverted lists and multidimensional indexing. Note

that for s=6, inverted lists are better than multidimensional indexing whereas for s=8,

multidimensional indexing is better than inverted lists.

In a last experiment with real data, we varied the selectivity of the partial range que-

ries. Figure 77 shows three different selectivities (0.05%, 0.01%, 0.005%) of partial

range queries each having six attributes specified (s=6). Note that tree striping is consis-

tently better than the inverted lists and multidimensional indexing approaches, and the

improvement factor increases with a decreasing selectivity of the partial range queries.

Figure 77: Performance of Partial Range Queries with Varying Selectivities (Text Data)

Inverted List
Mult. Index

Im
pr

ov
em

en
t (

%
)

141

Chapter 6
Optimizing the Geometry of
Regions Using Bulk-Load
Operations

In this chapter, we will exploit the potential for optimizing the shape of the bounding

boxes. The classical approaches for low-dimensional query processing [BKSS 90] tend

to optimize for cube-like bounding boxes forcing all side lengths to be in the same order

of magnitude. This is achieved by dynamically inserting the data vectors into the data

pages, splitting the data pages whenever an overflow occurs. From our model presented

in chapter 3 it can be derived that optimization for cubes is appropriate in low dimen-

sions. However, we will show in section 6.4 that this optimization leads to a deteriorated

performance behavior in high-dimensional query processing. We will derive from our

model that range searches in high-dimensional data spaces become more efficient when

thin pages are cut from the borders of the data space. It is difficult to achieve such space

partitioning in a dynamic index construction. Therefore, we describe our geometry opti-

mization in the context of a bulk-loading technique for high-dimensional indexes.

The benefit of this chapter is therefore two-fold: Additionally to the performance gain

for the search operation, we present a sophisticated new algorithm for the index con-

struction improving the efficiency of this operation by orders of magnitude. This im-

provement will be shown both analytically as well as experimentally. Parts of the mate-

rial presented in this chapter were published [BBK 98].

142 Optimizing the Geometry of Regions Using Bulk-Load Operations

6.1 Introduction

A typical database application starts with an empty database which will grow continu-

ously by multiple insert operations. It is not appropriate to use an index structure in the

beginning of this process because having only a relatively small amount of high-dimen-

sional feature vectors, a sequential scan of the data will be much faster than an index

based search. Therefore, we are supposed to simply store the feature vectors on the disk

and scan the whole database for query processing. When the size of the database reaches

a certain value, the use of an index structure is required. We may use a cost model as

discussed in chapter 3 to determine this break-even point for a given dimensionality of

the feature vectors. At this point, we face the problem to build an index file from a large

amount of data, i.e. to bulk-load the index. As the process of inserting data does not stop

at that time, we cannot use a static index structure but have to use a dynamic index

structure and additionally supply it with an efficient bulk-load operation. As the X-tree

outperforms the TV-tree and the R*-tree regarding the search performance, we decided

to use the X-tree as an index structure.

On the other hand, we may draw some advantage from the fact that we do not only

know a single data item - as in case of a normal insertion operation - but a large amount

of data items. It is a common knowledge that we can achieve a higher fanout and storage

utilization using bulk-load operations resulting in a slightly better search performance.

But do we exhaust all the potential of this information by increasing the storage utiliza-

tion? As we will see later in this chapter, we do not. This is due to the fact that a priori

knowing all data allows us to choose an alternate data space partitioning. As we will

show analytically, space partitioning caused by a split strategy splitting the data space in

two equally-sized portions performs poor in contrast to an unbalanced split. An experi-

mental evaluation of our bulk-loading technique proves this result.

The rest of this chapter is organized as follows: In section 6.3, we introduce the gen-

eral idea of bulk-loading an index structure. We then give an overview over existing

bulk-loading techniques and analyze their behavior especially concerning effects occur-

ring in high-dimensional spaces. In section 6.3.3, we theoretically analyze the perfor-

mance of various split strategies in high-dimensional data spaces. In section 6.4, we

propose our new technique which allows not only a fast bulk-load operation but also

results in a better space partitioning than we can achieve using a dynamic index struc-

ture. In section 6.3.7, we analytically show that our bulk-load operation can be done in

Related Work 143

O(n log n) time. The chapter is concluded by a variety of experimental results which

demonstrate the advantage of our technique compared to dynamic indexing and other

bulk-loading techniques.

6.2 Related Work

6.2.1 General Idea of bulk-loading

Building an index from a given large set of high-dimensional vectors, we have to divide

the data set into rather small portions which fit into a single data page. Thus, we have to

assign each vector of the data set to a data page and additionally build an appropriate

directory. There are two known techniques to assign data items to data pages: We can use

a function which provides a one-dimensional order of the data space, and –

after sorting the data items – sequentially assign them to data pages. Usually, a space

filling curve such as the Hilbert curve or Z-ordering is used as an assigning function.

Figure 78 shows some two-dimensional examples of space filling curves. Space filling

curves can also be directly applied for multidimensional indexing, cf. chapter 2.

As an alternative, we can divide the data space into partitions which correspond to

data pages. This partitioning of the data space can be done in a top-down fashion which

means that we hierarchically divide the d-dimensional space using (d–1)-dimensional

hyperplanes as borderlines between the partitions. More formally, we divide the d-di-

mensional space ds0 into n0 partitions ds0 0...ds0 n0. These partitions ds0 i are then split

into partitions ds0 i 0...ds0 i n1 and so on. In addition, however, we have to assure that a

directory can be built on top of this space partitioning, i.e. we have to meet some restric-

tions with respect to the values ni.

Frequently, bulk-loading an index is also called bottom-up construction of the index.

This is due to the fact that we first construct the data pages which are at the “bottom” of

ℜd ℜ→

Figure 78: Space Filling Curves

HilbertPeano (Z-Order) U-IndexGray-Codes

144 Optimizing the Geometry of Regions Using Bulk-Load Operations

the index structure and then construct the directory pages. As this term is misleading

because we actually partition the data space in a top-down fashion, we omit this term and

use bulk-loading or simply index construction instead.

6.2.2 Hilbert R-Trees

For both of the general techniques, some research has been done. From the class of space

filling curves, also known as fractals, the Hilbert curve seems to be the most appropriate

technique for multidimensional indexing. The relevant property hereby is the preserva-

tion of neighborhood which means that objects which are close in the d-dimensional

space should be close in the 1-dimensional space, too. As experiments show, in case of

the Hilbert curve this property holds for most of the points. This leads to the develop-

ment of the Hilbert R-tree [KF 94]. A Hilbert R-tree is created by externally sorting all

the data vectors according to their Hilbert value. Then, we divide the resulting sorted

array of vectors into equally sized portions such that every portion fits into one data

page. We store the corresponding vectors into data pages. In the next step, we divide the

resulting array of data pages which is still sorted according to the Hilbert value into

equally sized portions and determine the corresponding minimum bounding boxes

(MBR). We finally store the MBRs in directory pages clustering these directory pages

recursively until we reach a single root node. The costs for bulk-loading a Hilbert R-tree

are obviously in O(n log n) time due to external sorting. The Hilbert R-tree performs

very well for low-dimensional spaces. In these spaces, it outperforms the Z-order space

filling curve and is competitive to dynamic R-trees. However, we are not able to predict

the behavior of an index structure in high-dimensional spaces from the behavior in low-

dimensional spaces. As we will see in section 6.5, the Hilbert ordering degenerates in

higher dimensions leading to a bad query performance. The reason for this behavior is

the resulting overlap when creating data pages from sorted Hilbert values. Obviously, a

range in the 1-dimensional Hilbert space does not correspond to a rectangular region in

the d-dimensional space. This introduces an overlap into the index which increases when

going to higher dimensions. Additionally, we do not have the choice of adapting the

space partitioning to the data distribution.

6.2.3 VAM-Split R-Trees

The VAM-Split trees which have been proposed by White and Jain use the concept of

hierarchical space partitioning. VAM-Split trees are R-trees or KDB-trees which are

Related Work 145

bulk-loaded by creating a kd-tree-like structure. The data vectors are initially stored in

an array. Then, the algorithm determines a split dimension and a split value within this

dimension. The value is determined such that the variance from each point to the split

value in maximized. According to the authors, this can be done in O(n) time. In the next

step, all data vectors are transferred to the upper or the lower half of the array depending

on the value of the vector in the split dimension. From that, the algorithm has partitioned

the data space into two portions which are separated by a (d-1)-dimensional hyperplane.

The split dimension is the normal vector of the hyperplane. The algorithm recursively

repeats the partitioning process until portions of the space exist which fit into a single

data page. Except the fact that the split condition was maximizing the variance instead

of using the median, this technique is very similar to building a kd-tree. The disadvan-

tage of the algorithm is that it does neither take advantage of the knowledge that we have

from the fact that the whole amount of data is present during the bulk-load operation nor

effects occurring in high-dimensional spaces have been taken into account. As we will

see, this results in an inadequate data space partitioning.

6.2.4 Buffer Trees

In [BSW 97], van den Bercken, Seeger and Widmayer propose a new technique called

buffer trees. Buffer trees are a generalized technique which potentially works on all

multidimensional index structures. The buffer tree is a derivative of the data structure to

be constructed (called the ‘target’ index structure) with two major modifications: First,

an additional buffer is assigned to each directory page, and second, the capacity of a

directory page may differ from the capacity of the target data structure. The buffer of

each directory page is partially held in the main memory and partially laid out on the

secondary storage. During the bulk-load operation, each tuple is inserted into the buffer

of the root node. If the buffer of the root node is full, all objects in the buffer are dis-

patched to the next deeper index level. This process continues until the data level is

reached. If the last object has been inserted into the buffer tree, all buffers are emptied by

propagating the contained points down the tree. The data pages of the buffer tree can be

taken as data pages of the target index while the directory of the buffer tree has to be

discarded due to incorrect capacity. The various directory levels of the target index are

created by inserting the bounding boxes into further buffer trees. Number, capacity and

buffer size of the directory nodes are limited by the available main memory and have to

be optimized accordingly. Although avoiding a complete sorting of the data set, the

146 Optimizing the Geometry of Regions Using Bulk-Load Operations

authors prove that the lower bound of page accesses in external sorting is achieved by

their algorithm. A significant performance improvement over dynamic index construc-

tion is shown experimentally for R-trees. The general advantage of the buffer tree ap-

proach is that, algorithms designed for tuning the query performance of the target index

structure can be applied without modification. Obviously, the resulting index has the

same properties as a dynamically constructed index. On the other hand, no specific ad-

vantage is taken from knowing the complete data set a priori. Additionally, an overlap in

the target directory is not avoided.

6.3 Our New Technique

In this section, we present our new bulk-loading technique. Although applicable to most

R-tree-like index structures, we decided to use the X-tree as an example because accord-

ing to [BKK 96], the X-tree outperforms other high-dimensional index structures. In

contrast to dynamically constructed X-trees, our algorithm exploits a priori knowledge

of the complete data set to create an overlap-free directory, also avoiding supernodes. An

arbitrary storage utilization can be achieved, including a near-100% utilization. As we

will see later, “near 100%” means 100% up to round-off effects. Furthermore, if we

choose a storage utilization lower than 100%, we use the gained freedom for an acceler-

ation of the construction.

6.3.1 Basic Idea

During the bulk-load operation, the complete data is held on the secondary storage.

Although only a small cache in the main memory is required, cost intensive disk opera-

tions such as random seeks are minimized. In our algorithms, we strictly separated the

split strategy from the core of the construction algorithm. Therefore, we can easily re-

place the split strategy and thus, create an arbitrary overlap-free partition with the given

storage utilization. Various criteria for the choice of direction and position of split hyper-

planes can be applied. Especially, we have implemented various kinds of asymmetric

split strategies which are not applicable in a dynamic index construction.

The index construction is a recursive algorithm containing the following subtasks:

• determining the tree topology (height, fanout of the directory nodes, etc.)

• the split strategy,

Our New Technique 147

• external bisection of the data set according to tree topology and split strategy

• construction of the index directory.

Although all these subtasks run in a nested fashion, we will present them separately

to maintain clarity. However, we cannot isolate the split strategy and the bipartitioning

algorithm from the tree topology. For example, in order to achieve an overlap-free direc-

tory, both the split strategy and the partitioning algorithm have to consider the fanout of

an individual directory node as provided by the tree topology (Note that, at least in the

highest levels of the tree, the fanout can be much smaller than the page capacity, as we

will show later). Vice versa, the exact topology of a subtree can only be determined if the

exact number of data objects stored in this subtree is known. This exact number, howev-

er, depends on the results of previous splits and bisections. Thus, although we separately

describe the parts of the algorithms, we have to keep in mind the special requirements

and prerequisites of the other parts.

An example will clarify the idea of our algorithm: Let us assume that we have given

10,000 two-dimensional data items and we can take from several properties our index

structure that 10,000 items will fill a tree of height 3 having 6 entries in the root node

(determination of tree topology). Thus, we first call the recursive partitioning algorithm

which applies the split strategy to our 10,000 data items and gets the following back:

“The 10,000 items should be first split according to dimension 0 such that partition A

contains 2,000 items and partition B contains 8,000 items. Then we should split partition

B according to dimension 1 such that partition C and D each contain 4,000 items. Again,

Figure 79: Basic Idea of Our Technique

dimension 0

di
m

en
si

on
 1 E F

G H

J

K

1,000 2,000

1,000 2,000

2,000

2,000

0

1

0

HG

0

FE

1

KJ

J K E F G H

A B

A C D

unsorted data

sp
lit

st
ra

te
gy

ex
te

rn
al

bi
se

ct
io

n
2,000 8,000

1,000 1,000 4,000 4,000

2,000 2,000 2,0002,000

148 Optimizing the Geometry of Regions Using Bulk-Load Operations

we should split C and D according to dimension 0 that each of the partitions E, F, G, and

H each contain 2,000. Finally, we should split partition A according to dimension 1 into

partitions J and K such that J and K contain each 1,000 data items.”

Note that this information could also be seen as a binary tree (split tree) having split

dimensions as nodes and amounts of data as denotations of edges. The upper part of

figure 79 depicts the result of the split strategy and the corresponding split tree. As next

step, the top-down partitioning algorithm calls the external bisection algorithm (“Exter-

nal” means that the data to be bisected is located on the secondary storage and the algo-

rithm also operates on disk) which divides the previously unsorted data into the six

desired portions (E, F, ..., J, K). This is depicted in the lower part of figure 79. At this

point, we have partitioned our root node into the six subtrees. Note that the data inside

the partitions (J, K, ..., G, H) remains unsorted during the bisection, i.e. there exists no

ordering inside of J. As last step, we recursively apply our algorithm to the six partitions

until we reach the data pages and write the corresponding directory to the secondary

storage.

6.3.2 Determination of the Tree Topology

The first prerequisite of our algorithm is to determine the topology of the tree resulting

from our bulk-load operation. The topology of a tree includes the height of the tree, the

fanout of the directory nodes on the various tree levels, the capacity of data pages, and

the number of objects stored in each subtree. However, we do not regard the exact num-

ber of objects stored in a tree, but a range between a maximum and a minimum number.

The topology of the tree only depends on static information which is invariant during the

construction such as the number of objects, the dimension of the data space, the page

capacity and the storage utilization.

Let Cmax,data be the maximum number of data objects in a data page where

,

Cmax,dir analogously the maximum fanout of a directory page, and Ceff,data and Ceff,dir

the average capacity of a data/directory page with

.

Cmax, data
pagesize

sizeof dataobject()
---=

Ceff,data storageutilizationCmax, data⋅=

Our New Technique 149

The maximum number of data objects stored in a tree with height h is then:

.

Therefore, the height of the tree must initially be determined such that Ceff,tree is greater

than the actual number of objects n. More formally:

Note that we have to evaluate this formula only once in order to determine the level

of the root node of the index. As the X-tree and other R-tree related index structures are

always height-balanced, we can easily determine the level of subtrees by decrementing

the level of the parent node of the subtree. Now, we have to determine the fanout of the

root node of a tree T with height h when filled with n data objects. Let us assume that

every subtree of height (h-1) is filled according to its average capacity .

Thus, the fanout is the quotient of n and the average capacity of the subtrees:

.

The minimum is required due to round-off effects.

Obviously, a 100% storage utilization in every node can be achieved only for certain

values of n. Usually, the number of nodes in each level must be rounded-up. Thus, the

data nodes and their parents are utilized best according to the desired storage utilization

while the worst utilization typically occurs in the top levels of the tree. In general, our

algorithm creates the highest possible average storage utilization below the chosen one.

6.3.3 The Split Strategy

Once we laid down the fanout f of a specific directory page P, the split strategy has to be

applied to determine f subsets of the current data. As we regard the split strategy as an

replaceable part of our algorithm, we only describe the requirements of a split strategy

in this section. A detailed description of our optimized split strategy will be given in

section 6.4.

Assuming that the data set is bisected repeatedly, the split strategy determines the

binary split tree for a directory page which has f leaf nodes and may be arbitrarily unbal-

anced. Each non-leaf node in the split tree represents a hyperplane (the split plane) split-

ting the data set into two subsets. The split plane can be described by the split dimension

Cmax,tree h() Cmax,data Cmax,dir
h 1–⋅= Ceff,tree h() Ceff,data Ceff,dir

h 1–⋅=

h logCeff,dir

n
Ceff,data
-----------------() 1+=

Ceff,tree h 1–()

fanout h n,() min n
Ceff,tree h 1–()
------------------------------ Cmax,dir,() min n

Ceff,data Ceff,dir
h 2–⋅

---------------------------------- Cmax,dir,()= =

150 Optimizing the Geometry of Regions Using Bulk-Load Operations

and the numbers of data objects (NDO) on each side of the split plane. Thus, a split

strategy has to determine the split dimension and the ratio between the two NDOs. Fur-

thermore, we allow the split strategy to produce not only constant ratio but a interval of

acceptable ratios. We will use this freedom later to accelerate the bisection algorithm.

Note that the split strategy does not provide the position of the split plane in terms of

attribute values. We determine this position using the bisection algorithm.

In every subtree of the split tree, the number of data objects NDO is proportional to

the number of leaf nodes in the split tree:

Figure 80 shows an example of a subtree containing 100,000 data objects to be orga-

nized in a directory node of fanout 6. When applying a symmetric split strategy, the first

split has to be in the middle of the data set dividing it into two subsets with

NDO1=50,000 elements according to the x-axis. Then, we have to divide each of the

subsets into 3 parts. This is done by a 2:1 split into NDO2=33,333 and NDO3=16,667

objects according to the y-axis (node 2). The rectangle containing 33,333 elements is

then again partitioned into two approximately equally sized subsets. An alternate split

strategy, for example, cuts NDO1=16,666 objects out of the 100,000 in the first step,

then again NDO2=16,666 from the rest, and so on. In this case, the split tree degenerates

to a linear list.

In order to determine the split dimension, we have to consider two cases: If the data

subset fits into the main memory, the split strategy can determine the split dimension and

the subset size by computing selectivities or variances from the complete data subset.

NDO n
#leafnodes

f
--------------------------⋅=

1 x; 50,000

5 y; 16,666

4 y; 16,667 3 y; 16,667

2 y; 33,333 16,667 : 16,666

3

16,666 : 16,667

5

 33,333 : 16,667

2

16,667 : 33,333

4

50,000 : 50,000

1

Figure 80: The Split Tree

Our New Technique 151

Otherwise, decisions are based on a sample of the subset which fits into the main mem-

ory and can be loaded without causing too many random seek operations. We use a

simple heuristic to sample the data subset which loads subsequent blocks from three

different places in the data set.

6.3.4 Recursive Top-Down Partitioning

Now, we are able to define a recursive algorithm for partitioning the data set. The algo-

rithm consists of two procedures which are nested recursively (both procedures call one

another). The first, partition(), is called once for each directory page. Its duties are:

• call the topology module to determine the fanout of the current directory page

• call the split-strategy module to determine a split tree for the current directory page

• call the second procedure, partition_acc_to_split_tree()

The second function partitions the data set according to the split dimensions and the

proportions given in the split tree. However, the proportions are not regarded as fixed

values. Instead, we will determine lower and upper bounds for the number of objects on

each side of the split plane. This will help us to improve the performance of the next step,

external bipartitioning. Let us assume that the number of leaf nodes on each side of the

current node in the split tree is l : r, and that we are currently dealing with N data objects.

An exact split plane would exploit the proportions

 and .

Instead of using the exact values, we compute an upper limit for Nleft such that Nleft is

not too large to be placed in l subtrees with height and a lower limit for Nleft such

that Nright is not too large for r subtrees:

An overview over the algorithm is depicted in C-like pseudocode in figure 81. For the

presentation of the algorithm, we assume that the data vectors are stored in an array on

the secondary storage and the current data subset is referred to by the parameters start

and n, where n is the number of data objects and start represents the address of the first

object.

The procedure index_construction(n) determines the height of the tree and calls par-

tition() which is responsible for the generation of a complete data or directory page. The

details of the page generation are provided in section 6.3.6. The function partition() first

Nleft N
l

l r+
--------⋅= Nright N

r
l r+
--------⋅ N Nleft–= =

h 1–

Nmax,left l Cmax,tree h 1–()⋅= Nmin,left N Nmax,right– N r Cmax,tree h 1–()⋅–= =

152 Optimizing the Geometry of Regions Using Bulk-Load Operations

determines the fanout of the current page and calls split_strategy() to construct an ade-

quate split tree. It then calls partition_acc_to_splittree() to get the data set partitioned

according to the split tree. After partitioning the data, partition_acc_to_splittree() calls

partition(), in order to create the next deeper index level. The height of the current sub-

tree is decremented in this indirect recursive call. Therefore, the data set is partitioned in

a top-down manner, i.e. the data set is first partitioned with respect to the highest direc-

tory level below the root node.

index_construction (int n)
{

int h = (int)(log (n/Ceffdata) / log (Ceffdir) + 1) ;
partition (0, n, h) ;

}

partition (int start, int n, int height)
{

if (height == 0) {
... // write data page, propagate info to parent
return ;

}
int f = fanout (height, n) ;
SplitTree st = split_strategy (start, n, f) ;
partition_acc_to_splittree (start, n, height, st) ;
... // write directory page, propagate info to parent

}

partition_acc_to_splittree (int start, int n, int height,
SplitTree st)

{
if (is_leaf (st)) {

partition (start, n, height - 1) ;
return ;

}
int mtc = max_tree_capacity (height - 1) ;
n_maxleft = st->l_leaves * mtc ;
n_minleft = N - st->r_leaves * mtc ;
n_real = external_bipartition (start, n, st->splitdim,

n_minleft, n_maxleft) ;
partition_acc_to_splittree (start, n_real,

st->leftchild, height) ;
partition_acc_to_splittree (start + n_real, n - n_real,

st->rightchild, height) ;
}

Figure 81: Recursive Top-Down Data Set Partitioning

Our New Technique 153

6.3.5 External Bipartitioning of the Data Set

Our bipartitioning algorithm is comparable to the well-known Quicksort algorithm

[Hoa 62, Sed 78]. Bipartitioning means to split the data set or a subset thereof into two

portions according to the value of one specific dimension, the split dimension. After the

bipartitioning, the “lower” part of the data set contains values in the split dimension

which are lower than a threshold value (the split value), the values in the “higher” part

will be higher than the split value. The split value is initially unknown and is determined

during the run of the bipartitioning algorithm. Note that the actual goal of the bipartition-

ing algorithm is to divide the array such that a specific proportion in the number of

objects results where the term “proportion” is fuzzily defined as an interval. For exam-

ple, we may have an array of 10,000 data vectors which we want to bipartition such that

one partition contains between 3,000 and 3,500 data vectors whereas the other partition

contains the rest of the data vectors, i.e. between 6,500 and 7,000 data vectors. As we do

not know a priori which values are located in the interval from object 3,000 to object

3,500, we do not initially know the split value.

Bipartitioning is closely related to sorting the data set according to the split dimen-

sion. In fact, if the data is already sorted, bipartitioning of any proportion can easily be

achieved by cutting the sorted data set into two subsets. However, sorting has a complex-

ity of o(n log n), and a complete sort-order is not required for our purpose. Instead, we

will present a bipartitioning algorithm with an average-case complexity of O(n). The

basic idea of our algorithm is to adapt Quicksort as follows: Quicksort makes a bisection

of the data according to a heuristically chosen pivot value and then recursively calls

Quicksort for both subsets. Our first modification is to make only one recursive call for

the subset which contains the split interval. We are able to do that because the objects on

the other subsets are on the correct side of the split interval anyway and need no further

sorting. Figure 82 depicts this modification. In the example, there is no need to continue

sorting on the left partition (2, 1) because all elements in the left partition are already

below the final split interval. The second modification is to stop the recursion if the

position of the pivot value is inside the split interval (inside the grey area in figure 82).

The third modification is to choose the pivot values according to the proportion rather

than trying to reach the middle.

Our bipartitioning algorithm works on the secondary storage. It is well-known that

the Mergesort algorithm is better suited for external sorting than Quicksort. However,

Mergesort does not facilitate our modifications leading to an O(n) complexity and was

154 Optimizing the Geometry of Regions Using Bulk-Load Operations

not further investigated for this reason. In our implementation, we use a sophisticated

scheme reducing disk I/O and especially random seek operations much more than a

normal caching algorithm would be able to.

The algorithm runs in two modes: in an internal mode if the data set to be partitioned

fits in the main memory cache, and in an external mode if it does not. The internal mode

is quite similar to Quicksort: The middle of three split attribute values in the database is

taken as pivot value. The first object in the left side having a split attribute value larger

than the pivot value is exchanged with the last element in the right side lower than the

pivot value until left and right object pointers meet at the bisection point. The algorithm

stops if the bisection point is inside the goal interval. Otherwise, the algorithm continues

recursively with the data subset containing the goal interval.

The external mode is more sophisticated: First, the pivot value is determined from the

sample which is taken in the same way as described in section 6.3.3 and can often be

reused. A complete internal bipartition runs on the sample data set to determine the pivot

value as well as possible. In the following external bisection (cf. figure 83), transfers

from and to the cache are always processed with a blocksize half of the cache size. The

cache, however, does not exactly represent two blocks on disk. Figure 83a shows the

initialization of the cache from the first and last block in the disk file. Then the data in

the cache is processed by internal bisection with respect to the pivot value. If the bisec-

tion point is in the lower part of the cache (figure 83c), the right side contains more

objects than fit in one block. One block, starting from the bisection point, is written back

Figure 82: Adapted Quicksort

8 7 1 2 5 9

split interval

initial array

8 7 1 2 5 9

2 1 5 7 8 9

pivot element

already bipartitioned to be bipartitioned recursively

after first step
of the algorithm

Our New Technique 155

to the file and the next block is read and internally bisected again. Usually, objects re-

main on the lower and higher ends of the cache. These objects are used later to make

transfer blocks complete. All remaining data is written back in the very last step in the

middle of the file where additionally a fraction of a block has to be processed. Finally,

we test if the bisection point of the external bisection is in the split interval. If the point

is outside, another recursion is required.

(a) Initializing the cache from file:
file

cache

(b) Internal bisection of the cache:
cache

(c) Writing the larger half back to disk:

(d) Loading one further block to cache:

(e) Writing the larger half back to disk:

cache

cache

cache

file

file

file

Figure 83: External Bisection

156 Optimizing the Geometry of Regions Using Bulk-Load Operations

6.3.6 Constructing the Index Directory

As the data partitioning is done by a recursive algorithm, the structure of the index is

represented by the recursion tree. Therefore, we are able to create a directory node after

the completion of the recursive calls for the child nodes. These recursive calls return the

bounding boxes and the corresponding secondary storage addresses to the caller, where

the informations are collected. There, the directory node is written, the bounding boxes

are combined to a single bounding box comprising of all boxes of child nodes, and the

result is again propagated to the next higher level.

Thus, a depth-first post-order sequentialization of the index is written to disk. The

sequentialization starts with a sequence of data pages, followed by the directory page

which is the common parent of these data pages. A sequence of such blocks is followed

by a second-level directory page, and so on. The root page of the directory is the last page

in the index file. As geometrically neighboring data pages are also likely to be in the

same hierarchical branch, they are well clustered.

6.3.7 Analytical Evaluation of the Construction Algorithm

In this section, we will show that our bottom-up construction algorithm has an average

complexity of the order O(n log n). Moreover, we will regard disk accesses in a more

exact way, and thus provide an analytically derived improvement factor over the dynam-

ic index construction. For the file I/O, we determine two measure numbers: The number

of random seek operations and the amount of data read or written from or to disk. Unless

no further caching is performed (which is true for our application, but cannot be guaran-

teed for the operating system) and provided that seeks are really random, the I/O pro-

cessing time can be determined as

.

In the following, we denote by the cache capacity Ccache the number of objects fitting in

the cache:

Lemma 7: Complexity of bisection

The bisection algorithm has the complexity O(n).

ti/o tseek seek_ops ttransfer amount⋅+⋅=

Ccache
cachesize

sizeof (object)
----------------------------------=

Our New Technique 157

Proof (Lemma 7)

We assume that the pivot element is randomly chosen from the data set. After the first

run of the algorithm, the pivot element is located with uniform probability at one of

the n positions in the file. Therefore, the next run of the algorithm will have the length

k with a probability for each . Therefore, the cost function encom-

passes the cost for the algorithm, comparison operations plus a probability

weighted sum of the cost for processing the algorithm with length , . We get

the following recursive equation:

,

which can be solved by multiplying with n and subtracting the same equation for

:

This can be simplified to

,

and, as ,

,

❏

Lemma 8: Cost Bounds of Recursion

(1) The amount of data read or written during one recursion of our technique does not

exceed four times the file-size.

(2) The number of seek operations required is bounded by

Proof (Lemma 8)

(1) follows directly from Lemma 1 because every compared element has to be trans-

ferred at most once from disk to main memory and at most once back to disk.

1 n⁄ 1 k n< < C n()
n 1+

k 1– C k()

C n() n 1
C k 1–()

n

k 1=

n

∑+ +=

n 1–

n C n() n 1–() C n 1–()⋅–⋅ n n 1+()⋅ n n 1–()⋅– C k 1–()
k 1=

n

∑ C k 1–()
k 1=

n 1–

∑–+=

C n() 2 C n 1–()+=

C 1() 1=

C n() 2 n O n()=⋅=

seek_ops n()
8 n⋅

Ccache
------------- 2 log2 n()⋅+≤

158 Optimizing the Geometry of Regions Using Bulk-Load Operations

(2) In each run of the external bisection algorithm, file I/O is processed with a block-

size of cachesize/2. The number of blocks read in each run is therefore

because one extra read is required in the final step. The number of write operations is

the same such that

,

❏

Lemma 9: Average Case Complexity of Our Technique

Our technique has an average case complexity O(n log n) unless the split strategy has

a complexity worse than O(n).

Proof (Lemma 9)

For each level of the tree, the complete data set has to be bisectioned as often as the

height of the split tree. As the height of the split tree is limited by the directory page

capacity, there are at most

bisection runs necessary. Our technique has therefore the complexity O(n log n),

❏

Lemma 10: Cost of Symmetric Partitioning

For symmetric splitting, the partition() procedure has an amount of file I/O data of

and requires

random seek operations.

blocks_readbisection n()
n

Ccache 2⁄
------------------- 1+=

seek_ops n() 2 blocks_readrun i()
i 0=

rinterval

∑⋅ 8 n⋅
Ccache
------------- 2 log2 n()⋅+≤=

h n() Cmax,dir⋅ O log n()=

log2
n

Ccache
-------------() logCmax,dir

n
Ccache
-------------()+

 4 filesize⋅ ⋅

log2
n

Ccache
-------------() logCmax,dir

n
Ccache
-------------()+

 8 n⋅
Ccache
------------- 2 log2 n()⋅+

 ⋅

Our New Technique 159

Proof (Lemma 10)

The height of the cumulated partition tree (i.e. the binary tree which is formed by

replacing all directory nodes of the index by the corresponding split trees) does not

exceed the following bound:

Basically, the cumulated split tree is a complete binary tree with the exception that the

last split tree level in each index level is incomplete. Therefore, the height of the

cumulated split tree increases in each index level at most by one compared to the

complete binary tree. In the lowest levels of the cumulated split tree, no I/O transfers

are necessary, because the corresponding subsets fit into the cache. These levels are

not considered. The number of levels, where I/O processing is necessary, is bounded

by:

≤

=

For each level of the cumulated split tree, the complete file is at most once completely

processed. In combination with lemma 7, the formulas are proven.

❏

Lemma 11: Cost of Dynamic Index Construction

Dynamic X-tree construction requires 2 n seek operations. The transferred amount of

data is .

Proof (Lemma 11)

For the X-tree, it is generally assumed that the directory is completely held in the

main memory. Data pages are not cached at all. For each insert, the corresponding

data page has to be loaded and written back after completing the operation.

❏

Moreover, no better caching strategy for data pages can be applied, since without prepro-

cessing of the input data set, no locality can be exploited to establish a working set of

pages. From the results of lemmata 10 and 11 we can derive an estimate for the improve-

hcum n() log2 n() logCmax,dir
n()+≤

hprocessed n() log2 n() logCmax,dir
n() log2 Ccache() logCmax,dir

Ccache()––+

log2
n

Ccache
-------------() logCmax,dir

n
Ccache
-------------()+

2 n pagesize⋅ ⋅

160 Optimizing the Geometry of Regions Using Bulk-Load Operations

ment factor of the bottom-up construction over dynamic index construction. The im-

provement factor for the number of seek operations is approximately:

It is almost (up to the logarithmic factor in the denominator) linear in the cache capacity.

Figure 84 depicts the improvement factor (number of random seek operations) for vary-

ing cache sizes and varying database sizes.

6.4 Improving the Query Performance

In the dynamic index construction, the most important decision in split processing is the

choice of the split axis whereas the split value is rather limited. Heavily unbalanced

splits, such as a 10:1 proportion are commonly regarded as undesired because storage

utilization guarantees would become impossible if pages with deliberately low filling

degree are generated in an uncontrolled manner. Moreover, for low-dimensional spaces,

it is beneficial to minimize the perimeter of the bounding boxes, i.e. to shape the bound-

ing boxes such that all sides have approximately the same length [BKSS 90]. But, there

Improvement
Ccache

4 log2
n

Ccache
-------------() logCmax,dir

n
Ccache
-------------()+

 ⋅
---≈

Figure 84: Improvement Factor for the Index Construction According to Lemma 7-11

Im
pr

ov
em

en
t F

ac
to

r

Cache Capacity Ccache

n = 100,000,000

n = 1,000,000

n = 10,000,000

Improving the Query Performance 161

are some effects in high-dimensional data spaces leading to performance deterioration

when minimizing the perimeter.

The first observation is that at least when applying balanced partitioning on a uni-

formly distributed data set, the data space cannot be split in each dimension. Assuming

for example a 20-dimensional data space which has been split exactly once in each

dimension would require 220 = 1,000,000 data pages or 30,000,000 objects if the effec-

tive page capacity is 30 objects. Therefore, the data space is usually split once in a

number d’ of dimensions. In the remaining (d - d’) dimensions it has not been split and

the bounding boxes include almost the whole data space in these dimensions. As we

assume the d-dimensional unit hypercube as data space, the bounding boxes have ap-

proximately side length 1/2 in d’ dimensions and approximately side length 1 in (d - d’)

dimensions. The maximum split dimension d’ can be determined from the number N of

objects stored in the database:

.

The second observation is that a similar property holds for typical range queries. If we

assume that the range query is a hypercube and should have a selectivity s, then the side

length q is the dth root of s: . For a 20-dimensional range query with selectivity

0.01% we get a side length q = 0.63 which is larger than half of the extension of the data

space in this direction.

It becomes intuitively clear that a query with side length larger than 1/2 must intersect

with every bounding box having at least side length 0.5 in each dimension. However, we

are also able to model this effect more accurate: We adapt our model to take window

queries into account. Our first modification for window queries is that we assume always

the window to be entirely contained in the data space. In contrast to range queries, the

event space, from which the query anchor is taken, is not the complete data space but

rather a subspace.

The minimum and maximum is required to cut the parts of the Minkowski sum ex-

ceeding the data space. The denominator (1 -q) is required because the stochastic “event

space” of the query anchor is not [0 ... 1] but rather [0 ... 1-q]. As an example, the results

of three different sets of partitions for 6 pages in 2-d space and their expected page

d′ log2
N

Ceff
--------()=

q sd=

Pbound_eff q()
min ubi j, 1 q–,() max lbi j, q– 0,()–

1 q–

0 j d<≤
∏

i

∑=

162 Optimizing the Geometry of Regions Using Bulk-Load Operations

accesses for a range query with side length 0.6 are illustrated in figure 85. All bounding

boxes have an area of 1/6. The individual access probability is depicted inside the boxes.

The first partitioning corresponds to a balanced split strategy optimized for square-like

bounding boxes. The second corresponds to a strategy cutting a slice with area 1/6 from

the lower part of the remaining space. The dimensions are in this case changed periodi-

cally. The third strategy is similar to the second with the only exception that slices are cut

from the lower and the higher end before the dimensions are changed. We can take from

this simple 2-dimensional example that for large queries the performance is slightly

(30%) improved if the pages are split unbalanced. This is due to the fact that close to the

border of the data space, there arise long pages with a low access probability.

Thus, we implemented the following unbalanced split strategy: If the current data set

fits into main memory, then we determine the dimension ds where the space partition to

be split has maximal extension. Otherwise, we apply the same criterion to a sample of

the current data set which is taken as mentioned in section 6.3.5. Once ds has been

determined, we split the space according to the given ratio. Then, we split the larger

partition on the opposite side using the same ratio and split dimension. Thus, we have

symmetrically split the space into three portions: A large partition in the middle of the

space and two equally sized small partitions at the border of the space. If the remaining

large partition contains more elements than the capacity of a subtree is, we again choose

an appropriate split dimension for the remaining partition and split it according to the

given ratio. This process continues until the size of the remaining partition is below the

capacity of a subtree. Note that we do not have the full freedom of splitting anywhere in

the last step of this process, unless we produce underfilled pages.

0 1/2

1/3

2/3
5/6

1

1
5/6

1 1

5/6 5/6
0

1/2

1/6

5/6

1

1

1/4 3/4

5/12

5/12
1

1

5/
8

5/
8

5/12
15/16

1
25/32

11/
2

0

5/8

5/16

5/6

1

1

1/5 7/15

P1(0.6) = 5.33 P2(0.6) = 4.64 P3(0.6) = 4.08

Figure 85: Examples for Balanced and Unbalanced Split Strategies in 2-d Space

Experimental Evaluation 163

6.5 Experimental Evaluation

To show the practical relevance of our bottom-up construction algorithm and of our

techniques for unbalanced splitting, we have performed an extensive experimental eval-

uation by comparing the following index construction techniques:

• Dynamic index construction by repeatedly inserting objects

• Hilbert-R-tree construction by sorting the objects according to their Hilbert values

• our bottom-up construction method using

- balanced (1:1) splitting

- moderately balanced (3:1)

- heavily (9:1) unbalanced splits.

All experiments have been computed on HP9000/780 workstations with several GBytes

of secondary storage. Although our technique is applicable to most R-tree-like index

structures, we decided to use the X-tree as an underlying index structure because accord-

ing to [BKK 96], the X-tree outperforms other high-dimensional index structures. All

programs have been implemented object-oriented in C++.

Our experimental evaluation encompasses both real and synthetic data. Our real data

set consists of text data, describing substrings from a large text database. We converted

the text descriptors to 300,000 points in a 16-dimensional data space (19 MBytes of raw

data). The synthetic data set consists of two million uniformly distributed points normal-

ized in the 16-dimensional unit hypercube. The synthetic raw data has a file size of 128

MBytes. We created various index files using subsets of the original data sets and pro-

jecting the data space to a lower dimensional space by omitting some of the attributes.

The page size used for all indexes was 4,096 Bytes. The total amount of disk space

occupied by the created indexes is about 2.8 GBytes. The index construction time for all

our experiments sums up to several weeks.

In our first experiment, we compared the construction times for various indexes. The

external sorting procedure of our construction method was allowed to use only a rela-

tively small cache (32 kBytes). Note that, although our implementation does not provide

any further disk I/O caching, this cannot be guaranteed for the operating system. In most

experiments (unless otherwise mentioned) the storage utilization was 80%. In contrast,

the Hilbert construction method was implemented in combination with internal sorting

for simplicity. The construction time of the Hilbert method is therefore underestimated

164 Optimizing the Geometry of Regions Using Bulk-Load Operations

by far and would worsen in combination with external sorting when the cache size is

strictly limited. All Hilbert-constructed indexes have a storage utilization near 100%.

Figure 86 shows the construction time of dynamic index construction and the bottom-

up methods. In the left diagram, we fixed the dimension to 16, and varied the database

size from 100,000 to 2,000,000 objects of synthetic data. The resulting speed-up of the

bulk-loading techniques over the dynamic construction was so enormous that we decid-

ed to use a logarithmic scale. In contrast, the bottom-up methods differ only slightly in

performance. The Hilbert technique was the best method having a construction time

between 17 and 429 sec. The construction time of symmetric splitting ranges from 26 to

668 sec., whereas unbalanced splitting required between 21 and 744 sec. in the moderate

case and between 23 and 858 sec for the 9:1 split. In contrast, the dynamic construction

time ranged from 965 to 393,310 sec (4 days, 13 hours). The improvement factor of our

methods constantly increases with growing index size, starting from 37 to 45 for

100,000 objects and reaching 458 to 588 for 2,000,000 objects. The Hilbert construction

is up to 915 times faster than dynamic index construction. This enormous factor is not

only due to internal sorting but also to reduced overhead in changing the ordering at-

tribute. In contrast to Hilbert construction, our technique changes the sorting criterion

during the sort process according to the split tree. The more often the sorting criterion is

changed, the more unbalanced the split becomes because the height of the split tree

increases. Therefore, the 9:1-split has the worst improvement factor. But as we will see

later, slightly higher index construction cost are amortized by far because the Hilbert

construction method is completely out of the question for its poor query performance.

1

10

100

1000

10000

100000

1000000

0 1000000 2000000

Number of Objects

C
o

n
st

ru
ct

io
n

 T
im

e
[S

ec
.]

1

10

100

1000

10000

100000

1000000

8 12 16

Dimension
C

o
n

st
ru

ct
io

n
 T

im
e

[S
ec

.]

dynamic

hilbert

1:1-split

3:1-split

9:1-split

Figure 86: Performance of Index Construction Against Database Size and Dimension

Experimental Evaluation 165

The right diagram in figure 86 shows the construction time with varying index dimen-

sion. Here, the database size was fixed to 1,000,000 objects. It can be seen that the

improvement factors of the construction methods (between 240 and 320) are rather in-

dependent from the dimension of the data space.

In the next series of experiments, we determined the query performance of the various

indexes using varying selectivities on synthetic data. As a query type, we used region

queries because region queries serve as a basis for more complex queries such as nearest

neighbor queries and, therefore, are fundamental in multimedia databases. Figure 87

shows the performance of a 16-dimensional index filled with 1,000,000 objects, uni-

formly distributed in the unit hypercube. We varied the selectivity of the query from

% to 18.5%, corresponding to an edge length of the query hypercube varying

0

5000

10000

15000

20000

25000

30000

0 0.2 0.4 0.6 0.8 1

Query Range

P
ag

e
A

cc
es

se
s dynamic

hilbert

1:1-split

3:1-split

9:1-split

Figure 87: Performance of Range Queries with Varying Side Length

0

5000

10000

15000

20000

25000

30000

35000

0 1000000 2000000

Number of Objects

P
ag

e
A

cc
es

se
s

0

5000

10000

15000

20000

25000

30000

35000

8 10 12 14 16

Dimension

P
ag

e
A

cc
es

se
s

dynamic

hilbert

1:1-split

3:1-split

9:1-split

Figure 88: Performance of Range Queries with Varying Database Size and Dimension

6.55 10
13–⋅

166 Optimizing the Geometry of Regions Using Bulk-Load Operations

from 0.2 to 0.9. First, we determined the number of page accesses because, for range

query evaluation, disk I/O is the dominant cost factor. The result of this experiment is

that the Hilbert constructed index has an unsatisfactory performance and therefore is

unsuitable for indexing high-dimensional data spaces. Even very small query windows

revealed a full scan of the complete index. However, dynamically and bottom-up con-

structed indexes with balanced splits had a very similar performance. Due to the sophis-

ticated split strategy of the X-tree, the overlap-free directory of the bottom-up construct-

ed index does not lead to significant performance improvements. The high storage

utilization factor of the Hilbert-constructed X-tree leaded to the astonishing result that

its performance is better than the performance of the dynamic index for very large que-

ries (having an edge length greater than 0.6). The reason simply is that this index is

smaller. The disadvantage of a 100% storage utilization is that performance deteriorates

whenever new data has to be inserted dynamically after index construction. Although

the balanced bottom-up constructed indexes avoid this disadvantage by choosing a high

but not exact 100% utilization, this effect is responsible for a better efficiency for query

ranges between 0.7 and 0.9.

The benefits of unbalanced splitting can be observed at any query window size. Espe-

cially the heavily unbalanced split leads to an index yielding very good performance also

on very large queries. The improvement factor over the balanced split reaches 15.6 at a

query edge length of 0.6. It is more than 15.7 times faster than the dynamically construct-

ed index.

In figure 88, we confirmed these results for varying database sizes and for varying

dimensions of the data space. In these experiments, we choose a selectivity of about

0

2000

4000

6000

8000

10000
12000

14000

16000

18000

60% 80% 100%

Storage Utilization

P
ag

e
A

cc
es

se
s

dynamic

hilbert

1:1-split

3:1-split

9:1-split

Figure 89: Influence of the Storage Utilization on Range Query Performance

Experimental Evaluation 167

0.03%. The left diagram shows 16-dimensional indexes with between 100,000 and two

million objects while the right diagram shows dimensions varying from 8 to 16 with a

constant number of objects (1,000,000). The highest improvement (16.8) could be mea-

sured in the highest dimension and the largest database.

Next, we evaluated the influence of the storage utilization. Figure 89 shows the page

accesses for a database with 1,000,000 points in a 16-dimensional data space over vary-

ing storage utilizations. Dynamic construction leads to a storage utilization of about

65%, whereas our implementation of Hilbert construction was limited to the 100%-

factor. In contrast, using our technique, we are able to control the storage utilization and

we varied it from 60% to 80%. As expected, it turned out that a higher storage utilization

is beneficial. The performance, however, is only improved by low factors up to 30%.

Therefore, the storage utilization is obviously not responsible for our good improvement

factors presented so far.

0

2

4

6

8

10

12

14

0 1000000 2000000

Number of Objects

C
P

U
-T

im
e

[S
ec

.]

0

2

4

6

8

10

12

14

8 10 12 14 16

Dimension
C

P
U

-T
im

e
[S

ec
.] dynamic

hilbert

1:1-split

3:1-split

9:1-split

Figure 90: CPU-Time for Executing Range Queries

0
50

100
150
200
250
300
350
400

8 10 12 14 16

Dimension

R
ea

l T
im

e
[S

ec
.]

0

200

400

600

800

1000

1200

0 1000000 2000000

Number of Objects

R
ea

l T
im

e
[S

ec
.]

1.
0

3.
4

6.
1

38
.7

19
8.

1

0

50

100

150

200

dy
na

m
ic

hi
lb

er
t

1:
1-

sp
lit

3:
1-

sp
lit

9:
1-

sp
lit

M
ax

. S
p

ee
d

-U
p

 o
ve

r
D

yn
am

ic

Figure 91: Real Time for Executing Range Queries

168 Optimizing the Geometry of Regions Using Bulk-Load Operations

Our next aim is to evaluate the performance impact in terms of CPU-time. Figure 90

again shows on the left side fixed dimension (16) and on the right side fixed database

size (1,000,000 objects) with a selectivity of about 0.03%. The diagrams are widely

congruent with the diagrams of figure 88 showing the page accesses. Therefore, we can

assume that the absorbed CPU power is directly proportional with the number of page

accesses. The improvement factor for CPU power reaches a value of 13.6.

Nevertheless, range query evaluation is clearly disk I/O bound as can be seen in

figure 91. Here we measured the real time for query execution, encompassing CPU-time

and the times for disk I/O which are predominant. It is remarkable that, in contrast to the

experiments counting page accesses, the balanced splitting bottom-up method outper-

forms the dynamic construction, too, and that the improvement factors are one order of

magnitude higher than the improvement factors for the page accesses. This is due to the

much better disc clustering of our construction method. Data pages in a common subtree

of the index are laid out contiguously on disk. These pages have often to be loaded

commonly, such that disk head movements are often avoided. In contrast, if a dynamic

index structure splits a page, one of the resulting new pages occupies the place of the old

0

1000

2000

3000

4000

5000

6000

8 10 12 14 16

Dimension

P
ag

e
A

cc
es

se
s

0

1000

2000

3000

4000

5000

6000

0.2 0.3 0.4 0.5 0.6

Query Side Length

P
ag

e
A

cc
es

se
s

0

0.5

1

1.5

2

2.5

8 10 12 14 16

Dimension

C
P

U
-T

im
e

[S
ec

.] dynamic

hilbert

1:1-split

3:1-split

9:1-split

0

0.5

1

1.5

2

100000 200000 300000

Number of Objects

C
P

U
-T

im
e

[S
ec

.]

Figure 92: Experiments on Real Data (Text Descriptors)

0

1000

2000

3000

4000

5000

6000

100000 200000 300000

Number of Objects

P
ag

e
A

cc
es

se
s

Experimental Evaluation 169

page whereas the second page is appended at the end of the file. Thus, neighboring pages

are rather declustered than clustered.

In a last series of experiments, we determined the behavior of our technique on real

data, stemming from an information retrieval application. We used 300,000 feature vec-

tors in a 16-dimensional data space which were converted from substring descriptors.

The results confirm our previous results on synthetic data and are presented in figure 92.

Unfortunately, the number of objects in our database was not high enough to yield simi-

larly impressive improvement factors as with two million synthetic points. The improve-

ment factors grow again with increasing dimension and increasing database size and

reach a factor of 5.8.

170 Optimizing the Geometry of Regions Using Bulk-Load Operations

171

Chapter 7
Optimized Declustering for
Parallel Query Processing

In the preceding chapters, we proposed various techniques for the performance improve-

ment of high-dimensional indexes. These techniques accelerate the range search and the

nearest neighbor search in the case of a moderate dimensionality of the data space by

large factors. Moreover, these techniques open the facility of efficiently indexing data

spaces which cannot be managed by conventional indexing structures due to the high

dimension.

Both our experiments and our analytical considerations provided in chapter 3 imply,

however, that there exists a dimension for which index structures do not yield satisfacto-

ry performance, even if our improvement techniques from the preceding chapters are

applied. To overcome this problem, we propose to exploit parallelism.

7.1 Introduction

Experiments with specialized high-dimensional index structures such as the TV-tree

[LJF 95] and the X-tree [BKK 96] show significant performance improvements for

point queries, but unfortunately only limited performance improvements for nearest-

neighbor queries (cf. figure 93).

172 Optimized Declustering for Parallel Query Processing

In this chapter, we propose a new parallel method for fast nearest-neighbor search in

high-dimensional feature spaces. This technique was published in a preliminary version

[BBB+ 97]. In section 7.2, we first review the relevant literature. The core problem of

designing a fast parallel nearest-neighbor algorithm is to find an adequate declustering

algorithm which distributes the data onto the disks such that the data which has to be read

when executing a query are distributed as equally as possible among the disks. Unfortu-

nately, the known declustering methods such as the Disk Modulo [DS 82], FX [KP 88],

and Hilbert Declustering [FB 93] have been designed to support different query types

(range queries and partial match queries). Therefore, those techniques do not allow an

optimal declustering for nearest-neighbor queries in high-dimensional spaces. In con-

trast, our new declustering method has been optimized based on the special properties of

parallel nearest-neighbor search in high-dimensional spaces (cf. section 7.2.1) and

therefore provides a near-optimal distribution of the data items among the disks (cf.

section 7.2.2). The basic idea of our data declustering technique is to assign the buckets

which correspond to different quadrants of the data space to different disks. We show

that this problem is equivalent to a special case of the graph coloring problem (cf. section

Figure 93: Nearest-Neighbor Queries in High Dimensions (X-tree)

Se
ar

ch
 T

im
e

[S
ec

.]

Dimension d

Parallel Nearest-Neighbor Search 173

7.3.1). Then, we develop a simple but efficient algorithm which solves the special case

of the graph coloring problem and shows that our algorithm - in contrast to other declus-

tering methods - guarantees that all buckets corresponding to neighboring quadrants are

assigned to different disks (cf. section 7.3.2). A surprising result is that the number of

disks necessary for the near-optimal declustering is a linearly bound staircase function

which is optimal up to rounding (cf. section 7.3.2). We provide extensions of our algo-

rithm considering an arbitrary number of disks and highly clustered data distributions

(cf. section 7.3.3). Finally, in section 7.4, we evaluate our method using large amounts

of uniformly distributed and real data (up to 40 MBytes) with varying dimension, and

compare it with the best known data declustering method, the Hilbert curve. Our exper-

iments show that our method provides a near-linear speed-up and a constant scale-up,

and it outperforms the Hilbert approach by a factor of up to 5.

7.2 Parallel Nearest-Neighbor Search

The core problem of parallel nearest-neighbor search is the distribution of data among

the available disks which is usually called the declustering problem. In the following, we

denote the number of disks by n and the i-th disk by di.

The simplest method for distributing data is round robin where each disk di gets the

data items . Figure 94 shows the speed-up of a parallel nearest-neigh-

bor search (referred to as NN in all subsequent figures) and a parallel search for 10

nearest neighbors (10-NN) using the round robin data distribution on 1 MByte of uni-

vj j mod n i={ }

Figure 94: Speed-Up of Parallel Nearest-Neighbor Search (Round Robin)

Number of Disks

S
pe

ed
-U

p

10-NN

NN

174 Optimized Declustering for Parallel Query Processing

formly distributed 15-dimensional data and uniformly distributed query points. In our

experiment, the speed-up increases nearly linear with the number of disks. This simple

experiment shows that nearest-neighbor search can be improved considerably by using

parallelism.

More complex algorithms solving the declustering problem have been proposed in

the literature. Using an equi-distant grid, all these algorithms divide the data space into

equi-sized buckets b which may be characterized by the position of the bucket in the d-

dimensional grid (c0, c1, ..., cd-1). A bucket characterized by b[c0, c1, ..., cd-1] describes

a partition of the data space having the shape of a hyperrectangle and containing a certain

number of data objects. A declustering algorithm DA can be described as a mapping

from the bucket characterization to a disk number.

A rather simple declustering algorithm is the disk modulo method of Du and Sobo-

lewski [DS 82]. The disk modulo method uses the mapping

.

Kim and Pramanik [KP 88] improved the disk modulo method and presented the FX

distribution method which has been specifically designed to support partial match que-

ries. Kim and Pramanik distribute the buckets using a bitwise XOR operation. Slightly

simplified, the FX method can be defined as the mapping

.

In [FB 93], Faloutsos and Bhagwat apply the Hilbert curve to the declustering prob-

lem. The Hilbert curve maps a d-dimensional space to a 1-dimensional space. For map-

ping a point in the data space to a disk, the Hilbert value of the point is determined and

the data point is stored on the disk corresponding to the Hilbert value. More formally, the

i-th disk gets the bucket

.

Since the Hilbert curve preserves spatial neighborhood as far as possible, the mapping

provides a good declustering. Faloutsos and Bhagwat compared their method to various

methods such as the disk modulo and the FX technique. The experimental results report-

ed in [FB 93] show that the Hilbert approach clearly outperforms the other methods for

DM c0 c1 … cd 1–, , ,() cl

l 0=

d 1–

∑

 mod n=

FX c0 c1 … cd 1–, , ,()
d 1–

 XOR cl
l 0=

 mod n=

HI c0 c1 … cd 1–, , ,() Hilbert c0 c1 … cd 1–, , ,() mod n=

Parallel Nearest-Neighbor Search 175

range queries in two-dimensional spaces. However, to our knowledge, none of the meth-

ods has been designed or tested for high-dimensional feature spaces and for nearest-

neighbor queries. Therefore, in our first experiments we used the most promising tech-

nique, the Hilbert curve. The experiments show that the Hilbert approach provides a

much better declustering for nearest-neighbor queries in high-dimensional spaces than

the round robin method. Figure 95 depicts the improvement of the Hilbert approach over

the round robin declustering. Note that the improvement increases, both with an increas-

ing number of disks, and with an increasing amount of data. In section 7.2.2, however,

we show that all the methods described in this section including the Hilbert method do

not provide an adequate data distribution for nearest-neighbor queries in high-dimen-

sional spaces.

7.2.1 Effects in High-Dimensional Spaces

To find a good declustering algorithm, we have to consider several special effects occur-

ring in high-dimensional spaces and their consequences for nearest-neighbor queries. In

this section, we therefore analyze nearest-neighbor query processing in high-dimension-

al space and derive the requirements for an optimal declustering. For the following con-

siderations, we assume uniformly distributed data and uniformly distributed query

points.

During nearest-neighbor search, any NN-algorithm has to examine all data pages

intersecting the so-called NN-sphere (cf. figure 96). The NN-sphere is a d-dimensional

hypersphere having the query point as the centre and a radius equal to the distance from

the query point to the nearest-neighbor. Unfortunately, according to [BBKK 97], the

radius of the NN-sphere increases rapidly with increasing dimension of the data space,

Figure 95: Improvement of Hilbert over Round Robin

Number of Disks

Im
pr

ov
em

en
t F

ac
to

r

10-NN

NN

Amount of Data [MBytes]

176 Optimized Declustering for Parallel Query Processing

and therefore, the number of partitions any sequential algorithm has to access also in-

creases rapidly. The increase of the radius depends on the bucket size, the number of data

items and the dimension. However, the dimension is the most important parameter.

Declustering algorithms such as the disk modulo method or the FX method assume a

partitioning of the data space into buckets. In the 2-dimensional case, the data space is

partitioned many times in each direction, for example to obtain 10,000 buckets, the

space is divided 100 times in x-direction and 100 times in y-direction. If we consider a

16-dimensional space, a complete binary partitioning of the space would already pro-

duce 65,536 partitions. Thus, in high-dimensional spaces it is not possible to consider

more than a binary partitioning. In addition, the usage of a finer partitioning would

produce many underfilled buckets. For the following considerations, we therefore as-

sume each dimension of the space to be split exactly once. Thus, from our point of view,

the buckets are the quadrants of the data space. The bucket coordinates (c0, c1, ..., cd-1)

can then be seen as binary values and (c0, ..., cd-1) may be represented as a bit-string.

Note that (c0, c1, ..., cd-1) with ci ∈ {0, 1} corresponds to the binary representation of the

corresponding grid partition stored in the bucket. We use this property to define an un-

ambiguous bucket number bn which will be the basis for our algorithm presented in

section 7.3.2.

Definition 13: Bucket Number

Given a bucket b characterized by (c0, c1, ..., cd-1) with ci ∈ {0, 1}, 0 ≤ i < d. The

bucket number bn is defined as

.

Figure 96: NN-Sphere

query point
nearest

NN-sphere

neighbor
(NN)

bn b() ci 2i⋅
i 0=

d 1–

∑=

Parallel Nearest-Neighbor Search 177

7.2.2 Declustering for Nearest-Neighbor Search

The goal of each declustering algorithm is to distribute the buckets which are involved

in an arbitrary search to different disks. For the parallel nearest-neighbor search, this

means that the partitions intersecting the NN-sphere should be distributed to different

disks. If all disks are equally involved in the search, the speed-up is maximal.

Figure 97 illustrates the effects of an increasing NN-sphere using a two-dimensional

example. Let us assume that the query point is located in the upper left corner of the data

space. If the radius of the NN-sphere is less than 0.5, only the bucket containing the

query point has to be accessed (the upper left bucket in figure 97). Thus, only the disk

which stores the bucket is involved in the search process and any declustering technique

provides the same result. If the radius of the NN-sphere is 0.6, however, two other buck-

ets are involved in the search (the lower left and the upper right bucket in figure 97).

Obviously, for obtaining a good speed-up, the three buckets involved in the search

should be distributed to different disks. Note that in high-dimensional space, this obser-

vation holds for most queries even if the query point is not located exactly in a corner of

the data space but on a lower-dimensional surface, e.g. a two-dimensional surface (cf.

figure 5).

Generalizing this result to the d-dimensional case, a good declustering technique

must assure that adjacent buckets are assigned to different disks. From the example in

figure 97, we can derive that not only directly adjacent buckets (such as the upper left

and upper right bucket) have to be considered, but also indirectly neighboring buckets

(such as the lower left and the upper right bucket). This can be formalized as follows:

Figure 97: Partitions Affected by the Search when Increasing the NN-sphere

query point

NN-sphere (0.4)

NN-sphere (0.6)

0 1

178 Optimized Declustering for Parallel Query Processing

Definition 14: Direct and Indirect Neighbors

Given two buckets b and c.

b and c are direct neighbors, b ~d c, if and only if

, where .

b and c are indirect neighbors, b ~i c, if and only if

, where .

Intuitively, two buckets b and c are direct neighbors if their coordinates differ in one

dimension, and the remaining (d-1) coordinates are identical. Note that this definition of

neighborhood implies that applying the binary exclusive-or-function (XOR) to direct

neighboring buckets b and c results in a bit-string of the form 0*10*. Analogously, apply-

ing the XOR function to indirectly neighboring buckets results in a bit-string of the form

0*10*10*. Note further that considering more than one level of indirection would pro-

duce a huge amount of neighboring buckets. An algorithm considering i levels of indi-

rection in d-dimensional space would have to assure that

buckets are equally distributed over the disks. For two levels of indirection in a 16-

dimensional space, for example, the number of buckets would be

.

Therefore, we restricted our definition of neighboring buckets to direct and indirect

neighbors. Another important observation is the following: Direct neighbors share a

common 1-dimensional surface of the data space, whereas indirect neighbors share a 2-

dimensional surface.

i:
bk ck≠ , iff k i=

bk ck= , otherwise

∃ 0 i k, d 1–()≤ ≤()

i j(,) i j≠ :
bk ck≠ , iff k i or k j= =

bk ck= , otherwise

,∃ 0 i j k, , d 1–()≤ ≤()

1
d

k

k 1=

i

∑+

1
16

k

k 1=

2

∑+ 1 16 120+ + 137= =

Parallel Nearest-Neighbor Search 179

Using the above definitions, we can define a near-optimal declustering as a decluster-

ing which guarantees that all direct and indirect neighboring buckets are assigned to

different disks. We use the term near-optimal because an optimal declustering technique

would have to guarantee that arbitrary queries are handled by different disks. This how-

ever would require to consider arbitrary neighbors − not only direct and indirect neigh-

bors.

Definition 15: Near-Optimal Declustering

A declustering algorithm DA is near-optimal if and only if for any two buckets b and

c and for any dimension d of the data space:

 and .

As we show in our experimental evaluation, our definition of a near-optimal decluster-

ing algorithm is close to the optimum, i.e. it provides a high speed-up and a nearly

constant scale-up. The following lemma shows that the known declustering techniques

do not provide a near-optimal declustering.

Lemma 12: Sub-Optimality of Disk Modulo, FX and Hilbert Declustering

The disk modulo, the FX, and the Hilbert declustering techniques are not near-opti-

mal declustering algorithms.

Proof (Lemma 12)

The validity of lemma 12 can be shown by a simple three-dimensional counter-exam-

ple (cf. figure 98). The numbers in the corner of each cube denote the disk number the

corresponding bucket is assigned to. The thick line in each cube shows indirect neigh-

bors which are assigned to the same disk. The right most portion of figure 98 demon-

b d c∼ DA b() DA c()≠→ b ic∼ DA b() DA c()≠→

Figure 98: Disk Modulo, FX and Hilbert are not Near-Optimal Declustering Techniques

0

32

1

1

2

2

1

Disk Modulo

0

10

1

1

0

0

1

FX

0

12

3

3

2

0

1

Hilbert

0

01

3

2

2

3

1

Optimal Declustering

180 Optimized Declustering for Parallel Query Processing

strates the existence of a near-optimal declustering. Note that there exist more than

one colliding pair of indirect neighbors, which however are not shown in figure 98.

❏

7.3 Near-optimal Declustering for Nearest-Neighbor Queries

In this section, we present a new declustering technique which is near-optimal according

to definition 15. The basic idea of our technique is to transform the declustering problem

into an equivalent graph-coloring problem so that buckets correspond to vertices, neigh-

borhood-relations to edges, and disks to colors. We propose a simple but efficient algo-

rithm for solving the graph-coloring problem. To show that our declustering technique

is near-optimal, we prove that our graph-based algorithm assigns different colors to

connected vertices in the graph. The number of colors (disks) required by our algorithm

is a linearly bounded staircase function which is optimal up to rounding. Furthermore,

we describe some extensions of our method, allowing the method to be used in a wide

range of real applications, i.e. on data with various data distributions and dimensionali-

ties, and an arbitrary number of disks.

7.3.1 Declustering as a Graph Coloring Problem

In order to transform the declustering problem into a graph coloring problem, we first

define the disk assignment graph. The disk assignment graph is an undirected graph in

which buckets correspond to vertices. Neighborhood relationships between buckets cor-

respond to edges.

Definition 16: Disk Assignment Graph

The disk assignment graph Gd = (V, E) for a d-dimensional data space is an undirected

graph where V={0, ..., 2d-1} is the set of bucket numbers and E = {(b, c) | b, c ∈ V and

b ~d c or b ~i c} is the set of direct and indirect neighborhood relationships.

Since our definition of the edges includes both direct and indirect neighbors, it is obvious

that an algorithm which assigns different colors to connected vertices provides a near-

optimal declustering. Thus, we reduce the declustering problem to an equivalent graph

coloring problem.

Near-optimal Declustering for Nearest-Neighbor Queries 181

Figure 99 shows the disk assignment graph G3 for a three-dimensional data space. In

the left partition of the figure, the data space with the corresponding buckets is depicted.

In the middle of the figure, the corresponding disk assignment graph is shown with thick

lines denoting direct neighbors and thin lines denoting indirect neighbors. The disk as-

signment graph G3 may be colored using 4 colors. Transforming the graph back, we get

a near-optimal declustering of the space (cf. right part of figure 99). Obviously, a lower

bound of d+1 colors is required to color a graph Gd because each vertex has d directly

neighboring vertices and at least all directly neighboring vertices must have pairwise

different colors. It is a well-known fact from graph theory [Big 89] that the graph color-

ing problem for arbitrary graphs (including the determination of the required number of

colors) is a hard problem which has not been solved in polynomial time yet and there-

fore, it is believed that the problem is NP-complete. Nevertheless, we are able to exploit

some regularities in our graph to develop a simple but efficient coloring algorithm.

7.3.2 The Vertex Coloring Algorithm

In this section, we introduce an algorithm to determine the vertex color (i.e. the disk

number) for a given vertex (i.e. the bucket number). After describing the algorithm, we

prove that our algorithm assigns different colors to connected vertices and we provide a

formula for the number of colors required by our algorithm.

The basic idea of our algorithm is to determine for a vertex b all positions in its binary

representation which are equal to 1. Incrementing these positions by 1, each position can

again be interpreted as a binary number. These numbers are combined by the XOR

function. Interpreting the resulting binary number as a decimal number, we finally ob-

Figure 99: Disk Assignment Graph

000

111110

010

100

011

101

001 0

01

2

3
3

2

1
0 1

32

3 2

01

Data Space Disk Assignment Graph Colored Graph Declustered Space

182 Optimized Declustering for Parallel Query Processing

tain the corresponding vertex color. We will motivate later why we have to increment the

positions before combining them using XOR. Intuitively, the reason is that otherwise the

information about dimension ‘0’ would not be considered by the vertex coloring func-

tion.

For example, let us assume a given vertex c = 5 = 1012 in a disk assignment graph G3

(representing a 3-dimensional data space). As the bits c0 and c2 are set, the positions to

be considered are 0 and 2. Incrementing the positions by one, we obtain (2+1)=3 and

(0+1)=1. We combine the binary representations 0112 (=3) and 0012 (=1) by the XOR

function and obtain 0112 XOR 0012 = 0102. Interpreting this binary number as a

decimal number, we get 0102= 210. The color of vertex 5 is therefore 2. Figure 100

shows the vertex coloring algorithm in an algorithmic pseudocode. It is obvious from the

algorithm that the color of an arbitrary vertex may be determined in O(d) time. The

following formal definition provides a very compact form of the algorithm.

Definition 17: Vertex Coloring Function

Given a vertex number c in binary representation cd-1, ..., c0. The corresponding ver-

tex color is

.

In the following, we show that our vertex coloring function col guarantees that vertices

which are connected in the disk assignment graph are colored differently. Our proof is

divided into three lemmata. First, we prove the distributivity of col and XOR. Then, we

prove that vertices which are connected by an edge representing direct neighborhood are

Figure 100: Vertex Coloring Algorithm

int col (int c) {
int i ;
int c = 0 ;
for (i = 0 ; i < dimension ; i++)

if (bit_set (i, c))
c = c ^ (i+1); // XOR

return c ;
}

col c()
d 1–

 XOR
i 0=

i 1+ if ci 1=

0 otherwise

()

10

=

Near-optimal Declustering for Nearest-Neighbor Queries 183

colored differently, and finally we prove the same for edges representing indirect neigh-

borhood.

Lemma 13: Distributivity of col and XOR

: col(b) XOR col(c) = col(b XOR c)

Proof (Lemma 13)

col (b) XOR col (c) =

=

=

=

= col (b XOR c).

❏

Using lemma 13, we now prove that vertices which are connected by an edge represent-

ing direct neighborhood are colored differently. We make use of some algebraic laws

which are valid for the XOR function, especially the associativity, commutativity and

the following equivalences:

a XOR b = 0 ⇔ a = b

a XOR b = a ⇔ b = 0

Lemma 14: Coloring of Direct Neighbors

Two vertices b and c which are connected by an edge representing a direct neighbor-

hood are colored differently.

b c∀∀

d 1–
 XOR

i 0=

i 1+ if bi 1=

0 otherwise

() XOR
d 1–

 XOR
i 0=

i 1+ if ci 1=

0 otherwise

()

d 1–
 XOR

i 0=

0 XOR 0

i 1 XOR 0+

 if bi 0= and ci 0=

 if bi 1= and ci 0=

0 XOR i 1+

i 1 XOR i 1+ +

 if bi 0= and ci 1=

 if bi 1= and ci 1=

()

d 1–
 XOR

i 0=

i 1+ if bi XOR ci 1=

0 otherwise

()

184 Optimized Declustering for Parallel Query Processing

Proof (Lemma 14)

As the vertices b and c are differing in exactly one bit, say bit j, b XOR c is of the form

0*10* with only bit j set (cf. definition 14). Therefore, using the definition of the

vertex coloring function, we may derive that col(b XOR c) = j + 1 ≠ 0. Thus,

col(c) =

= col(b XOR b XOR c) (since b XOR b = 0 and 0 XOR c = c)

= col(b) XOR col(b XOR c) (according to lemma 13)

= col(b) XOR (j + 1) (since only bit j is set in b XOR c)

≠ col(b) (since otherwise, (j +1) must be 0)

❏

Lemma 15: Coloring of Indirect Neighbors

Two vertices b and c which are connected by an edge representing an indirect neigh-

borhood are colored differently.

Proof (Lemma 15)

According to definition 14, b XOR c has the form 0*10*10* with a bit set at the

positions i and j, i ≠ j and col(b XOR c) = (i+1) XOR (j+1) which cannot be zero since

i+1 ≠ j+1. Thus,

col(c) = col(b) XOR col(b XOR c)

= col(b) XOR (i + 1) XOR (j + 1)

≠ col(b)

❏

Lemma 16: Near-Optimal Declustering by col-Function

The vertex coloring function col for the declustering of a d-dimensional data space is

near-optimal.

Proof (Lemma 16)

According to definition 15, a declustering algorithm DA is near-optimal if and only if

and

.

b d c∼ DA b() DA c()≠→

b ic∼ DA b() DA c()≠→

Near-optimal Declustering for Nearest-Neighbor Queries 185

We proved that our algorithm col assigns different colors to connected vertices in the

disk assignment graph. As vertices are connected if the corresponding buckets are

direct or indirect neighbors, the function col guarantees that neighboring buckets are

assigned to different disks.

❏

So far, we have shown that our algorithm computing the vertex color assigns pairwise

different colors to all neighbors of any given vertex and therefore provides a near-opti-

mal declustering.

Now, we want to determine how many colors are necessary for a d-dimensional data

space. It seems to be obvious that any vertex coloring algorithm solving the disk assign-

ment problem must use at least d+1 colors since each vertex and its d direct neighbors

have to be colored differently. This means that no algorithm exists which is better than

linear in the number of dimensions. We show in our next lemma that the number of

colors provided by our algorithm is a linearly bounded staircase function which is opti-

mal up to rounding.

Lemma 17: Number of Colors Required by the Color Assignment Function

The number of colors required by the color assignment function is , where

 denotes the rounding to the next-higher power of two, formally

.

Proof (Lemma 17)

First, we prove that our algorithm never generates a vertex corresponding to a color

greater or equal to:

.

According to col, the color of a vertex is a XOR-combination of some numbers from

the set {1, ..., d} (cf. definition 17). The binary representation of d has exactly

 bits. Therefore, the XOR-combination cannot create a number with

more bits, and the highest possible number with bits is

.

Next, we prove that all color numbers in the interval

[0,]

d 1+

...

a 2
a2log

=

2
d 1+()2log

d 1+()2log

d 1+()2log

2
d 1+()2log

1–

2
d 1+()2log

1–

186 Optimized Declustering for Parallel Query Processing

are generated by the color assignment function. According to col, the vertex of the

origin (0, 0, ..., 0) has color number zero (col(0) = 0). For any other vertex color c,

bounded by the interval above, an appropriate bucket number b can easily be con-

structed such that col(b)=c by the following algorithm: If bit j is set in c, then set also

bit 2j-1 in b and reset all other bits in b. The result is a valid bucket number for the d-

dimensional hypercube as can be seen from the following argumentation: We know

that

.

Therefore, b has less than bits,

and thus

.

As b has to be smaller than 2d in order to be a legal vertex number for a d-dimensional

hypercube,

.

This is guaranteed since a power of two is always between a number and its double:

.

 cannot be rounded up to anything above 2d. If the bits with the numbers

 for some ji are set in b, then according to definition 17, the color number col(b)

is

,

which combines to c. Altogether, we have proven that our algorithm uses exactly the

colors with the numbers

.

❏

j d 1+()2log<

2
d 1+()2log 1–

b 22
d 1+2log 1–

2
1
2
--- d 1+⋅

=<

2
1
2
--- d 1+⋅

2
d≤ d 1+ 2d≤⇔

d |N∈∀ : k |N0 : d 2k< 2d≤∈∃

d 1+

2
ji 1–

col b() XOR
i

2
ji()=

0 c d 1+<≤

Near-optimal Declustering for Nearest-Neighbor Queries 187

The number of colors required to solve the vertex coloring problem is a staircase-func-

tion (cf. figure 101) above the line (d + 1) which has already been identified to be a

lower bound for the number of colors. For lower dimensions, we have verified by enu-

merating all possible color assignments that there is no method which uses fewer colors

than our staircase function. We conjecture that this is also true for higher dimensions. In

any case, we are able to give the linear upper and lower bounds for the staircase function.

As already mentioned, the lower bound is d+1. The upper bound is 2d, as may be seen

with the same argument already used in lemma 17: There is always a number corre-

sponding to power of two between a number d and its double 2d. Therefore,

cannot be higher than 2d for .

7.3.3 Extensions of our Declustering Technique

In this section, we propose two extensions of our declustering technique. First, we de-

scribe an adaptation of our method for supporting an arbitrary number of disks and

second, we describe an extension of our method for highly clustered data.

An important requirement for any parallel approach is to support an arbitrary number

of processing units (disks). For our problem, this means that we have to adapt our algo-

rithm to work with an arbitrary number of disks since our vertex coloring function col

requires the optimal number of 2i disks. We now describe a simple method for reducing

Figure 101: Number of Colors Required by col

Dimension d

C
ol

or
s

R
eq

ui
re

d

col

lower bound

upper bound

d 1+

d |N∈

188 Optimized Declustering for Parallel Query Processing

the number of disks required; in a first step by a factor of 2 (preserving that direct neigh-

bors are assigned to different disks), and in a second step to an arbitrary number.

As we can easily derive from the 3-dimensional example in figure 99, there exists no

near-optimal declustering algorithm using less than 4 disks for the 3-dimensional case.

As a consequence, reducing the number of colors generated by our function col may

induce that indirectly neighboring buckets are assigned to the same disk. Our extension

of the function col, however, guarantees that most directly neighboring buckets are still

assigned to different disks. The extension reduces the number of required disks by a

factor of 2. The basic idea of our extension is to map one half of the colors to their binary-

complementary color. For example, to decluster an 8-dimensional data space, the func-

tion col requires disks numbered from 0 to 15. In our first reduction step, we

map the colors 8..15 to the colors 0..7 such that 8 is mapped to 7, 9 is mapped to 6, ...,

and 15 is mapped to 0. Obviously, our extended algorithm requires a total number of

 disks. Note that this mapping guarantees that most directly neighboring buckets

are still assigned to different disks. Intuitively, we map the colors to their complement

because complementary colors have the maximal Hamming distance, i.e. differ in a

maximum number of bits.

In the general case, let us assume that we have n disks available where . If

, we map each color c which is larger than to its binary complement. Thus,

we have only colors left. Note that the most significant bit of these colors is

the bit 0. If n is smaller than , we again map the colors greater than to their

complements, while, however, ignoring the most significant bit. This process is repeated

until . The number of colors required by the algorithm is now . In

order to obtain exactly n colors, we again map the highest colors to their

complements. Recording the mappings in a table, we are able to determine the disk

number from the color number col by a single table look-up.

Another extension of our declustering techniques focuses on highly clustered data. In

real applications, high-dimensional data is usually not distributed uniformly. If the data

points are highly clustered, i.e. most data points are located in one quadrant of the hyper-

cube, our technique as described so far would assign most data points to a single disk.

Although in most applications such an extreme case will not occur, we have to consider

data distributions where many points are assigned to a few disks, i.e. the amount of data

stored on the disks differs largely.

C 16=

C 2⁄()

n C<

n C 2⁄≤ C 2⁄

C 2⁄ C 2⁄

C 4⁄ C 4⁄

n C 2k⁄≤ C 2k 1–⁄

C 2k 1–⁄ n–

Near-optimal Declustering for Nearest-Neighbor Queries 189

A first solution to this problem is to use a statistical measure, the α-quantile, to divide

the buckets. Instead of splitting each dimension in the middle, we determine the

0.5-quantile of each dimension and use the values as split values for determining the

bucket boundaries. One may argue that we do not know the data distribution a priori and

are therefore not able to determine the correct 0.5-quantile in advance. To solve the

problem, we dynamically adapt the 0.5-quantile by recording the distribution according

to the previous 0.5-quantile, i.e. counting the number of data points below and above the

split value. If the ratio of these two numbers extends a certain threshold, we reorganize

our data distribution using the new 0.5-quantile for each dimension.

If the data points are highly correlated, the usage of a one-dimensional quantile is not

sufficient. This situation is detected if the one-dimensional α-quantile does not change

but the disks are loaded unbalanced, nonetheless. Our strategy for this case is to recur-

sively decluster the overloaded buckets of the data space. The optimal declustering

means to decluster all overloaded buckets. This, however, would require an amount of

O(2d) of storage space which cannot be handled for higher dimensions. Therefore, our

approach recursively declusters all buckets of a single disk in one step using our col

declustering function (cf. figure 102), which means a transfer of the affected data to

another disk. Note that we may have to apply the recursive declustering more than once

if necessary. As first experiments show, permuting the colors using a simple heuristic

when going to the next level of recursion provides good speed-ups (cf. figure 108).

Note that our parallel nearest-neighbor search is completely dynamical. This means

that we are able to support insertions, updates, and deletions without any a priori knowl-

edge of the data. However, for highly clustered or correlated data, a reorganization may

be necessary.

Figure 102: Recursive Declustering

disk 0

disk 1

disk 2

disk 3

190 Optimized Declustering for Parallel Query Processing

7.4 Experimental Results

In order to show the efficiency and practical relevance of our declustering technique, we

performed an extensive experimental evaluation of our technique and compared it to the

Hilbert declustering which is the most promising declustering method designed for low-

dimensional data spaces. All experiments have been computed on a workstation cluster

of 16 HP710 workstations, each having 32 MBytes of main memory and several hundred

MBytes of secondary storage. All programs have been implemented in C++ as templates

to support different types of data objects. In order to analyze our method, we integrated

our declustering technique and the Hilbert declustering into a parallel version of the X-

tree [BKK 96].

In our experiments, we used three types of data: Fourier points corresponding to

contours of industrial parts (d=8..15), text data corresponding to substrings of a large set

of texts (d=15), and uniformly distributed points (d=8..15). The total amount of data

used in our experiments was about 800 MBytes. The block size used is 4 KBytes. In

order to measure the performance of our technique, we determined the disk which ac-

cesses most pages during query processing. We used the search time of this disk as the

search time of the whole parallel X-tree. Each experiment has been performed 10 times

and the average of the 10 experiments is used as the reported search time. In order to

compute the speed-up, we compared the search time of the parallel X-tree with a sequen-

Figure 103: Speed-Up of Our Technique on Uniformly Distributed Data (1 MByte)

Number of Disks

S
pe

ed
-U

p

10-NN

NN

Experimental Results 191

tial X-tree using the original implementation of [BKK 96]. In the following figures,

“new” denotes our technique, whereas “HIL” denotes the Hilbert approach.

Our first objective was to show the linear speed-up of our new method. We performed

an experiment on 1 MByte of uniformly distributed data (d=15) with varying numbers

of disks (cf. figure 103). In performing a nearest-neighbor query, the speed-up reaches a

value of 8 for 16 disks for a nearest-neighbor query. For 10-nearest-neighbor queries, the

speed-up increases up to a value of 12 for 16 disks. In both experiments, the speed-up

was nearly linear.

Since one cannot assume a uniform data distribution for real life applications, we

used real data for our further experiments. Again, we investigated the speed-up of our

technique and compared it to the Hilbert declustering for a nearest-neighbor query and a

10-nearest-neighbor query. Figure 104 shows the speed-up of our technique and the Hil-

bert curve on 40 MBytes of 15-dimensional Fourier points. Obviously, both techniques

achieve a near-linear speed-up for both query types. However, our technique clearly

outperforms the Hilbert curve which reaches only 19% of the optimal speed-up using 16

disks. Figure 105 shows the improvement of our technique over the Hilbert approach in

the same experiment. The factor linearly increases with the number of disks and ap-

proaches a value of 5 for 16 disks. Note that this is due to the fact that the Hilbert curve

does not provide a near-optimal declustering.

Next, we made experiments to measure the scale-up of our technique, i.e. we in-

creased the number of disks and increased the total amount of data proportionally. In

particular, we increased the number of disks from 2 to 16 while increasing the amount of

Figure 104: Speed-Up of Our Technique and Hilbert Declustering (Fourier Points)

Nearest-Neighbor-Query 10-Nearest-Neighbor-Query

Number of Disks

S
pe

ed
-U

p

new

HIL

Number of Disks

192 Optimized Declustering for Parallel Query Processing

data from 1 to 8 MBytes. Figure 106 depicts the result of this experiment. The total

search time is nearly constant for both, nearest-neighbor queries and 10-nearest-neigh-

bor queries. The experiment shows that our technique scales well when increasing the

problem size.

In addition to the Fourier data, we also used text descriptors for our experiments. The

text descriptors are feature vectors characterizing substrings of large sets of various

documents given in ASCII format. Again, we compared our technique to the Hilbert

approach. Figure 107 shows a total search time of 771 ms for our technique in contrast

to 1683 ms for the Hilbert approach for a nearest-neighbor query (improvement of 2.18)

on 1MByte of 15-dimensional text descriptors. For the 10-nearest-neighbor query the

improvement of our technique increased to 2.99.

Figure 105: Improvement Factor over Hilbert Declustering (Fourier Points)

Im
pr

ov
em

en
t F

ac
to

r

10-NN

NN

Number of Disks

Figure 106: Scale-Up on NN Queries and 10-NN Queries (Fourier Points)

S
ea

rc
h

T
im

e
[m

s]

10-NN

NN

Amount of Data [MBytes]

Experimental Results 193

In section 7.3.3, we proposed several extensions of our technique. The first extension,

the adaptation to an arbitrary number of disks, has been used for all experiments present-

ed in this chapter which use a varying number of disks. The second extension of our

technique has also been implemented and tested. Figure 108 depicts the results of these

experiments. The experiments have been performed with 40 MBytes of 15-dimensional

Fourier points. The Fourier points represent a set of variants of CAD-parts and are highly

clustered. The original technique yielded a total search time of 537.6 ms for a nearest-

neighbor query, whereas the extension reduced the total search time to 137.7 ms. The

large improvement factor of 3.9 is due to the fact that a large amount of data items is

located in the same quadrant of the data space and therefore assigned to a single disk.

Note that only one recursive declustering step was necessary in the experiments.

Figure 107: Total search time of our technique and the Hilbert curve (Text Data)

10-NN
NN

Hilbert Our Technique

S
ea

rc
h

T
im

e
[m

s]

Figure 108: Effect of Recursive Declustering

Without Extension With Extension

10-NN
NN

S
ea

rc
h

T
im

e
[m

s]

194 Optimized Declustering for Parallel Query Processing

195

Chapter 8
Indexing Ultra-High-Dimensional
Feature Spaces

In the preceding chapters, we proposed various techniques to improve index structures

for high-dimensional query processing. It turned out, however, that sufficient perfor-

mance is only achieved in cases of a moderate dimensionality. A result of recent research

activities [BBKK 97, BKK 96, WJ 96] is that basically none of the querying and index-

ing techniques also performs sufficiently well on data spaces which are of a very high

dimension such as 100. The only approach taken to solve this problem for larger queries

was parallelization (cf. chapter 7). In this chapter, however, we will tackle the problems

leading to the so-called curse of dimensionality.

8.1 Introduction

A variety of new index structures [KS 97, LJF 95], cost models [BBKK 97, FBF 77] and

query processing techniques [BEK+ 98, BBK+ 98] have been proposed. Most of the

index structures are extensions of multidimensional index structures adapted to the re-

quirements of high-dimensional indexing. Thus, all these index structures are restricted

with respect to the data space partitioning. Additionally, they suffer from the well-

known drawbacks of multidimensional index structures such as high costs for insert and

delete operations and a poor support of concurrency control and recovery.

196 Indexing Ultra-High-Dimensional Feature Spaces

Motivated by these disadvantages of state-of-the-art index structures for high-dimen-

sional data spaces, we developed the Pyramid-Technique. The Pyramid-Technique is

based on a special partitioning strategy which is optimized for high-dimensional data.

The basic idea is to divide the data space such that the resulting partitions are shaped like

peels of an onion. Such partitions cannot efficiently be stored by R-tree-like index struc-

tures. We can achieve such partitions, however, by dividing the d-dimensional space into

2d pyramids having the center point of the space as their top. In a second step, the single

pyramids are cut into slices parallel to the basis of the pyramid to form the data pages.

As we will show, both analytically and experimentally, this strategy outperforms other

partitioning strategies when processing range queries. Furthermore, we will analytically

show that range query processing using our method is not affected by the so-called

“curse of dimensionality”, i.e. the performance of the Pyramid-Technique does not dete-

riorate when going to higher dimensions. Instead, the performance improves for increas-

ing dimension. Note that this analytical result is obtained for hypercube shaped queries

and uniform data distribution. Queries which touch the boundary of the data space or

very skewed queries are handled less efficiently. However, as we will show in the exper-

imental section of this paper, even slightly skewed queries can be handled efficiently.

Another advantage of the Pyramid-Technique is the fact that we use a mapping from

the given d-dimensional data space to a 1-dimensional space in order to achieve the

mentioned onion-like partitioning. Therefore, we can use a B+-tree [BM 77, Com 79] to

store the data items and take advantage of all the nice properties of B+-trees such as fast

insert, update and delete operations, good concurrency control and recovery, easy imple-

mentation and re-usage of existing B+-tree implementations. The Pyramid-Technique

can easily be implemented on top of an existing DBMS.

The rest of this chapter is organized as follows: In section 8.2, we introduce the Pyr-

amid-Technique and show how the index construction is performed. In section 8.3 we

describe query processing using the Pyramid-Technique in detail. Then, we analyze in

section 8.4 the benefits of the Pyramid-Technique. To improve the performance of the

Pyramid-Technique in case of real data, we propose some extensions of the Pyramid-

Technique in section 8.5. Finally, we present a variety of experiments demonstrating the

practical impact of our technique. A discussion of the weaknesses and limitations of the

Pyramid-Technique will conclude the chapter. The material presented in this paper has

partly been previously published [BBK 98b].

The Pyramid-Technique 197

8.2 The Pyramid-Technique

The basic idea of the Pyramid-Technique is to transform the d-dimensional data points

into 1-dimensional values. For storing and accessing the values, we use an efficient

index structure such as the B+-tree [BM 77, Com 79]. Potentially, any order-preserving

one-dimensional access method can be used. Operations such as insert, update, delete or

search operations are performed by using the B+-tree. Figure 109 depicts the general

procedure of an insert operation and the processing of a range query. In both cases, the

d-dimensional input is transformed into some 1-dimensional information which can be

processed by the B+-tree. Note that although we index our data using a 1-dimensional

key, we store d-dimensional points plus the corresponding 1-dimensional key in the leaf

nodes of the B+-tree. Therefore, we do not have to provide an inverse transformation.

The transformation itself is based on a specific partitioning of the data space into a set of

d-dimensional pyramids. Thus, in order to define the transformation, we first explain the

data space partitioning of the Pyramid-Technique.

8.2.1 Motivation

The basic motivation of space partitioning using the Pyramid-Technique is related to the

technique of unbalanced splitting presented in chapter 6. The index architecture, howev-

er, is totally different from our previous proposal. Index construction, maintenance and

Figure 109: Operations on Indexes

d-dimensional point

1-dimensional point

B+-tree

a) insert

d-dimensional range

2d 1-dimensional ranges

B+-tree

b) range query

198 Indexing Ultra-High-Dimensional Feature Spaces

query processing are also completely new since the Pyramid-Technique transforms the

d-dimensional points into a one-dimensional embedding rather than organizing a recti-

linear directory. Figure 110 on the right shows the partitions of an index using the pyra-

mid technique. The page regions are shaped like peels of an onion. Under uniformity

assumption, it is very likely that pages near by the boundary of the data space are very

thin. The outermost peel, for example, contains 2d data pages and, thus, data

points. The thickness ϑ0 of the peel is determined such that it contains an expectation of

 data points, resulting in the equation:

.

If we assume the data space to be normalized to the unit hypercube (VDS = 1), we get the

following result for the thickness of the outermost peel:

.

Figure 110 depicts in the diagram on the left side ϑ0 for varying dimension. The thick-

ness decreases with increasing dimension. The middle and right side of figure 110 com-

pare balanced splitting with the Pyramid-Technique. For the outermost peel, it is for a

reasonable selectivity impossible that the query touches both partitions on opposite

sides. As the outermost peel is very thin (typically in the order of 10-3..10-4 of the side

length of the data space, it is even unlikely that any of the partitions on the outermost

peel is intersected by a query. The next peel under the outermost peel is affected with a

slightly higher probability. But the total expectation of page accesses is still very low. We

will analyze this effect in depth in section 8.4.

Figure 110: Partitioning Strategies

1

2 3

Balanced Split Pyramid-Technique

query rectangle

dimension d

th
ic

kn
es

s
ϑ 0

N = 100,000

N = 1,000,000

Ceff 2d⋅

Ceff 2d⋅

VDS VDS
d ϑ0–()

d
–

Ceff 2d⋅
N

-------------------=

ϑ0 1 1
Ceff 2d⋅

N
-------------------–d–=

The Pyramid-Technique 199

8.2.2 Data Space Partitioning

The Pyramid-Technique partitions the data space in two steps: in the first step, we split

the data space into 2d pyramids having the center point of the data space (0.5, 0.5, ..., 0.5)

as their top and a (d-1)-dimensional surface of the data space as their base. In a second

step, each of the 2d pyramids is divided into several partitions, each corresponding to

one data page of the B+-tree. In the 2-dimensional example depicted in figure 111, the

space has been divided into 4 triangles (the 2-dimensional analogue of the d-dimension-

al pyramids) which all have the center point of the data space as top and one edge of the

data space as base (figure 111 left). In a second step, these 4 partitions are split again into

several data pages parallel to the base line (figure 111 right). Given a d-dimensional

space instead of the 2-dimensional space, the base of the pyramid is not a 1-dimensional

line such as in the example, but a (d-1)-dimensional hyperplane. As a cube of dimension

d has 2d (d-1)-dimensional hyperplanes as a surface, we obviously obtain 2d pyramids.

Numbering the pyramids as in the 2-dimensional example in figure 112a, we can

make the following observations which are the basis of the partitioning strategy of the

Pyramid-Technique: All points located on the i-th (d-1)-dimensional surface of the cube

(the base of the pyramid) have the common property that either their i-th coordinate is 0

or their -th coordinate is 1. We observe that the base of the pyramid is a (d - 1)-

dimensional hyperplane, because one coordinate is fixed and (d - 1) coordinates are

variable. On the other hand, all points v located in the i-th pyramid pi have the common

property that the distance in the i-th coordinate from the center point is either smaller

than the distance of all other coordinates if , or larger if . More formally:

Figure 111: Partitioning the Data Space into Pyramids

Data space

pyramid
(d-1)-dimensional surface

partition

center
point

i d–()

i d< i d≥

j∀ , 0 j d j i: 0.5 vi– 0.5 vj–≤()≠,<≤ if i d<()
j∀ , 0 j d j i d–(): 0.5 v i d–()– 0.5 vj–≥()≠,<≤ if i d≥()

200 Indexing Ultra-High-Dimensional Feature Spaces

Figure 112b depicts this property in two dimensions: all points located in the lower

pyramid are obviously closer to the center point in their d0-direction than in their d1-

direction. This common property provides a very simple way to determine the pyramid

pi which includes a given point v: we only have to determine the dimension i having the

maximum deviation from the center. More formally:

Definition 18: Pyramid of a point v

A d-dimensional point v is defined to be located in pyramid pi,

with .

Note that all further considerations are based on this definition. Therefore, it is crucial

for our technique.

Another important property is the location of a point v within its pyramid. This loca-

tion can be determined by a single value which is the distance from the point to the center

point according to dimension jmax. As this geometrically corresponds to the height of the

point within the pyramid, we call this location height of v (cf. figure 113)

Figure 112: Properties of Pyramids

v

d0

d1

a) numbering of pyramids b) point in pyramid
0.

5
v 1

–

0.5 v0–

p1

p0

p3

p2

0.5 vi–

i
jmax if vjmax

0.5<()

jmax d+() if vjmax
0.5≥()

=

jmax j k∀ , 0 j k,() d j k: 0.5 vj– 0.5 vk–≥≠,<≤()()=

The Pyramid-Technique 201

Definition 19: Height of a point v

Given a d-dimensional point v. Let pi be the pyramid in which v is located according

to definition 18. Then, the height hv of the point v is defined as

.

Using definition 18 and 19, we are able to transform a d-dimensional point v into a value

(i+hv) where i is the index of the according pyramid pi and hv is the height of v within pi.

More formally:

Definition 20: Pyramid value of a point v

Given a d-dimensional point v. Let pi be the pyramid in which v is located according

to definition 18 and hv be the height of v according to definition 19. Then, the pyramid

value pvv of v is defined as

.

Note that i is an integer and hv is a real number in the range [0, 0.5]. Therefore, each

pyramid pi covers an interval of [i, (i+0.5)] pyramid values and the sets of pyramid

values covered by any two pyramids pi and pj are disjunct. Note further that this trans-

formation is not injective, i.e. two points v and v’ may have the same pyramid value. As

mentioned above, we do not require an inverse transformation and therefore we do not

require a bijective transformation.

8.2.3 Index Creation

Given the transformation determining the pyramid value of a point q, it is a simple task

to build an index based on the Pyramid-Technique. In order to dynamically insert a point

v, we first determine the pyramid value pvv of the point and insert the point into a B+-tree

using pvv as a key. Finally, we store the d-dimensional point v and pvv in the according

data page of the B+-tree. Update and delete operations can be done analogously. Note

hv 0.5 vi MOD d–=

Figure 113: Height of a Point within its Pyramid

Data space

height of v

v

Pyramid p1

p1

p0

p3

p2

pvv i hv+()=

202 Indexing Ultra-High-Dimensional Feature Spaces

that B+-trees can be bulk-loaded very efficiently, for example, when building a B+-tree

from a large set of data items. The bulk-loading techniques for B+-trees can be applied

to the Pyramid-Technique as well.

In general, the resulting data pages of the B+-tree contain a set of points which all

belong to the same pyramid and have the common property that their pyramid value lies

in an interval given by the minimal and maximal key value of the data pages. Thus, the

geometric correspondence of a single B+-tree data page is a partition of a pyramid as

shown in figure 113 (right).

8.3 Query Processing

In contrast to the insert, delete and update operation, query processing using the Pyra-

mid-Technique is a complex operation. Let us focus on point queries first which are

defined as “Given a query point q, decide whether q is in the database”. Using the

Pyramid-Technique, we can solve the problem by first computing the pyramid value pvq

of q and querying the B+-tree using pvq. As a result, we obtain a set of d-dimensional

points sharing pvq as a pyramid value. Thus, we scan the set and determine whether the

set contains q and output the result.

In case of range queries, the problem is defined as follows: “Given a d-dimensional

interval

, ..., ,

determine the points in the database which are inside the range”. Note that the geomet-

ric correspondence of a multidimensional interval is a hyper-rectangle. Analogously to

point queries, we face the problem to transform the d-dimensional query into a 1-dimen-

sional query on the B+-tree. However, as the simple 2-dimensional example depicted in

figure 114 (left) demonstrates, a query rectangle may intersect several pyramids and the

computation of the area of intersection is not trivial. As we also take from the example,

we first have to examine which pyramids are affected by the query, and second, we have

to determine the ranges inside the pyramids. The test whether a point is inside the ranges

is based on a single attribute criterion (hv between two values). Therefore, determining

all such objects is a one-dimensional indexing problem. Objects outside the ranges are

guaranteed not to be contained in the query rectangle. Points lying inside the ranges, are

candidates for a further investigation. It can be seen in figure 114 that some of the candi-

q0min
q0max

,[] qd 1– min
qd 1– max

,[]

Query Processing 203

dates are hits, others are false hits. Then, a simple point-in-rectangle-test is performed in

the refinement step.

For simplification, we focus the description of the algorithm only on pyramids pi

where , however, our algorithm can be extended to all pyramids in a straight-for-

ward way. As a first step of our algorithm, we transform the query rectangle q into an

equivalent rectangle such that the interval is defined relative to the center point.

 and , .

Additionally, we interpret any point v mentioned in this section to be defined relative

to the center point of the data space. Based on definition 18, we are able to determine if

a pyramid pi is affected by a given query . As we will see, we have to determine the

absolute minimum and maximum of an interval which is defined as follows: Let

 be defined as the minimum of the absolute values of an interval r:

.

Note that may be larger than . Analogously, we define:

.

Figure 114: Transformation of Range Queries

hlow

hhigh

query rectangle

i d<

q̂

q̂jmin
qjmin

0.5–= q̂jmax
qjmax

0.5–= j∀ 0 j d<≤,

q̂

MIN r()

MIN r()
0 if rmin 0 rmax≤ ≤

min rmin rmax,() otherwise

=

rmin rmax

MAX r() max rmin rmax,()=

204 Indexing Ultra-High-Dimensional Feature Spaces

Lemma 18: (Intersection of a Pyramid and a Rectangle)

A pyramid pi is intersected by a hyperrectangle if

and only if

.

Proof (Lemma 18)

The query rectangle intersects pyramid pi if and only if there exists a point v inside the

rectangle which falls into pyramid pi. Thus, the coordinates of v must all be

smaller than . This, however, is only possible if the minimum absolute value in the

query rectangle in dimension j is closer to the center point than is to the center

point. Lemma 18 follows from the fact that this must hold for all dimensions j.

❏

In the second step, we have to determine which pyramid values inside an affected pyra-

mid pi are affected by the query. Thus, we are looking for an interval [hlow, hhigh] in the

range of [0, 0.5] such that the pyramid values of all points inside the intersection of the

query rectangle and pyramid pi are in the interval [i+hlow, i+hhigh]. Figure 114 depicts

this interval for two and three dimensions.

In order to determine hlow and hhigh, we first restrict our query rectangle to pyramid

pi, i.e. we remove all points above the center point:

, ,

, and , where .

Note that we restricted our considerations to the pyramids p0 .. . Therefore, the

relevant values of and are negative. The effect of this restriction is depicted in

a two-dimensional example in figure 115 (upper part).

The determination of the interval [hlow, hhigh] is very simple if the center point of the

data space is included in the query rectangle, i.e. . In

this case, we simply use the extension of the query rectangle as a result, thus:

 and .

If the center point is not included in the query rectangle, we make the observation that

, too. This is due to the fact that the query rectangle must contain at

q̂0min
q̂0max

,[] … q̂d 1– min
q̂d 1– max

,[], ,

j∀ 0 j d j i≠,<≤ : q̂imin
MIN q̂j()–≤,

vj

vi

q̂imin

q imin q̂imin
=

)

q imax min q̂imax
0,()=

)

q jmin q̂jmin
=

)

q jmax q̂jmax
=

)

0 j d<≤() j i≠,

pd 1–

q̂imin
q̂imax

j∀ 0 j d<≤(): q̂jmin
0 q̂jmax

≤ ≤(),

hlow 0= hhigh MAX q i()=

)

hhigh MAX q i()=

)

Query Processing 205

least one point v such that because otherwise there would be no inter-

section between the query rectangle and pyramid pi.

In order to find the value hlow, we have to determine the minimum height of points

inside the query rectangle and the pyramid pi. As we consider points which are inside

and inside pi, we can intersect all intervals with

 without affecting the value hlow. Then, the minimum of the min-values of

all dimensions of the new rectangle is equal to hlow. Figure 115 (lower part) shows an

example of this operations. Obviously, the checkered rectangles on the left and the right

side of each example are causing the same value hlow.

Lemma 19: (Interval of Intersection of Query and Pyramid)

Given a query interval and an affected pyramid pi, the intersection interval

[hlow, hhigh] is defined as follows:

Case 1: ()

,

 .

Case 2: (otherwise)

 (*)

vi MAX q i()=

)

q

)
q jmin q jmax,[]

))

0 j d<≤() j i≠,
q imin q imax,[]

))

q

Figure 115: Restriction of Query Rectangle

q̂ q

)

q

)

q

hlow

first step

second step

q̂

j∀ 0 j d<≤ : q̂jmin
0 q̂jmax

≤ ≤(),

hlow 0=

hhigh MAX q i()=

)

hlow min 0 j d j i≠,<≤() qjmin
()=

hhigh MAX q i()=

)

206 Indexing Ultra-High-Dimensional Feature Spaces

Proof (Lemma 19)

We will show for any point v which is located inside the query rectangle and an

affected pyramid pi that the resulting query interval [hhigh, hlow] contains . Note

that we assumed i to be smaller than d and thus . Therefore, we have to show

that

.

1. :

This holds because we choose hhigh such that .

2. :

If contains the center point, we have .

Otherwise, because v is inside the pyramid i. On the other

hand, because v is inside the query rectangle and

because all coordinates of v are negative for . Thus,

.

Additionally, because of the same reasons. Assembling the two re-

sults, we derive: . From equation (*),

however, follows that . Thus, we finally obtain that

❏

Lemma 18 and 19 imply the simple query processing algorithm depicted in figure 116.

8.4 Theoretical Analysis

In contrast to our assumptions in chapter 3, we focus in this section on window queries

which are completely contained in the data space and extend our model to reflect such a

query distribution. For simplicity, we assume a uniform, independent distribution of data

points in the d-dimensional unit hypercube and hypercube shaped window queries with

qjmin

max MAX q i() MIN q j(),() if MAX q j() MIN q i()≥

MIN q i() otherwise

=

))))

)
q̂

vi

vi 0<

hlow vi hhigh≤ ≤

vi hhigh≤

vi MAX q i()≤ hhigh=
)

hlow vi≤

q̂ hlow 0 vi≤=

vi vj j 0 j d<≤(),∀(),≥
vj q̂jmin

j 0 j d<≤(),∀,≥ vj q jmin≥

)
0 i d<≤

vj MIN q j() j 0 j d<≤,∀(),≥

)

vi MIN q i()≥

)

vi max MIN q i() MIN q j(),() j 0 j d<≤,∀,≥

))

qjmin
hlow≥

vi max MIN q i() MIN q j(),() hlow≥ ≥

))

Theoretical Analysis 207

side length q. The query anchor which is in this case the lower left corner of the query

window by definition, is therefore taken randomly from the hypercube [0 .. 1 –q]d to

make sure that the query window is completely contained in the data space.

8.4.1 Analysis of Balanced Splitting

We start with the analysis of balanced splitting for our query distribution. Our assump-

tion is (like in chapter 3) that in high-dimensional query processing the data space can-

not be split in each dimension, but only in a number d’ of dimensions with

.

As the range queries are completely contained in the data space, there is no need to

consider boundary effects for the queries. If s is the selectivity, i.e. the ratio of objects to

be retrieved, then the side-length q simply corresponds to the d-th root of s:

.

For a 20-dimensional range query with a selectivity of 0.01%, we obtain a side length of

q = 0.63 which is larger than half of the extension of the data space in this dimension. For

Figure 116: Processing Range Queries (Algorithm)

Point_Set PyrTree::range_query(range q)
{
Point_Set res;

for (i = 0; i < 2d; i++) {
if (intersect(p[i], q) {
// using lemma 18
determine_range(p[i], q, hlow, hhigh);
// using lemma 19

cs = btree_query(i+hlow, i+hhigh);
for (c = cs.first; cs.end; cs.next){
if (inside(q, c))
res.add(c);

}
}

}
return res;

}

d′ log2
N

Ceff
---------()=

q sd=

208 Indexing Ultra-High-Dimensional Feature Spaces

a page bi given by its lower and upper bounds lbi,j and ubi,j (), we can extend

our formula for the access probability

to take our new query distribution into account:

.

The minimum and maximum are necessary to cut the parts of the Minkowski sum ex-

ceeding the data space, whereas the denominator (1 –q) is due to fact that the stochastic

“event space” of the query anchor is not [0, 1] but rather [0, 1 –q]. The model for bal-

anced splits can be simplified if the number of data pages is a power of two. Then, all

pages have the extension 0.5 in d’ dimensions, accommodated in the lower or the upper

half of the data space, and full extension in the remaining dimensions. By Ceff we denote

the effective (average) capacity of a data page. It is dependent on d. As in our special

case, all pages have the same access probability and thus the expected value of data page

accesses is:

.

Note that we require the minimum to assure that the expected value does not exceed the

total number of data pages and that we are able to ignore the remaining (d – d’) dimen-

sions because the extension of the data pages in these dimensions is 1.

8.4.2 Analysis of the Pyramid Technique

Now we are going to determine a cost estimation for the Pyramid-Technique. We restrict

ourselves to the cost for processing hypercube shaped range queries having a side length

larger than 0.5 to achieve a reasonable selectivity for high-dimensional queries. In this

case, the center of the data space is always contained in the query and therefore, our

window query is transformed into a set of exactly 2d one-dimensional range queries with

 and .

0 j d<≤

Prange q() ubi j, lbi j,– q+()
j 0=

d 1–

∏=

Pwindow q()
min ubi j, 1 q–,() max lbi j, q– 0,()–

1 q–
--

j 0=

d 1–

∏=

Ewindow d q N, ,()
N

Ceff
--------- min⋅ 1

0.5
1 q–

log2

N
Ceff
--------()

,()=

hlow 0= hhigh MAX q i()=

)

Theoretical Analysis 209

We do not need the concept of the Minkowski sum here because we analyze the perfor-

mance of one-dimensional interval queries. However, we have to take into account that,

in contrast to the points of the database, the pyramid values are not uniformly distribut-

ed.

In the first step of our model, we determine an expected value for the amount of data

in each pyramid which has to be accessed during query processing (the size of the can-

didate set). We consider the lower boundaries of the query rectangle

 as the anchor point of the query. QA is obviously taken from

the multidimensional interval to guarantee that the whole query is

located inside the data space. Therefore, the height hhigh in the pyramid pi is uniformly

distributed in the interval (cf. figure 117). We call the part of the

hyper-pyramid, starting with hlow = 0 and ending with hhigh (underlaid in grey in figure

117), the affected part of the pyramid. The volume of the affected part can be determined

by using the fact that it is the 2d-th part of a hypercube with side length :

.

From this volume of the affected part for a given hhigh, we can also determine the expect-

ed value by forming an average over all possible positions of hhigh in the interval Hi.

Thus, we have to integrate over hhigh and then divide the result by the size of the interval

Hi which yields the following integral formula:

.

QA q0min
... qd 1– min

, ,()=

QAI 0 1 q–,[]d
=

Hi q 0.5– 0.5,[]=

pi

Candidates in pi

Query Rectangle

Figure 117: Modeling the Pyramid-Technique

Query Anchor
(The “Affected Part”)

2 hhigh⋅

V hhigh()
2 hhigh⋅()d

2 d⋅
--------------------------=

EV d q,()

V hhigh() hhighd

q 0.5–

0.5

∫
0.5 q 0.5–()–

---=

210 Indexing Ultra-High-Dimensional Feature Spaces

The integral can be evaluated and simplified to:

.

As is the expected volume of the affected part for a query of the size q in a

single pyramid under the uniformity assumption that

is the expected total number of objects in the affected parts of all pyramids.

These objects are the candidates for an exact-geometry test of d-dimensional range

containment (cf. figure 117). Since it is unlikely that the affected part is perfectly aligned

with a break between two subsequent pages, the question is, how many data pages are

occupied by the candidates. Note that all candidates belong to a single interval of pyra-

mid values and therefore, the candidates are stored contiguously on the data pages. Thus,

assuming a pagination with the effective page capacity Ceff, we have to descend the

directory of the B+-tree for each pyramid to find the object with the lowest pyramid

value in each pyramid. This object may be located anywhere inside a data page. Then,

we have to read a run with the length of objects which occupies

 data pages. The last object is, again located somewhere on a data page

with an equal probability of every position on the page. On average, we have to read half

a page before and after the run, respectively. Therefore, the required number of accesses

to data pages for all 2d pyramids is:

.

EV d q,() 1 2q 1–()d 1+–
4d 1 q–() d 1+()⋅ ⋅
---=

EV d q,()

2d EV d q,() N 2d⁄()⋅ ⋅ EV d q,() N⋅=

EV d q,() N⋅
EV d q,() N Ceff⁄⋅

N
u

m
b

er
 o

f
P

ag
e

A
cc

es
se

s

Dimension

Balanced Split

Pyramid Tree

Figure 118: Range Queries Using the Pyramid Technique and Balanced Splitting

Epyramidtree d q N, ,() 2d N 1 2q 1–()d 1+–()⋅+
2Ceff d() d 1+() 1 q–()⋅ ⋅
--=

The Extended Pyramid-Technique 211

The number of accesses to directory pages is 2d times the height of the B+-tree

 and can be neglected because the directory fits into the cache. We

made the same assumption in the model for balanced splitting.

8.4.3 Comparison

Figure 118 depicts the performance of the Pyramid-Technique as predicted by our model

and, in comparison, the estimated cost when using balanced splitting. The Pyramid-

Technique does not reveal any performance degeneration in high dimensions. Note that

we achieved this result by assuming hypercube shaped queries which are uniformly

distributed over the data space and, therefore, the result only holds for this query type.

8.5 The Extended Pyramid-Technique

All our considerations presented so far were based on the assumption that the data is

uniformly distributed. However, data produced by real-life applications does not behave

this way. Therefore, the question arises, how to adapt the Pyramid-Technique to real

data. Let us consider the following scenario: What happens to the Pyramid-Technique if

most of the data is located in one corner of the data space (figure 119 left). Obviously,

only a few pyramids (in the extreme case only one) will contain most of the data while

the other pyramids are nearly empty. This, however, will result in the suboptimal space

partitioning depicted in the example in figure 119 (middle). Obviously, partitioning is

suboptimal because we can assume real-life queries to be similarly distributed as the

data itself. Under this realistic assumption, a much better partitioning for the same data

set is shown in figure 119 (right).

logCeff,dirpg
N Ceff⁄()

Figure 119: Effect of Clustered Data

clustered data Pyramid-T. Extended Pyramid-T.

212 Indexing Ultra-High-Dimensional Feature Spaces

The basic idea of the extended Pyramid-Technique is to achieve such a partitioning by

transforming the data space such that the data cluster is located in the center point

(0.5, ..., 0.5) of space. Thus, we have to map the given data space to the canonical data

space [0, 1]d such that the d-dimensional median of the data is mapped to the center

point. Note that we only have to assure that the median of the data roughly coincides

with the center point of the data space. The presence of clusters distributed over the

space does not cause a problem for our technique. However, we only apply the transfor-

mation to determine the pyramid values of points and query rectangles, but not to the

points itself. Therefore, we do not have to apply the inverse transformation to our answer

set.

As the computation of the d-dimensional median is a hard problem, we use the fol-

lowing heuristic to determine an approximation of the d-dimensional median: We main-

tain a histogram for each dimension to keep track of the median in this dimension. The

d-dimensional median is then approximated by the combination of the d one-dimension-

al medians. Obviously, the approximated d-dimensional median may be located outside

the convex hull of the data cluster. As our experiments showed, this effect occurs very

rarely and therefore the performance of our algorithms is not affected. The computation

of the median can either be done dynamically in case of dynamic insertions, or once in

case of a bulk-load of the index.

Given the d-dimensional median mp of the data set, we define a set of d functions ti,

 transforming the given data space in dimension i such that the following

conditions hold:

1.

2.

3.

4.

The three conditions are necessary to assure that the transformed data space still has an

extension of [0..1]d (1. and 2.), and that the median of the data becomes the center point

of the data space (3.). Condition 4. assures that each point in the original data space is

mapped to a point inside the canonical data space. The resulting functions ti can be

chosen as an exponential function such that:

.

0 i d 1–()<≤

ti 0() 0=

ti 1() 1=

ti mpi() 0.5=

ti: 0 1,[] 0 1,[]→

ti x() x
r=

The Extended Pyramid-Technique 213

Obviously, conditions 1., 2., and 4. are satisfied by xr, . In order to deter-

mine the parameter r, we have to satisfy condition 3.: . Thus,

 and .

Now, in order to insert a point v into an index using the extended Pyramid-Technique,

we simply transform v into a point and determine the pyramid value pvv’ .

Then, we insert v using pvv’ as a key value as described in section 8.2.3. In order to

process a query, we first transform the query rectangle q (or query point) into a query

rectangle q’ such that and . Note that q’ is a rectangle be-

cause we applied independent transformations to each dimension. Next, we use the algo-

rithm presented in section 8.3, to determine the intervals of affected pyramid values and

query the B+-tree. As a result, we obtain a set of non-transformed d-dimensional points

v which we test with the original query rectangle q. Note that we used the transforma-

tions ti only to determine the pyramid value but we have not transformed the points

itself.

If we dynamically build an index, the situation may occur that the first 10% of insert-

ed points have a median different from that of the other 90% of the data. More general,

we have to handle the situation that the median changes during the insertion process. To

handle this case, we maintain the current median by maintaining a histogram for each

dimension and rebuild the index if the distance of the current median to the center point

exceeds a certain threshold. Note that rebuilding the index is not too expensive because

we use a bulk-load technique for B+-trees. In order to determine a good threshold, we use

r 0 0 x 1≤ ≤,≥
ti mpi() 0.5 mpi

r
= =

r
1

log2 mpi()
------------------------–= ti x() x

1
log2 mpi()
------------------------–

=

Figure 120: Transformation Functions ti

mpi 0.25= mpi 0.5= mpi 0.85=

v’i=ti vi()

q’imin
=ti qimin

() q’imax
=ti qimax

()

214 Indexing Ultra-High-Dimensional Feature Spaces

the value because the maximum distance from any point to the center

point is and, therefore, the adapting process is guaranteed to terminate after a

logarithmic number of steps. Note further that the probability that the median shifts and

therefore the index has to be reorganized decreases with an increasing percentage of

inserted data items. Therefore, a reorganization occurs very rarely in practice. Further-

more, our experiments showed that a slightly shifted median has a negligible influence

on the performance of the Pyramid-Technique.

8.6 Experimental Evaluation

To demonstrate the practical impact of the Pyramid-Technique and to verify our theoret-

ical results, we performed an extensive experimental evaluation of the Pyramid-Tech-

nique and compared it to the following competitive techniques:

• X-tree [BKK 96]

• Hilbert-R-tree [KF 94]

• Sequential Scan [WSB 98].

The Hilbert-R-tree has been chosen for comparison, because the Hilbert-curve and other

space filling curves can be used in conjunction with a B-tree in a so-called one-dimen-

sional embedding. Since the Pyramid-Technique also incorporates a very sophisticated

one-dimensional embedding, the Hilbert R-tree appeared to us as a natural competitive

method.

Recently, the criticism arose that index-based query processing is generally ineffi-

cient in high-dimensional data spaces [BGRS 98], and that sequential scan processing

yields a better performance in this case. Therefore, we included the sequential scan in

our experiments. We will confirm the observation that the sequential scan outperforms

the X-Tree and the Hilbert R-Tree for high dimensionalities, but we will also see that our

new technique outperforms the sequential scan in all experiments performed.

For clarity, we state our assumption that all relevant information is stored in the vari-

ous indexes, as well as in the file used for the sequential scan. Therefore, no additional

accesses to fetch objects for presentation or further processing are needed in any of the

techniques applied in our experiments.

Our experiments have been computed on HP 9000/780 workstations with several

GigaBytes of secondary storage.

th d() 4⁄=

d() 2⁄

Experimental Evaluation 215

Our evaluation comprises both, real and synthetic data sets. In all experiments, we

performed range queries with a defined selectivity because range queries serve as a basic

operation for other queries such as nearest neighbor queries or partial range queries. The

query rectangles are selected randomly from the data space such that the distribution of

the queries equals the distribution of the data set itself and the query rectangles are fully

included in the data space. Thus, in case of uniform data we used uniformly distributed

hypercube shaped query rectangles.

Figure 121: Performance Behavior over Database Size

P

g
. A

cc

C
P

U
-T

im
e

T
o

ta
l T

im
e

216 Indexing Ultra-High-Dimensional Feature Spaces

8.6.1 Evaluation Using Synthetic Data

Our synthetic data set contains 2,000,000 uniformly distributed points in a 100-dimen-

sional data space. The raw data file occupies 800 MBytes of disk space. The main advan-

tage of uniformly distributed point sets is that it is possible to scale down the dimension-

ality of the point set by projecting out some of the dimensions without affecting the

semantics of the query. We created files with varying dimension and varying number of

objects by projection and selection and constructed various indexes using these raw data

files.

In our first experiment (cf. figure 121) we measured the performance behavior with

varying number of objects. We performed range queries with 0.1% selectivity in a 16-

dimensional data space and varied the database size from 500,000 to 2,000,000 objects.

Unfortunately, using our implementation, the Hilbert-R-tree could only be constructed

for a maximum of 1,000,000 objects due to the limited main memory. The file sizes of

all indexes in this experiment sum up to 1.1 GigaBytes. The page size in this experiment

was 4,096 Bytes, leading to an effective page capacity of 41.4 objects per page in all

index structures. Figure 121 shows the performance of query processing in terms of

number of page accesses, absorbed CPU-time and finally the total elapsed time, com-

prising CPU-time and time spent in disk I/O. The speed-up with respect to the number of

page accesses seems to be almost constant and ranges between 9.78 and 10.91. The

speed-up in CPU-time is higher than the speed-up in page accesses, but is only slightly

increasing with growing database sizes. The reason is that B+-trees facilitate an efficient

in-page search for matching objects by applying bisection or interval search algorithms.

However, most important is the speed-up in total elapsed time. It starts with factor 53,

increases quickly and reaches its highest value with the largest database: The Pyramid-

Technique with 2 million objects performs range queries 879 times faster than the corre-

sponding X-tree! Range query processing on B+-trees can be performed much more

efficient than on X-trees because large parts of the tree can be traversed efficiently by

following the side links in the data pages. Moreover, long-distance seek operations in-

ducing expensive disk head movements have a lower probability due to better disk clus-

tering possibilities in B+-trees. The bar diagram on the right side of figure 121 summa-

rizes the highest speed-up factors in this experiment.

In a second experiment, visualized in figure 122, we determined the influence of the

data space dimension on the performance of query processing. For this purpose we cre-

ated 5 data files as projections of the original data files with the dimensionalities 8, 12,

Experimental Evaluation 217

16, 20, and 24 (the database size in this experiment is 1,000,000 objects) and created the

corresponding indexes. The total amount of disk space occupied by the index structures

used in this experiment sums up to 1.6 GigaBytes. The page size in this experiment was

again 4,096 Bytes. The effective data page capacity depends on the dimension and

ranged from 28 to 83 objects per page. We investigated range queries with a constant

selectivity of 0.01%. For a constant selectivity, the query range varies according to the

data space dimension.

We observed that the efficiency of query processing using the X-tree rapidly decreas-

es with increasing dimension up to the point where large portions of the index are com-

pletely scanned (16-dimensional data space). From this point on, the page accesses are

growing linearly with the index size. Even worse is the performance of the Hilbert R-

Figure 122: Performance Behavior over Data Space Dimension

P

g
. A

cc

C
P

U
-T

im
e

T
o

ta
l T

im
e

218 Indexing Ultra-High-Dimensional Feature Spaces

tree. A comparable deterioration of the performance with increasing dimension is not

observable when using the Pyramid-Technique. Here, the number of page accesses, the

CPU-time and total elapsed time grow slower than the size of the data set. The percent-

age of accessed pages with respect to all data pages is even reduced with growing dimen-

sions (decreasing from 7.7% in the 8-dimensional experiment to 5.1% in the 24-dimen-

sional experiment). The experiment yields a speed-up factor over the X-tree of up to 14.1

for the number of page accesses, and 103.5 for the CPU-time. Furthermore, the Pyramid-

Technique is up to 2,500.7 times faster in terms of total elapsed time than the X-tree.

To demonstrate this observation that the percentage of pages accessed by the Pyra-

mid-Technique decreases when going to higher dimensions, we determined the percent-

age of data pages accessed during query processing when indexing very high dimen-

sions. Figure 123 depicts the result of this experiment: The percentage drops from 8.8%

in 20 dimensions to 8.0% in 100 dimensions.

8.6.2 Evaluation Using Real Data Sets

In this series of experiments, we used data sets from two different application domains,

information retrieval and data warehousing to demonstrate the practical impact of our

technique.

The first data set contains text descriptors, describing substrings from a large text

database extracted from WWW-pages. These text descriptors have been converted into

300,000 points in a 16-dimensional data space and were normalized to the unit hyper-

cube. We varied the selectivity of the range queries from 10-5 to 31% and measured the

Figure 123: Percentage of Accessed Pages

Experimental Evaluation 219

query execution time (total elapsed time). The result is presented in figure 124 and con-

firms our earlier results on synthetic data that the Pyramid-Technique clearly outper-

forms the other index structures. The highest speed-up factor observed was 51. Addi-

tionally, the experiment shows that the Pyramid-Technique outperforms the competitive

structures for any selectivity, i.e. for very small queries as well as for very large queries.

In a last series of experiments, we analyzed the performance of the Pyramid-Tech-

nique on a data set taken from a real-life data warehouse. The relation we used has 13

attributes: 2 categorical, 5 integer, and 6 floating point attributes. There are some very

strong correlations in some of the floating point attributes, some of the attributes follow

a very skewed distribution, whereas some other attributes are rather uniformly distribut-

ed. The actual data set we used comprises a subset of 803,944 tuples containing data of

a few months. In a first experiment, we measured the real time consumed during query

processing. Again, the Pyramid-Technique outperformed the other index structures by

orders of magnitude. As expected, the speed-up increases when going to higher dimen-

sions because the effects described in section 8.4 apply more for larger query ranges.

However, even for the smallest query range in the experiment, the speed-up factor over

the X-tree was about 10.47, whereas the speed-up for the largest query range was about

505.18 in total query execution time.

Figure 124: Query Processing on Text Data

220 Indexing Ultra-High-Dimensional Feature Spaces

In a second experiment, we measured the effect of the extension of the Pyramid-

Technique proposed in section 8.5. We made the experiment on this data set because the

data is very skew and the median is rather close to the origin of the data space in most of

the dimensions. Figure 125 shows the effect of the extension. For all selectivities, there

was a speed-up of about 10-40%. This shows first that for very skewed data, it is worth

to reorganize the index, and second that if we refuse to do so, the loss of performance is

not too high compared to the high speed-up factors over other index structures.

A major point of criticism is the argument that the Pyramid-Technique is designed for

hypercube shaped range queries and might perform bad for other queries. Therefore, we

ran an additional experiment investigating the behavior of the Pyramid-Technique for

skewed queries. We generated partial range queries shrinking the data space in k dimen-

sions and having the full extension of the data space in (d-k) dimensions. These queries

can be considered as (d-k)-dimensional hyper-slices in a d-dimensional space. As figure

126 shows, the Pyramid-Technique outperforms the linear scan for all of these queries

except the 1-dimensional queries. For 1-dimensional queries, the Pyramid-Technique

required 2.6 sec. compared to 2.48 sec. for the linear scan. However, a large improve-

ment was observed for 8-dimensional to 13-dimensional queries. The X-Tree could not

compete with the Pyramid-Technique for any of these queries.

Figure 125: Query Processing on Warehousing Data

T
o

ta
l E

la
p

se
d

 T
im

e
[S

ec
.]

Experimental Evaluation 221

Summarizing the results of our experiments, we make the following observations:

1. For nearly hypercube shaped queries, the Pyramid-Technique outperforms any

competitive technique, including the linear scan. This holds even for skewed, clus-

tered and categorical data.

2. For queries having a bad selectivity, i.e. a high number of answers or extremely

skewed queries, especially queries specifying only a small number of attributes, the

Pyramid-Technique still outperforms competitive index structures. A linear scan of

the database, however, is faster.

Figure 126: Varying the Query Mix (Warehouse Data)

T
o

ta
l E

la
p

se
d

 T
im

e
[S

ec
.]

222 Indexing Ultra-High-Dimensional Feature Spaces

223

Chapter 9
Conclusions

Indexing high-dimensional data spaces is an emerging domain of research. The material

presented in this thesis has matured this new area both theoretically as well as practical-

ly. The theoretical contribution is in particular the part about cost models which is in-

tended to bring deep insights into the problems and effects occurring in high-dimension-

al data spaces. Practical contributions are various new index structures and optimization

techniques for high-dimensional data spaces.

9.1 Background

High-dimensional indexing is motivated by the similarity search problem in applications

such as multimedia, CAD, medical image processing, molecular biology and time se-

quence analysis. For a similarity search, usually a so-called feature-transformation is

applied. The feature approach extracts important properties from the objects in the data-

base and transforms the objects into points of a high-dimensional vector space. Multidi-

mensional index structures are applied for the management of these feature vectors.

Unfortunately, neither standard index structures and query processing techniques, nor

the state-of-the-art in specialized index structures for high-dimensional data spaces

yields satisfactory performance. Often the performance deteriorates when approaching

dimensions higher than 20. The aim of this thesis was to overcome this drawback.

224 Conclusions

9.2 Contributions

For this purpose, in the beginning of this thesis (chapter 3), a cost model for query

processing in high-dimensional data spaces was developed. We paid particular attention

to boundary effects which occur in high-dimensional query processing. We also consid-

ered correlation effects which are inherent to data from real applications in contrast to

artificial data from a uniform and independent distribution. Our cost model is applicable

for query processing using both, the Euclidean metric and the maximum metric. It pro-

vides accurate estimates for the number of page accesses when executing range queries

or nearest neighbor queries.

Based on this cost model, a number of optimization techniques for high-dimensional

query processing was proposed in the rest of this thesis. We started (chapter 4) with an

optimization of the logical block size of the index structure which is of particular impor-

tance in high-dimensional query processing. In our approach, the blocksize is adapted

dynamically and independently in all pages to consider that the optimum may change

when the database size increases.

Our next optimization technique is concerned with the dimension of the data space.

On the one hand, our motivation was to overcome the deterioration of the performance

of multidimensional index structures when moving to high-dimensional data spaces. On

the other hand, the idea was inspired from the inverted-list-approach which builds a

separate index on each attribute, merging the results of the single indexes for query

processing. This approach, however, suffers from severe performance problems, be-

cause the merging step becomes too expensive if too many answers must be merged. The

general idea of our approach is not to use one-dimensional indexes for each of the at-

tributes but rather to decompose the vectors into sub-vectors of a moderate dimension-

ality to avoid the problems of both approaches, the high-dimensional index and the in-

verted-list-approach. The optimization task tackled in chapter 5 was therefore the

suitable assignment of attributes to indexes.

Chapter 6 was devoted to the optimization of the shapes of the page regions in high-

dimensional index structures. Whereas low-dimensional index structures tend to opti-

mize for cube-like minimum bounding rectangles, we can derive from our cost model

that this approach is inappropriate in the high-dimensional case. For high-dimensional

query processing, an approach cutting thin slices from the data space boundary outper-

forms the classical approach of balanced splitting by large factors. We described this

Future Work 225

strategy in context of a fast bulk-loading algorithm for the X-tree. This algorithm is also

novel and a further research contribution of chapter 6.

In chapter 7, we proposed to exploit parallelism for high-dimensional query process-

ing. The central task from a database point of view is the assignment of data to different

servers. For this purpose, we developed a novel declustering method which was shown

to be optimal with respect to our problem formalization. The idea is to decompose the

data space into quadrants and to assign the quadrants to servers such that neighbors are

assigned to different servers. The problem is equivalent to a special case of the graph

coloring problem, but fortunately can be solved efficiently.

In chapter 8, we finally presented the Pyramid-Technique, an index which is highly

adapted to processing of range queries using the maximum metric. The Pyramid-Tech-

nique maps the data points into a one-dimensional data space. This one-dimensional

space can be indexed using conventional index structures such as the B+-tree. We gain

advantages such as an easy implementation within a commercial database system and

the availability of sophisticated concurrency and recovery control mechanisms. The

most important advantage of the Pyramid-Technique is, however, that query processing

in the above mentioned cases is not subject to the so-called ‘curse of dimensionality’.

The performance of query processing does not deteriorate when approaching higher

dimensions.

9.3 Future Work

There are three major directions on which we will focus our future research: First, we

will open new application domains to our techniques. Examples for promising applica-

tion domains include biometrical data such as face recognition, fingerprints, voice iden-

tification, etc. The new challenge in these applications is the representation of uncertain-

ty which is individual to single attributes. Few previous work exists for questions about

the impact of uncertainty on multi-step query processing architectures and efficient in-

dexing techniques.

A second direction of our future research is to integrate the refinement cost into our

cost model and in the optimization process. There is a clear trade-off between index cost

and refinement cost when performing, for instance dimension reduction or data space

quantization, because these techniques improve the efficiency of index structures, but

worsen the selectivity of the filter step. In our optimization techniques presented in the

226 Conclusions

current thesis, the relative selectivity of the filter step was consistently held fixed. A

suitable application of reduction techniques, however, seems to be crucial for efficient

query processing. Although optimal reduction is a challenging problem, few work exists

in this area. We expect to automatize an important step in the chain of optimization for

query processing.

Our third issue of future research concerns the practical applicability of high-dimen-

sional indexes and the multi-step paradigm of query processing within a given informa-

tion infrastructure. Most current work on multidimensional index structures and query

processing in non-standard database applications is based on file system implementa-

tions and neglects issues such as data independence, concurrency and recovery. In con-

trast, most industrial companies have an information infrastructure based on a commer-

cial (relational) database management system. The major database vendors extend the

capabilities of their systems in the so-called object-relational approach trying to com-

bine the advantages of relational and object-oriented database systems. Object-relation-

al databases enable the application-specific implementation of index structures. In our

future research, we will tackle the problem, how to integrate new indexing techniques

into relational and object-relational database systems and, therefore, bridge one of the

largest gaps in the practical applicability of the whole research direction of multidimen-

sional query processing.

227

References

[AFS 93] Agrawal R., Faloutsos C., Swami A.: ‘Efficient similarity search in
sequence databases’, Proc. 4th Int. Conf. on Foundations of Data
Organization and Algorithms, 1993, LNCS 730, pp. 69-84

[AGGR 98] Agrawal R., Gehrke J., Gunopulos D., Raghavan P.:’ Automatic Subspace
Clustering of High-Dimensional Data for Data Mining Applications’,
Proc. ACM SIGMOD Int. Conf. on Management of Data, Seattle, pp. 94-
105 ,1998.

[AGMM 90]Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.: ‘A Basic
Local Alignment Search Tool’, Journal of Molecular Biology, Vol. 215,
No. 3, 1990, pp. 403-410.

[ALSS 95] Agrawal R., Lin K., Shawney H., Shim K.: ‘Fast Similarity Search in the
Presence of Noise, Scaling, and Translation in Time-Series Databases’,
Proc. of the 21st Conf. on Very Large Databases, 1995, pp. 490-501.

[AMN 95] Arya S., Mount D.M., Narayan O.: ‘Accounting for Boundary Effects in
Nearest Neighbor Searching’, Proc. 11th Symp. on Computational
Geometry, Vancouver, Canada, pp. 336-344, 1995.

[Ary 95] Arya S.: ‘Nearest Neighbor Searching and Applications’, Ph.D. thesis,
University of Maryland, College Park, MD, 1995.

[AS 83] Abel D. J., Smith J.L.: ‘A Data Structure and Algorithm Based on a Linear
Key for a Rectangle Retrieval Problem’, Computer Vision 24, 1983, pp. 1-
13.

[AS 91] Aref W. G., Samet H.: ‘Optimization Strategies for Spatial Query
Processing’, Proc. 17th Int. Conf. on Very Large Databases (VLDB’91),
Barcelona, Catalonia, 1991, pp. 81-90.

[BBB+ 97] Berchtold S., Böhm C., Braunmüller B., Keim D. A., Kriegel H.-P.: ‘Fast
Parallel Similarity Search in Multimedia Databases’, Proc. ACM
SIGMOD Int. Conf. on Management of Data, 1997, Tucson, Arizona,
pp. 1-12, SIGMOD BEST PAPER AWARD.

[BBK 98] Berchtold S., Böhm C., Kriegel H.-P.: ‘Improving the Query Performance
of High-Dimensional Index Structures Using Bulk-Load Operations’, 6th.
Int. Conf. on Extending Database Technology, Valencia, Spain, 1998.

228 References

[BBK 98b] Berchtold S., Böhm C., Kriegel H.-P.: ‘The Pyramid-Technique: Towards
indexing beyond the Curse of Dimensionality’, Proc. ACM SIGMOD Int.
Conf. on Management of Data, Seattle, pp. 142-153,1998.

[BBK+ 98] Berchtold S., Böhm C., Keim D., Kriegel H.-P., Xu X.:’Optimal
Multidimensional Query Processing Using Tree Striping’, submitted.

[BBKK 97] Berchtold S., Böhm C., Keim D., Kriegel H.-P.: ‘A Cost Model For
Nearest Neighbor Search in High-Dimensional Data Space’, ACM PODS
Symposium on Principles of Database Systems, 1997, Tucson, Arizona.

[BEK+ 98] Berchtold S., Ertl B., Keim D., Kriegel H.-P., Seidl T.: ‘Fast Nearest
Neighbor Search in High-Dimensional Spaces’, Proc. 14th Int. Conf. on
Data Engineering, Orlando, 1998.

[Ben 75] Bentley J.L.: ‘Multidimensional Search Trees Used for Associative
Searching‘, Communications of the ACM, Vol. 18, No. 9, pp. 509-517,
1975.

[Ben 79] Bentley J. L.: ‘Multidimensional Binary Search in Database
Applications’, IEEE Trans. Software Eng. 4(5), 1979, pp. 397-409.

[Ber 97] Berchtold S.: ’Geometry based search of similar parts’, (in german),
Ph.D. thesis, University of Munich, 1997.

[BF 95] Belussi A., Faloutsos C.: ‘Estimating the Selectivity of Spatial Queries
Using the `Correlation' Fractal Dimension’. Proceedings of 21th
International Conference on Very Large Data Bases, VLDB’95, Zurich,
Switzerland, 1995, pp. 299-310.

[BGRS 98] Beyer K., Goldstein J., Ramakrishnan R., Shaft U..: ‘When Is “Nearest
Neighbor” Meaningful?’, submitted for publication, 1998.

[Big 89] Biggs N.L.: ‘Discrete Mathematics’, Oxford Science Publications,
Clarendon Press-Oxford, 1989, pp. 172-176.

[BJK 98] Berchtold S., Jagadish H.V., Ross K.: ’Independence Diagrams: A
Technique for Visual Data Mining’, Proc. 4th Int. Conf. on Knowledge
Discovery and Data Mining, New York, pp. 139-143, 1998.

[BK 97] Berchtold S., Kriegel H.-P.: ‘S3: Similarity Search in CAD Database
Systems’, Proc. ACM SIGMOD Int. Conf. on Management of Data, 1997,
Tucson, Arizona, pp. 564-567.

[BKK 96] Berchtold S., Keim D., Kriegel H.-P.: ‘The X-Tree: An Index Structure for
High-Dimensional Data’, 22nd Conf. on Very Large Databases, 1996,
Bombay, India, pp. 28-39.

[BKK 97] Berchtold S., Keim D., Kriegel H.-P.: ‘Using Extended Feature Objects
for Partial Similarity Retrieval’, VLDB Journal Vol. 6, No. 4, pp. 333-
348, 1997.

229

[BKSS 90] Beckmann N., Kriegel H.-P., Schneider R., Seeger B.: ‘The R*-tree: An
Efficient and Robust Access Method for Points and Rectangles’, Proc.
ACM SIGMOD Int. Conf. on Management of Data, Atlantic City, NJ,
1990, pp. 322-331.

[BO 97] Bozkaya T., Ozsoyoglu M., ‘Distance-Based Indexing for High-
Dimensional Metric Spaces’, Proc. 1997 ACM SIGMOD International
Conference on Management of Data, Tucson, AZ, 1997.

[BM 77] Bayer R., McCreight E.M.: ‘Organization and Maintenance of Large
Ordered Indices’, Acta Informatica 1(3), 1977, pp. 173-189.

[Bri 95] Brin S., ‘Near Neighbor Search in Large Metric Spaces’, Proc. 21st
VLDB Conference, 1995, pp. 574-584.

[BSW 97] van den Bercken J., Seeger B., Widmayer P.:, ‘A General Approach to
Bulk Loading Multidimensional Index Structures’, 23rd Conf. on Very
Large Databases, 1997, Athens, Greece.

[CD 97] Chaudhuri S., Dayal U.: ‘Data Warehousing and OLAP for Decision
Support’, Tutorial, Proc. ACM SIGMOD Int. Conf. on Management of
Data, 1997, Tucson, Arizona.

[Chi 94] Chiueh T., ‘Content-Based Image Indexing’, Proc. 20th VLDB
Conference, 1994, pp. 582-593.

[Cle 79] Cleary J.G.: ‘Analysis of an Algorithm for Finding Nearest Neighbors in
Euclidean Space’, ACM Trans. on Mathematical Software, Vol. 5, No.2,
pp. 183-192, 1979.

[Com 79] Comer D.: ‘The Ubiquitous B-tree’, ACM Computing Surveys 11(2),
1979, pp. 121-138.

[CPZ 97] Ciaccia P., Patella M., Zezula P.: ‘M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces’, Proc. 23rd Int. Conf. on Very Large
Databases (VLDB’97), Athens, Greece, 1997.

[DH 73] Duda R. O., Hart P. E.: ‘Pattern Classification and Scene Analysis’, Wiley,
New York, 1973.

[DS 82] Du H.C., Sobolewski J.S.: ‘Disk allocation for cartesian product files on
multiple Disk systems’, ACM TODS, Journal of Transactions on Database
Systems, 1982, pp. 82-101.

[Eas 81] Eastman C.M.: ‘Optimal Bucket Size for Nearest Neighbor Searching in k-
d Trees’, Information Processing Letters Vol. 12, No. 4, 1981.

[Eva 94] Evangelidis G.: ‘The hBπ-Tree: A Concurrent and Recoverable Mult-
Attribute Index Structure’, Ph. D. thesis, Northeastern University, Boston,
MA, 1994.

[Fal 85] Faloutsos C.: ‘Multiattribute Hashing Using Gray Codes’, Proc. ACM
SIGMOD Int. Conf. on Management of Data, 1985, pp. 227-238.

[Fal 88] Faloutsos C.: ‘Gray Codes for Partial Match and Range Queries’, IEEE
Trans. on Software Engineering 14, 1988, pp. 1381-1393.

230 References

[FB 74] Finkel R, Bentley J.L. ‘Quad Trees: A Data Structure for Retrieval of
Composite Keys’, Acta Informatica 4(1), 1974, pp. 1-9.

[FB 93] Faloutsos C., Bhagwat P.: ‘Declustering Using Fractals’, PDIS Journal of
Parallel and Distributed Information Systems, 1993, pp. 18-25.

[FBF 77] Friedman J. H., Bentley J. L., Finkel R. A.: ‘An Algorithm for Finding Best
Matches in Logarithmic Expected Time’, ACM Transactions on
Mathematical Software, Vol. 3, No. 3, September 1977, pp. 209-226.

[FBFH 94] Faloutsos C., Barber R., Flickner M., Hafner J., et al.: ‘Efficient and
Effective Querying by Image Content’, Journal of Intelligent Information
Systems, 1994, Vol. 3, pp. 231-262.

[FG 96] Faloutsos C., Gaede V.: ‘Analysis of n-Dimensional Quadtrees using the
Hausdorff Fractal Dimension’, Proceedings of 22th International
Conference on Very Large Data Bases VLDB’96, Mumbai (Bombay),
India, 1996, pp. 40-50.

[FK 94] Faloutsos C., Kamel I.: ‘Beyond Uniformity and Independence: Analysis
of R-trees Using the Concept of Fractal Dimension’, Proceedings of the
Thirteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, Minneapolis, Minnesota, 1994, pp. 4-13.

[FL 95] Faloutsos C., Lin K.-I.: ‘FastMap: A Fast Algorithm for Indexing, Data-
Mining and Visualization of Traditional and Multimedia Data’, Proc.
ACM SIGMOD Int. Conf. on Management of Data, San Jose, CA, 1995,
pp. 163-174.

[FR 89] Faloutsos C., Roseman S.: ‘Fractals for Secondary Key Retrieval’, Proc.
8th ACM SIGACT/SIGMOD Symp. on Principles of Database Systems,
1989, pp. 247-252.

[Fre 87] Freeston M.: ‘The BANG file: A new kind of grid file’, Proc. ACM
SIGMOD Int. Conf. on Management of Data, San Francisco, CA, 1987,
pp. 260-269.

[FRM 94] Faloutsos C., Ranganathan M., Manolopoulos Y.: ‘Fast Subsequence
Matching in Time-Series Databases’, Proc. ACM SIGMOD Int. Conf. on
Management of Data, 1994, pp. 419-429.

[FSR 87] Faloutsos C., Sellis T., Roussopoulos N.: ‘Analysis of Object-Oriented
Spatial Access Methods’, Proc. ACM SIGMOD Int. Conf. on
Management of Data, 1987.

[Fuk 90] Fukunaga K.: ‘Introduction to Statistical Pattern Recognition’, 2nd
edition, Academic Press, 1990.

[Gae 95] Gaede V.: ‘Optimal Redundancy in Spatial Database Systems’, Proc. 4th
International Symposium on Advances in Spatial Databases, SSD’95,
Portland, Maine, USA, 1995, Lecture Notes in Computer Science Vol.
951, pp. 96-116.

231

[Gar 82] Gargantini I.: ‘An Effective Way to Represent Quadtrees’, Comm. of the
ACM, Vol. 25, No. 12, 1982, pp. 905-910.

[GG 98] Gaede V., Günther O.: ‘Multidimensional Access Methods’, ACM
Computing Surveys, Vol. 30, No. 2, 1998, pp. 170-231.

[GL 89] Golub G.H., van Loan C.F.: ‘Matric Computations’, 2nd edition, John
Hopkins Univerity Press, Baltimore, 1989.

[GM 93] Gary J. E., Mehrotra R.: ‘Similar Shape Retrieval using a Structural
Feature Index’, Information Systems, Vol. 18, No. 7, 1993, pp. 525-537.

[Gre 89] Greene D.: ‘An Implementation and Performance Analysis of Spatial Data
Access Methods’, Proc. 5th IEEE Int. Conf. on Data Eng, 1989.

[Gue 89] Günther O.: ‘The Design of the Cell Tree: An Object-Oriented Index
Structure for Geometric Databases’, Proc. 5th Int. Conf. on Data
Engineering, Los Angeles, CA, 1989, pp. 598-605.

[Gut 84] Guttman A.: ‘R-trees: A Dynamic Index Structure for Spatial Searching’,
Proc. ACM SIGMOD Int. Conf. on Management of Data, Boston, MA,
1984, pp. 47-57.

[Hen 94] Henrich, A.: ‘A distance-scan algorithm for spatial access structures’,
Proceedings of the 2nd ACM Workshop on Advances in Geographic
Information Systems, ACM Press, Gaithersburg, Maryland, pp. 136-143,
1994.

[Hen 98] Henrich, A.: ‘The LSDh-tree: An Access Structure for Feature Vectors’,
Proc. 14th Int. Conf. on Data Engineering, Orlando, 1998.

[Hin 85] Hinrichs K.: ‘Implementation of the Grid File: Design Concepts and
Experiance’, BIT 25, pp. 569-592.

[Hoa 62] C.A.R. Hoare, ‘Quicksort’, Computer Journal, Vol. 5, No. 1, 1962.

[HS 95] Hjaltason G. R., Samet H.: ‘Ranking in Spatial Databases’, Proc. 4th Int.
Symp. on Large Spatial Databases, Portland, ME, 1995, pp. 83-95.

[HSW 88a] Hutflesz A., Six H.-W., Widmayer P.: ‘Globally Order Preserving
Multidimensional Linear Hashing’, Proc. 4th IEEE Int. Conf. on Data
Eng., 1988, pp. 572-579.

[HSW 88b] Hutflesz A., Six H.-W., Widmayer P.: ‘Twin Grid Files: Space Optimizing
Acces Schemes’, Proc. ACM SIGMOD Int. Conf. on Management of Data,
1988.

[HSW 89] Henrich A., Six H.-W., Widmayer P.: ‘The LSD-Tree: Spatial Access to
Multidimensional Point and Non-Point Objects’, Proc. 15th Conf. on Very
Large Data Bases, Amsterdam, The Netherlands, 1989, pp. 45-53, 1989.

[Jag 90] Jagadish H. V.: ‘Linear Clustering of Objects with Multiple Attributes’,
Proc. ACM SIGMOD Int. Conf. on Management of Data, Atlantic City,
NJ, 1990, pp. 332-342.

[Jag 90b] Jagadish H. V.: ‘Spatial Search with Polyhedra’, Proc. 6th Int. Conf. on
Data Engineering, Los Angeles, CA, 1990, pp. 311-319.

232 References

[Jag 91] Jagadish H. V.: ‘A Retrieval Technique for Similar Shapes’, Proc. ACM
SIGMOD Int. Conf. on Management of Data, 1991, pp. 208-217.

[JW 96] Jain R, White D.A.: ‘Similarity Indexing: Algorithms and Performance’,
Proc. SPIE Storage and Retrieval for Image and Video Databases IV, Vol.
2670, San Jose, CA, 1996, pp. 62-75.

[Kal 86] Kalos M. H., Whitlock P. A.: ‘Monte Carlo Methods’, Wiley, New York,
1986.

[Kei 97] Keim D. A.: ‘Efficient Similarity Search in Spatial Database Systems’,
habilitation thesis, Institute for Computer Science, University of Munich,
1997.

[KF 93] Kamel I., Faloutsos C.: ’On Packing R-trees’, CIKM, 1993, pp. 490-499.

[KF 94] Kamel I., Faloutsos C.: ‘Hilbert R-tree: An Improved R-tree using
Fractals’. Proc. 20th Int. Conf. on Very Large Databases, 1994, pp. 500-
509.

[KKS 98] Kastenmüller G., Kriegel H.-P., Seidl T.: ‘Similarity Search in 3D Protein
Databases’, Proc. German Conference on Bioinformatics (GCB`98), Köln
(Cologne), 1998.

[Knu 75] Knuth D. E.: ‘The Art of Computer Programming’, Volume 3, Addison-
Wesley, Reading, MA, 1975.

[Kor+ 96] Korn F., Sidiropoulos N., Faloutsos C., Siegel E., Protopapas Z.: ‘Fast
Nearest Neighbor Search in Medical Image Databases’, Proc. 22nd
VLDB Conference, Mumbai (Bombay), India, 1996, pp. 215-226.

[KP 88] Kim M.H., Pramanik S.: ‘Optimal file distribution for partial match
retrieval’, Proc. ACM SIGMOD Int. Conf. on Management of Data, 1988,
pp. 173-182.

[Kri 84] Kriegel H.-P.: ‘Performance Comparison of Index Structures for Multi-
Key Retrieval’, Proc. ACM SIGMOD Int. Conf. on Management of Data,
Boston, MA, 1984, pp. 186-196.

[KS 86] Kriegel H.-P., Seeger B.: ‘Multidimensional Order Preserving Linear
Hashing with Partial Extensions’, Proc. Int. Conf. on Database Theory, in:
Lecture Notes in Computer Science, Vol. 243, Springer, 1986.

[KS 87] Kriegel H.-P., Seeger B.: ‘Multidimensional Dynamic Quantile Hashing is
very Efficient for Non-Uniform Record Distributions’, Proc 3rd Int. Conf.
on Data Engineering, 1987, pp. 10-17.

[KS 88] Kriegel H.-P., Seeger B.: ‘PLOP-Hashing: A Grid File Without
Directory’, Proc. 4th Int. Conf. on Data Engineering, 1988, pp. 369-376.

[KS 89] Kriegel H.-P., Seeger B.: ‘Multidimensional Quantile Hashing Is Very
Efficient for Non-Uniform Distributions’, Information Sciences 48, 1989,
pp. 99-117.

233

[KS 97] Katayama N., Satoh S.: ‘The SR-tree: An Index Structure for High-
Dimensional Nearest Neighbor Queries’, Proc. ACM SIGMOD Int. Conf.
on Management of Data, 1997, pp. 369-380.

[KS 98] Kriegel H.-P., Seidl T.: ‘Approximation-Based Similarity Search for 3-D
Surface Segments’, GeoInformatica Journal, Kluwer Academic
Publishers, 1998, to appear.

[KSS 97] Kriegel H.-P., Schmidt T., Seidl T.: ‘3D Similarity Search by Shape
Approximation’, Proc. Fifth Int. Symposium on Large Spatial Databases
(SSD’97), Berlin, Germany, Lecture Notes in Computer Science,
Vol. 1262, 1997, pp.11-28.

[Kuk 92] Kukich K.: ‘Techniques for Automatically Correcting Words in Text’,
ACM Computing Surveys, Vol. 24, No. 4, 1992, pp. 377-440.

[KW 85] Krishnamurthy R., Whang K.-Y.: ‘Multilevel Grid Files’, IBM Research
Center Report, Yorktown Heights, N.Y., 1985.

[LJF 95] Lin K., Jagadish H. V., Faloutsos C.: ‘The TV-Tree: An Index Structure for
High-Dimensional Data’, VLDB Journal, Vol. 3, pp. 517-542, 1995.

[Lum 70] Lum, V.Y.: ‘Multi-attribute Retrieval with Combined Indexes’,
Communications of the ACM, Vol. 13, 11, November, 1970, pp. 660-665.

[LS 89] Lomet D., Salzberg B.: ‘The hB-tree: A Robust Multiattribute Search
Structure’, Proc. 5th IEEE Int. Conf. on Data Eng., 1989, pp. 296-304.

[LS 90] Lomet D., Salzberg B.: ‘The hB-tree: A Multiattribute Indexing Method
with Good Guaranteed Performance’, ACM Trans. on Data Base Systems
15(4), 1990, pp. 625-658.

[Man 77] Mandelbrot B.: ‘Fractal Geometry of Nature’, W. H. Freeman and
Company, New York, 1977.

[MG 93] Mehrotra R., Gary J.: ‘Feature-Based Retrieval of Similar Shapes’, Proc.
9th Int. Conf. on Data Engeneering, April 1993

[MG 95] Mehrotra R., Gary J.: ‘Feature-Index-Based Sililar Shape retrieval’, Proc.
of the 3rd Working Conf. on Visual Database Systems, March 1995

[Mor 66] Morton G.: ‘A Computer Oriented Geodetic Data BAse and a New
Technique in File Sequencing’, IBM Ltd., 1966.

[Mul 71] Mullin, J.K.: ‘Retrieval-Update Speed Tradeoffs Using Combined
Indices’, Communications of the ACM, Vol. 14, 12, December, 1971,
pp. 775-776.

[NHS 84] Nievergelt J., Hinterberger H., Sevcik K. C.: ‘The Grid File: An
Adaptable, Symmetric Multikey File Structure’, ACM Trans. on Database
Systems, Vol. 9, No. 1, 1984, pp. 38-71.

[OM 84] Orenstein J., Merret T. H.: ‘A Class of Data Structures for Associative
Searching’, Proc. 3rd ACM SIGACT-SIGMOD Symp. on Principles of
Database Systems, 1984, pp. 181-190.

234 References

[Ore 82] Orenstein J. A.: ‘Multidimensional tries used for associative searching’,
Inf. Proc. Letters, Vol. 14, No. 4, pp. 150-157, 1982.

[Ore 90] Orenstein J., : ‘A comparison of spatial query processing techniques for
native and parameter spaces’, Proc. ACM SIGMOD Int. Conf. on
Management of Data, 1990, pp. 326-336.

[Oto 84] Otoo, E. J.: ‘A Mapping Function for the Directory of a Multidimensional
Extendible Hashing’, Proc. 10th. Int. Conf. on Very Large Data Bases,
1984, pp. 493-506.

[Ouk 85] Ouksel M.: ‘The Interpolation Based Grid File’, Proc 4th ACM SIGACT/
SIGMOD Symp. on Principles of Database Systems, 1985, pp. 20-27.

[PFTV 88] Press W., Flannery B. P., Teukolsky S.A., Vetterling W. T.: ‘Numerical
Recipes in C’, Cambridge University Press, 1988.

[PH 90] Patterson D. A., Hennessy J.L.: ‘Computer Architecture: A Quantitative
Approach’, Morgan Kaufman, 1990.

[PM 97] Papadopoulos A., Manolopoulos Y.: ‘Performance of Nearest Neighbor
Queries in R-Trees’, Proc. 6th Int. Conf. on Database Theory, Delphi,
Greece, in: Lecture Notes in Computer Science, Vol.†1186, Springer, pp.
394-408, 1997.

[PS 85] Preparata F.P., Shamos M. I.: ‘Computational Geometry’, Chapter 5
(‘Proximity: Fundamental Algorithms’), Springer Verlag New York, 1985,
pp. 185-225.

[PSTW 93] Pagel B.-U., Six H.-W., Toben H., Widmayer P.: ‘Towards an Analysis of
Range Query Performance in Spatial Data Structures’, Proceedings of the
Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, PODS’93, Washington, D.C., 1993, pp.214-221.

[RKV 95] Roussopoulos N., Kelley S., Vincent F.: ‘Nearest Neighbor Queries’, Proc.
ACM SIGMOD Int. Conf. on Management of Data, 1995, pp. 71-79.

[Rob 81] Robinson J. T.: ‘The K-D-B-tree: A Search Structure for Large
Multidimensional Dynamic Indexes’, Proc. ACM SIGMOD Int. Conf. on
Management of Data, 1981, pp. 10-18.

[RP 92] Ramasubramanian V., Paliwal K. K.: ‘Fast k-Dimensional Tree
Algorithms for Nearest Neighbor Search with Application to Vector
Quantization Encoding’, IEEE Transactions on Signal Processing,
Vol. 40, No. 3, March 1992, pp. 518-531.

[Sag 94] Sagan H.: ‘Space Filling Curves’, Springer-Verlag Berlin/Heidelberg/
New York, 1994.

[Sch 91] Schröder M.: ‘Fractals, Chaos, Power Laws: Minutes from an Infinite
Paradise’, W.H. Freeman and Company, New York, 1991.

235

[Sch 95] Schiele O. H.: ‘Forschung und Entwicklung im Maschinenbau auf dem
Weg in die Informationsgesellschaft’ (in German, translation by the
author), Bundesministerium für Bildung, Wissenschaft, Forschung und
Technologie, Frankfurt am Main, Germany, 1995, http://www.iid.de/
informationen/vdma/infoway3.html.

[Sed 78] Sedgewick R.: ‘Quicksort’, Garland, New York, 1978.

[See 91] Seeger B.: ‘Multidimensional Access Methods and their Applications’,
Tutorial, 1991.

[Sei 97] Seidl T.: ‘Adaptable Similarity Search in 3-D Spatial Database Systems’,
Ph.D. Thesis, Faculty for Mathematics and Computer Science, University
of Munich, 1997.

[SH 94] Shawney H., Hafner J.: ‘Efficient Color Histogram Indexing’, Proc. Int.
Conf. on Image Processing, 1994, pp. 66-70.

[Sie 90] Sierra H. M.: ‘An Introduction do Direct Access Storage Devices’,
Academic Press, 1990.

[SK 90] Seeger B., Kriegel H.-P.: ‘The Buddy Tree: An Efficient and Robust Access
Method for Spatial Data Base Systems’, Proc. 16th Int. Conf. on Very
Large Data Bases, Brisbane, Australia, 1990, pp. 590-601.

[SK 97] Seidl T., Kriegel H.-P.: ‘Efficient User-Adaptable Similarity Search in
Large Multimedia Databases’, Proc. 23rd Int. Conf. on Very Large
Databases (VLDB’97), Athens, Greece, 1997, pp. 506-515.

[SPG 91] Silberschatz A., Peterson J., Galvin P.: ‘Operating Systems Concepts’,
third edition, Addison-Wesley, 1991.

[Spr 91] Sproull R.F.: ‘Refinements to Nearest Neighbor Searching in k-
Dimensional Trees’, Algorithmica, pp. 579-589, 1991.

[SRF 87] Sellis T., Roussopoulos N., Faloutsos C.: ‘The R+-Tree: A Dynamic Index
for Multi-Dimensional Objects’, Proc. 13th Int. Conf. on Very Large
Databases, Brighton, England, 1987, pp. 507-518.

[SSH 86] Stonebreaker M., Sellis T., Hanson E.: ‘An Analysis of Rule Indexing
Implementations in Data Base Systems’, Proc. 1st Int. Conf. on Expert
Data Base Systems, 1986.

[Str 80] Strang G.: ‘Linear Algebra and its Applications’, 2nd edition, Academic
Press, 1980.

[TC 91] Taubin G., Cooper D. B.: ‘Recognition and Positioning of Rigid Objects
Using Algebraic Moment Invariants’, in Geometric Methods in Computer
Vision, Vol. 1570, SPIE, 1991, pp. 175-186.

[TS 96] Yannis Theodoridis, Timos K. Sellis: ‘A Model for the Prediction of R-tree
Performance’. Proceedings of the Fifteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 3-5, 1996,
Montreal, Canada. ACM Press, 1996, ISBN 0-89791-781-2 pp. 161-171.

236 References

[Uhl 91] Uhlmann J. K., ‘Satisfying General Proximity/Similarity Queries with
Metric Trees’, Information Processing Letters, Vol. 40, 1991, pp. 175-179.

[Ull 89] Ullman J.D.: ‘Database and Knowledge-Base System’, Vol. II,Compute
Science Press, Rockville, MD, 1989.

[Wel 71] Welch T.: ‘Bounds on the Information Retrieval Efficiency of Static File
Structures’, Technical Report 88, MIT, 1971.

[WJ 96] White D.A., Jain R.: ‘Similarity indexing with the SS-tree’, Proc. 12th Int.
Conf on Data Engineering, New Orleans, LA, 1996.

[WSB 98] Weber R., Schek H.-J., Blott S.: ‘A Quantitative Analysis and
Performance Study for Similarity-Search Methods in High-Dimensional
Spaces’, Proc. Int. Conf. on Very Large Databases, New York, 1998.

[WW 80] Wallace T., Wintz P.: ‘An Efficient Three-Dimensional Aircraft
Recognition Algorithm Using Normalized Fourier Descriptors’,
Computer Graphics and Image Processing, Vol. 13, pp. 99-126, 1980.

[Yia 93] Yiannilos P. N., ‘Data Structures an Algorithms for Nearest Neighbor
Search in General Metric Spaces’, ACM-SIAM Symposium on Discrete
Algorithms, 1993, pp. 311-321.

[YY 85] Yao A. C., Yao F. F.: ‘A General Approach to D-Dimensional Geometric
Queries’, Proc. ACM Symp. on Theory of Computing, 1985.

237

Index

A
Access probability 66, 84, 96

Active page list (APL) 33

Algebraic moment invariant 4

Algorithm. 25

Application. 1, 92

Approximate nearest neighbor query. . 20

Approximation error 7, 64, 68, 74

B
B+-tree . 21, 196

Balanced. 22, 207

Bernoulli-chain 76

Binomial theorem. 74

Boundary 4, 78, 81

Boundary effect 63, 79, 98

Bucket number 176

C
Candidate 10, 210

Capacity . 22, 208

Centroid . 49

Clipping . 79, 82

Closest point candidate (cpc) 34

Closest point candidate list (cpcl) 39

Coded actual data region (cadr) 47

Color histogram 5

Color image. 5

Computer aided design (CAD) 2

Computer vision 3

Concurrency . 195

Conservative approximation 23

Correlation 59, 63, 189

Cost model 59, 62

Curse of dimensionality 11, 195

D
Data distribution 59

Data node . 21

Data page . 22

Data space . 16

Database . 16

Declustering . 171

Delete 23, 25, 196

Dependence. 93

Diameter . 79

Dimension . 59

Direct neighbor 178

Directory . 21, 156

Directory node 21

Directory page. 22

Discretization 84, 91

Disk assignment graph 180

Disk drive . 100

238 Index

Disk modulo declustering 172

E
Economy . 8

Effective page capacity 23, 69

Effective storage utilization 23

Euclidean metric 17

Exact match query 26

Expectation 70, 71, 73, 77, 86, 87, 89, 97,

209

Exponential function 212

External bipartitioning 153

F
FBF model . 62

Feature distance 10

Feature transformation 9

Feature vector. 10

Filter step . 10

Finite summation 90

Forced split. 46

Fourier transform 4, 8

Fractal dimension. 63, 95

Fractal point density. 95

FX declustering 172

G
Gamma-function 62

Gap. 69, 81

Geometric shape. 2

Graph coloring 172, 180

Gray code . 54

GRID-Files. 15

H
hB-tree . 40

Height. 22, 201

High-dimensional data space . 15, 59, 78,

161, 175

High-dimensional index 21

Hilbert curve . 54

Hilbert declustering. 172

Hilbert-R-tree 40, 163, 214

Histogram . 5, 75

HS algorithm. 28, 33, 60, 71

Hypercube . 66

Hypercylinder . 67

Hyperrectangle 66

Hypersphere . 66

I
Independence . 92

Index structure 11, 39

Indirect neighbor. 178

Insert 23, 25, 41, 196

Intermediate model 86

Intersection volume. 83, 87

K
Karhunen-Loève-transform. 50

k-d-B-tree . 46

kd-tree . 46

K-nearest neighbor query 20, 76

L
Level of node . 22

Low-dimensional indexing 15

Lower bounding property 10, 24

LSDh-tree . 47

M
Manhattan metric 17

Materialization 84

Mathematical morphology 6

239

MAXDIST 30, 40, 53, 55

Maximum metric 17

Median . 212

Medical imaging 6

Mergesort . 153

Metric. 17, 60

Metric index . 9

Middlebox . 75

MINDIST. 29, 40, 53, 55

Minimum bounding rectangle (MBR) . 40

Minkowski sum 66, 81, 96

MINMAXDIST 29, 40, 53, 56

Molecular biology 7

Montecarlo integration. 91

Multidimensional hashing 15

Multidimensional index structure 15

Multimedia database 5

Multi-step query processing. 10

N
Nearest neighbor distance . 71, 78, 87, 97

Nearest neighbor query 11, 19, 28, 71, 87,

97, 175

Nearest neighbor sphere. 36, 79

Near-optimal declustering 179

Non-standard database 1

Non-uniformity 92

Number of page accesses . . 70, 77, 89, 97

Numerical evaluation 74

Numerical integration 75

O
Objectdistance . 9

One-dimensional embedding 198

Overflow . 41

Overlap. 23, 40, 48

P
Page access . 86

Page region 23, 60, 69

Page size . 22

Parallel query processing 171

Partial similarity 3

Peel . 198

Physical page 100

Pivot value . 154

Point query . 18

Polygon . 3

Polynomial . 74

Positioning time 100

Potential data region 47

Precomputation 83

Principal component analysis (PCA) . . 94

Probability density function (pdf). . 72, 89

Probability distribution 72, 89

Protein . 7

Pruning element 33

Pyramid value 201

Pyramid-technique 196

Q
QBIC. 4, 5

Quadratic form distance 3, 5, 18

Quantile. 189

Query anchor. 66, 207

Query by image content 4, 5

Query processing 15

R
R*-tree. 42, 69

R+-tree . 40

Range query 11, 18, 27, 65, 80, 96

Ranking query. 20, 38

240 Index

Real-world-applications. 92

Recovery . 195

Refinement step 10

Region . 23

Re-insert 26, 43, 51

Reorganization 214

RKV algorithm. 28, 60

Rotational delay time 100

Round robin declustering. 173

R-tree . 40, 69

S

S3-system. 3

Section coding . 3

Sector . 100

Seek time . 101

Selectivity 10, 64, 161, 221

Sequential scan. 21, 214

Sequentialization 156

Similarity . 1

Similarity measure 9

Simpson’s rule 75

Singular value decomposition (SVD) . 94

Space filling curve 54, 68

Spatial database 64

Speed-up 174, 189

Split . 25

Split-history . 44

SR-tree . 52

SS-tree . 49

Storage utilization 23, 42

Supernode . 44

Surface . 42

Surface segment 67

T

Telescope vector (TV) 50

Time sequence analysis. 8

Total similarity . 3

Transfer time. 100

Transformation 197

Trapezoid . 75

TV-tree . 50, 171

U

Uniformity. 92

Update. 25, 196

V

VAMSplit R-tree. 40

Vector space metric. 17

Vertex coloring algorithm. 181

Vertex coloring function. 182

Volume of hypersphere. 62

W

Window query. 11, 19, 207

X

XOR . 178

X-tree 43, 69, 171, 214

Z

Z-ordering . 54

241

Curriculum Vitae

Christian Böhm was born on September 28, 1968 in Rosenheim, Germany. After visiting

primary school from 1975 to 1979 he attended secondary school from 1979 to 1988.

He entered the Technische Universität München (TUM) in November 1988 for his

study in Computer Science. During this time, he worked as a self-employed software

engineer and consultant for various companies. In April 1994, he passed the final exam-

ination with distinction and received the diploma degree. His diploma thesis was titled

‘Management of Biological Sequence Data in an Object-Oriented Database System’ (in

German) which was supervised by Professor R. Bayer, Ph.D., chair for database and

knowledge base systems at the TUM, and by Professor Dr. J. Christoph Freytag and Dr.

Frank Schönefeld at the database systems research group of Digital Equipment (DEC).

In July 1994, he entered the research group for knowledge bases of the FORWISS

institute (Bayerisches Forschungszentrum für wissensbasierte Systeme) which is super-

vised by Professor R. Bayer, Ph.D. Christian Böhm was responsible for a nation-wide

digital library project.

In January 1996, he transferred to the Ludwig-Maximilians-Universität München

(LMU) where he is working as a research and teaching assistant with Professor Dr. Hans-

Peter Kriegel, the chair of the teaching and research unit for database systems at the

Institute for Computer Science of the LMU. He received the SIGMOD Best-Paper-

Award 1997 for a joint publication with Dr. Stefan Berchtold, Bernhard Braunmüller,

Professor Dr. Daniel Keim and Professor Dr. Hans-Peter Kriegel.

242 Curriculum Vitae

