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case in Denmark which has no states). If such non-

immediate links occur in the hierarchy, it is called a

non-covering or ragged hierarchy [2,3], Finally, each

non-top value has precisely one parent, e.g., a product

must belong to exactly one product group. This may

not always be desirable, e.g., it would be natural to

put skimmed milk into both the ‘‘Diet’’ and ‘‘Dairy’’

product groups. If the hierarchies do not form bal-

anced trees, this affects the so-called summarizability of

the data, which means that special care must be taken

to obtain correct aggregation results [1].
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Synonyms
Indexing for similarity search

Definition
The term High Dimensional Indexing [6,9] subsumes

all techniques for indexing vector spaces addressing pro-

blems which are specific in the context of high dimen-

sional data spaces, and all optimization techniques to

improve index structures, and the algorithms for various

variants of similarity search (nearest neighbor, reverse

nearest neighbor queries, range queries, similarity joins

etc.) for high dimensional spaces. The well-knownCurse

of Dimensionality leads to a worsening of the index

selectivity with increasing dimensionality of the data

space, an effect which already starts at dimensions of

10–15, also depending on the size of the database

and the data distribution (clustering, attribute depen-

dencies). During query processing, large parts of con-

ventional hierarchical indexes (e.g., R-tree) need to be

randomly accessed, which is by a factor of up to 20 more

expensive than sequential reading operations. Therefore,

specialized indexing techniques for high dimensional

spaces include e.g. ideas to scale up sequential scans,

hybrid approaches combining elements of hierarchical

and scan-based indexes, dimensionality reduction and

data compression.

Historical Background
One of the first indexing techniques which is nowadays

wide spread in commercial databases is the B-tree. One

dimensional data items, so-called keys, are stored in a

hierarchical balanced search tree. Since the height of a

B-tree is bounded above by O(logN), the index pro-

vides retrieval in logarithmic time complexity.

Approaches to extend the B-tree to higher dimensions

include the R-tree [12], which has been originally

designed for two dimensional spatial objects (poly-

gons). The R-tree consists of two types of nodes: direc-

tory and data pages. The directory pages contain

rectangles (or hyper-rectangles for higher dimensional

data) which are the minimum bounding rectangles

(MBR) for the underlaying sub-trees, all the way

down to the data pages at the leaves. The hyper-rec-

tangles may overlap, and also the directory does not

need to cover the whole data space. This implies that

the search is not guaranteed to be restricted to one

single path from the root to a leave as in the B-tree.

However, since the R-tree is a balanced search tree and

algorithms for tree construction and restructuring are

designed to minimize overlap, search operations on

low dimensional data can be performed in almost

logarithmic time. Various variants of the R-tree, such

as the R*-tree have been proposed.

Foundations
The central problem of similarity search in high

dimensional spaces is the deterioration of the index

selectivity with increasing dimensionality of the data

space, an effect which is essentially inherent to any kind

of index structure. Conventional hierarchical index

structures achieve impressive performance gains over

sequential scan on low to medium dimensional data

by excluding large parts of the data contained in sub-

trees which do not need to be visited. Special properties
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of high dimensional spaces, often subsumed by the term

Curse of Dimensionality cause that conventional hierar-

chical indexes break down in performance on high

dimensional data. With increasing dimensionality,

more points are situated at the boundaries of the data

space and the distances between points assimilate.

During retrieval, large parts of the index have to be

accessed. In the extreme case of very high dimensionality

(d ! 1) it is therefore obvious that no indexing

technique is able to outperform the simplest proces-

sing technique for similarity queries, the sequential

scan. This fact has been discussed in the context of

cost models and of various indexing methods [3,7,19]

and has also solicited a scientific discussion of the

usefulness of similarity queries per se [6]. However,

when, and to which extent the dimensionality curse

occurs, depends on the size of the database and various

other parameters such as the statistical distribution of

the data, correlations between the single attributes (i.e.

whether the complete data space is covered or the data

reside in an arbitrarily complex subspace), and cluster-

ing (i.e. if there are clearly distinguishable groups of

similar objects in the database). Many indexing meth-

ods can be successfully applied in moderately high

dimensions, and many dedicated indexing methods are

able to index data spaces of a dimensionality which is

considerably higher than expected. In order to achieve

the goal of efficiently indexing (moderately) high di-

mensional spaces, the well-known proposals to high-

dimensional indexing all apply a combination of tricks

which can be categorized into the following classes:

1. Dimensionality reduction

2. Data compression

3. Optimized i/o schedules (page size optimization

and fast index scan)

4. Hierarchy flattening

5. Optimizing of the shape of page regions

6. Clustering

In the following, the most relevant approaches to High

Dimensional Indexing are described in chronological

order.

TV-Tree

High dimensional real data often exhibits a much

lower intrinsic dimensionality. In this case, principal

component analysis leads to a few highly loaded com-

ponents almost totally covering the variance in the

data. The TV-tree [16] exploits the fact that those top

ranked components are highly selective dimensions

for similarity search, whereas the remaining dimen-

sions are of minor importance. Therefore, only the

most selective components are used for pruning during

query processing. Since irrelevant sub-trees should

be excluded as early as possible, these components,

called active dimensions are placed at the topmost

levels of the index. A region of the TV-tree is described

by a sphere in the active dimensions. The remaining

dimensions may be active at lower levels of the index or

not selective enough for query processing. The authors

report a good speed-up in comparison with the R*-tree

if the data can be effectively reduced by PCA, Fourier

transform etc. On uniform or other real data not

amenable to PCA, the X-tree outperforms the TV-tree.

The main contribution to High Dimensional

Indexing is the implicit dimensionality reduction.

Depending on the depth of the tree, only the first few

dimensions are considered in the directory structure.

Further, in these considered dimensions, the pages are

approximated by bounding spheres which are more

suitable for Euclidean queries.

SS-Tree

The SS-tree [20] also uses spheres instead of bounding

rectangles as page regions. For efficiency, the spheres

are not minimum bounding spheres. Rather, the cen-

troid of the stored points is used as center for the

sphere and the radius is chosen such that all objects

are included. The region description consists of the

centroid and the radius and thus allows efficient prun-

ing. The SS-tree is suitable for all kinds of data dis-

tributions and outperforms the R⋆-tree by a factor of

2, which is mainly due to the fact that spherical page

regions are, as mentioned, more suitable to support

Euclidean queries. In addition, the algorithms for tree

construction and maintenance are highly efficient and

also very effective for low to medium dimensional

data. On high dimensional data, the SS-tree encounters

similar problems as the R-tree family. Compared to

the minimum bounding rectangles (MBR) of R-trees,

spherical page regions are even more difficult to split

in an overlap-free way. This problem is tackled by the

SR-tree [15] which uses a combination of a rectangle

and a sphere as page region.

X-Tree

In contrast to the TV-tree and the SS-tree, the X-tree

[5] is a high-dimensional index structure which is
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more closely related to the R-tree, and, in particular, to

the R*-tree. It is the first technique which introduces

the ideas of flattening the hierarchies of the directory

and of enlarging the sizes of directory pages, but in

contrast to the techniques described in the next sec-

tion, this idea was not inspired by a cost analysis but

simply from the observation that it can be difficult

to split directory nodes (particularly of the higher

directory levels) in an overlap-free way. The regions

of the child nodes of such directory nodes are axis-

parallel rectangles, which have, themselves, been creat-

ed in a recursive process of splitting. Typically, only the

first split in the split history of the child nodes is a good

split decision for the parent node. Therefore, each

directory node stores this split history of its children

and, thus, tries to imitate the splits of its children. If

this imitation would result in an unbalanced tree, the

split is avoided and, instead, a so-called supernode is

created, i.e. a node with an enlarged size and capacity.

Cost Model Based Optimization Techniques

In [3,7], a cost model for vector space index structures

with particular emphasis on high dimensional spaces

was proposed. The main idea is to estimate the average

size of a page region and of a query and to form the

Minkowski sum of these two geometric objetcs which

has been shown to be a measure of the probability of a

page access. To take effects in high-dimensional spaces

into account, two concepts were additionally included

into the cost model, the boundary effect and the fractal

dimension. The boundary effect means that for high-

dimensional spaces typically large parts of a query sphere

and of the Minkowski sum are outside the covered data

space. The fractal dimension covers the sparsity of the

data space. Typically, a high dimensional space is not

uniformly and independently in all dimensions covered

by data objects. Rather, some of the attributes are depen-

dent on each other, and, therefore, only subspaces of

lower dimensionality (not necessarily linear subspaces)

are populated. The intrinsic dimensionality of the data

can be formalized by the fractal dimension.

It is important to optimize various parameters of

an index using a cost model in order to make it com-

petitive. For instance, in [8], it was proposed to opti-

mize the page size of data pages of the index according

to the cost model. To do this automatically is particu-

larly important because data sets with a large intrinsic

dimensionality cause scanning of large parts of the

index. If small page sizes (such as 4 KB) are used in

this case, the random accesses cause a large I/O load,

and an unoptimized index is much slower than

sequential data processing. In contrast, if the intrinsic

dimensionality is small, then large page sizes lead

to unnecessarily large reading operations. Carefully

optimized page sizes outperform sequential scanning

and non-optimized indexes for most of the data sets

and tie with the competitors in the worst case. The

dynamic page size optimization allows the automatic

adaptation of the page size even if the data distribution

of the data set changes over time. Moreover, it is

possible to use different page sizes for different parts

of the index structure, if the index stores groups of data

with different characteristics.

Another example of the successful application of a

cost model is tree striping [4], where the data objects

are vertically decomposed into sub-vectors which are

stored in separate search trees. The dimensionality of

the sub-vectors (and, inversely, the number of index

structures to store them) is an optimization task which

is important, because the unnecessary decomposition

in too many, small sub-vectors causes a large overhead

in the final merging of the results, whereas no decom-

position or an insufficient decomposition the query

processing inside a single index is too expensive due

to the curse of dimensionality. Again, a cost model can

decide an optimal dimensionality.

Pyramid Technique

The Pyramid Technique [1] is a one-dimensional

embedding technique, that means, it transforms the

high-dimensional objects into a single-dimensional

space which can be efficiently indexed using B-trees,

for instance. In contrast to most previous embedding

techniques which are based on space-filling curves, the

Pyramid Technique does not rely on a recursive schema

of space partitioning. In contrast, the data space

is partitioned into 2 	 d hyper-pyramids which share

the origin of the data space (which can be chosen as

the center point of the data set) as top point and have

each an individual (d � 1)-dimensional basis area

(cf. the four pyramids in Fig. 1 p = 0..3). The pyramids

are systematically numbered which forms the first part

of the embedding key (a natural number p). The sec-

ond part is the distance (with respect to the maximum

metric) from the origin (a positive real number r). The

embedding key can be formed as an ordered pair

k = (p, r), or, equivalently, if the maximum of all

r-values (rmax) is known, one single embedding key
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k0 = rmax 	 p + r can be formed. In both cases, a

d-dimensional range query can be translated into a

set of search intervals on the search keys. The number

of intervals is at most 2 	 d because the query object

can at most have one intersection with each of the

pyramids. Since nearest neighbor queries can be

transformed into range queries (which requires a set

of at most two one-dimensional ranking processes per

pyramid) it is also possible to evaluate nearest neigh-

bor queries. The Pyramid Technique is in general not

limited to a particular metric, but the schema of space

partitioning makes it particularly suited for queries

using the maximum metric. The Pyramid Technique

has inspired a number of other techniques such as the

Onion Technique [10] or Concentric Hyperspaces [11]

and many others which focus on different metrics

including the Euclidean metric.

VA-File

As an alternative to tree based indexing techniques,

the VA-file (Vector Approximation File [6]) has been

designed to speed up the linear scan. The basic idea is

to store compact approximations of the high dimen-

sional feature vectors in the so-called approximation

file which is small enough to enable a fast linear scan

during query processing. The approximations are

derived by dividing each dimension of the data space

into equally populated intervals. Thus, the data space is

divided into hyper-rectangular cells. Each cell is allo-

cated by a bit string composed of a fixed number of bits

per dimension. As approximation for all contained

points, this bit string is stored in the approximation

file. The principle of vector quantization is visualized

in Fig. 2a. In this example, two bits are assigned to each

dimension. While the approximation file is scanned,

upper and lower bounds on the distances from the

query to the approximations dapx are derived and

refined. As a result, only very few approximations

have to be further checked for answer candidates,

which requires random accesses. Extensions to the

VA-file e.g., include the parallel VA-file [18] originally

designed for parallel nearest neighbor search in large

image collections and the kernel-VA-file [13] for com-

plex, kernel supported distance metrics. Due to global

quantization, the VA-file is especially suitable for uni-

formly distributed data. For clustered data, hierarchi-

cal techniques show superior performance.

IQ-Tree

With the IQ-tree [2], the idea of quantizing the data

using a grid has been integrated into a hierarchical

indexing method. In the IQ-tree, every data page has

two versions, one which contains the data points in

a compressed way, and one which contains the exact

High Dimensional Indexing. Figure 1. Pyramid

technique.

High Dimensional Indexing. Figure 2. Schematic view of vector quantization.
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information. In contrast to the VA-file, each page is

quantized independently, and this independent quan-

tization gives the structure its name. The quantiza-

tion grid is not based on quantiles but is a regular

grid partition of the rectangular page region. In the

IQ-tree, it was shown that quantiles are not necessary

because the page regions already serve a sufficient

adaptation to the actual data distribution, and storing

individual quantiles for each page would result in

a prohibitive storage overhead. In contrast to the

VA-file, the resolution of the grid is not determined

experimentally but dynamically optimized using a cost

model. In the IQ-tree, the actual directory is non-

hierarchic and contains only one level. Taken together,

the IQ-tree consists of three levels, the directory level,

the compressed data level and the uncompressed data

level. The vector quantization principle is illustrated

in Fig. 2b. When considering a query object q and an

arbitrary database object, there are two lower bound-

ing approximations of the exact distance dexact, the

distance to the minimum bounding rectangle dmbr

which can be determined from the directory and the

distance to the grid cell (dapx) which can be derived

from the compressed data level.

Apart from the idea of independent quantization,

the IQ tree contains the idea of the Fast Index Scan

(FIS). After scanning of the directory, it can be decided

for every page, whether it is certainly needed, certainly

excluded, or has some probability to be needed for

a given nearest neighbor query. The probability can

again be estimated using a cost model. From this

probability, a query processing algorithm can derive

optimal schedules of pages, i.e., pages which have

neighboring disk addresses, can be called in together

in a single I/O operation if they have both high prob-

abilities. Depending on data and query characteristics,

the pages of the compressed data level can either be

accessed by random accesses or in a more sequential

style. Another related approach, also designed to allow

a flexible adaptation of the height of the directory

to the current data distribution is the A-tree [17].

iDistance

iDistance [21] combines a one-dimensional embed-

ding technique with clustering. The embedding is

obtained by expressing the similarity ratios in high

dimensional space in terms of distances to reference

points which can be stored in a single dimensional

index. More precisely, the data space is first split into

partitions. As a second step, a reference point is select-

ed for each partition. For all data objects the distances

to their reference points are stored in a B+-tree. The

performance of the index strongly depends on an ap-

propriate partitioning and on the strategy how to select

the reference points. In the original paper, the authors

proposed two variants of partitioning: The straightfor-

ward approach of equal data space partitioning is

especially suitable for uniformly distributed data. For

clustered data the partitions can be determined by an

arbitrary clustering algorithm, a simple sampling based

method is proposed in the paper. Often it is favorable

to select the centroid of a partition as reference point,

however selecting an edge point may help to reduce

overlap.

The most important strategies to cope with the

problems of high dimensional spaces can be subsumed

by clustering and mapping to one dimensional space.

During query processing, the maximum distance be-

tween the query point and the points contained in each

partition is used for pruning. The single dimensional

space of distances can be very efficiently searched sup-

ported by the B+-tree. However, in high dimensional

data, the distances to reference points are often not

selective and there are no clusters in the full dimen-

sional space such that large parts of the index need to

be accessed. But many real world data sets exhibit more

selective subspaces. Therefore in [14] a subspace clus-

tering step to identify local correlations in the data is

applied before indexing.

Key Applications
High dimensional indexing is important for similarity

search systems in various application areas such as mul-

timedia, CAD, systems biology, medical image analysis,

time sequence analysis and many others. Complex

objects are typically transformed into vectors of a high-

dimensional space (feature vectors), and the similarity

search thereby translates into a range or nearest neighbor

query on the feature vectors. High-dimensional feature

vectors are also required formore advanced data analysis

tasks such as cluster analysis or classification.

Cross-references
▶Curse of Dimensionality

▶Dimensionality Reduction

▶ Indexing Metric Spaces

▶Nearest Neighbor Query
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3. Berchtold S., Böhm C., Keim D.A., and Kriegel H.-P. A cost

model for nearest neighbor search in high-dimensional data

space. In Proc. 16th ACM SIGACT-SIGMOD-SIGART Symp.

on Principles of Database Systems, 1997, pp. 78–86.
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7. Böhm C. A cost model for query processing in high dimensional

data spaces. ACM Trans. Database Syst., 25(2):129–178, 2000.
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18. Weber R., Böhm K., and Schek H.-J. Interactive-time similarity

search for large image collections using parallel VA-files. In Proc.

4th European Conf. Research and Advanced Tech. for Digital

Libraries. Springer, 2000, pp. 83–92.

19. Weber R., Schek H.-J., and Blott S. A quantitative analysis

and performance study for similarity-search methods in high-

dimensional spaces. In Proc. 24th Int. Conf. on Very Large Data

Bases, 1998, pp. 194–205.

20. White D.A. and Jain R. Similarity indexing with the ss-tree. In

Proc. 12th Int. Conf. on Data Engineering, 1996, pp. 516–523.

21. Yu C., Ooi B.C., Tan K.-L., and Jagadish H.V. Indexing the

distance: an efficient method to KNN processing. In Proc. 27th

Int. Conf. on Very Large Data Bases, 2001, pp. 421–430.

High-Dimensional Clustering

▶Document Clustering

Higher-Order Entity-Relationship
Model

▶ Extended Entity-Relationship Model

Histogram

QING ZHANG

CSIRO ICT Centre, Herston, QLD, Australia

Definition
Given a relation R and an attribute X of R, the domain

D of X is the set of all possible values of X, and a finite

set V ð� DÞ denotes the distinct values of X in an

instance r of R. Let V be ordered, that is:

V ¼ fvi : 1 � i � ng, where vi < vj if i < j. The in-

stance r of R restricted to X is denoted by T, and can be

represented as: T ¼ fðv1; f1Þ; 	 	 	 ðvn; fnÞg. In T, each vi
is distinct and is called a value of T; and fi is the

occurrence of vi in T and is called the frequency of vi,

T is called the data distribution. A histogram on data

distribution T is constructed by the following two steps.

1. Partitioning the values of T into bð� 1Þ disjoint

intervals (called buckets) – fBi : 1 � i � bg, such
that each value in Bi is smaller than that in Bi if

i < j.

28 H High-Dimensional Clustering
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