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MotivationMotivation
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High Performance Data Mining

 

Fast decisions require knowledge just in time

 Marketing
 Fraud Detection
 CRM
 Online Scoring
 OLAP
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Previous Approaches to Fast Data Mining

Sampling
Approximations (grid)
Dimensionality reduct.
Parallelism

Loss of quality

Expensive & complex

All approaches combinable with DB primitives

KDD appl. get parallelism for free
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Feature Based Similarity
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Simple Similarity Queries

• Specify query object and
- Find similar objects – range query
- Find the k most similar objects – nearest neighbor q.
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Multidimensional Index Structure (R-Tree)

Data Page:                  
Point1: x11, x12, x13, ...
Point2: x21, x22, x23, ...
Point3: x31, x32, x33, ...

Directory Page:         
Rectangle1, Address1
Rectangle2, Address2
Rectangle3, Address3
Rectangle4, Address4
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Similarity – Range Queries

• Given: Query point q
Maximum distance ε

• Formal definition:

• Cardinality of the result set is
difficult to control:
ε too small  no results
ε too large  complete DB



C
hr

is
tia

n 
B

öh
m

9
120

Index Based Processing of Range Queries
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Similarity – Nearest Neighbor Queries

• Given: 
Query point q

• Formal definition:

• Ties must be handled:
- Result set enlargement
- Non-determinism (don’t care)
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Index Based Processing of NN Queries
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k-Nearest Neighbor Search and Ranking

• k-nearest neighbor query:
- Do not only search only for one nearest neighbor but k
- Stop distance is the distance of the kth (last) candidate point
-

• Ranking-query:
- Incremental version of k-nearest neighbor search
- First call of FetchNext() returns first neighbor
- Second call of FetchNext() returns second neighbor...
- Typically only few results are fetched  Don‘t generate all!
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Advanced Applications: Duplicates

• Duplicate detection
- E.g. Astronomical catalogue matching

• Similarity queries for large number of query obj

C1

C2
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Advanced Applications: Data Mining

• Density based clustering (DBSCAN)
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What is a Similarity Join?

• Given two sets R, S of points
• Find all pairs of points according to similarity

• Various exact definitions for the similarity join

R

S
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Organization of the Tutorial

• Motivation
• Defining the Similarity Join
• Applications of the Similarity Join
• Similarity Join Algorithms
• Conclusion & Future Potential
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Defining the Similarity JoinDefining the Similarity Join
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What Is a Similarity Join?

Intuitive notion: 3 properties of the similarity join
– The similarity join is a join in the relational sense

Two sets R and S are combined into one such that
the new set contains pairs of points that fulfill a
join condition

–  Vector or metric objects
rather than ordinary tuples of any type

– The join condition involves similarity
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What Is a Similarity Join?

Similarity Join

Distance Range Join NN-based Approaches

Closest Pair Query k-NN Join
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Distance Range Join (ε-Join)

• Intuitition: Given parameter ε
All pairs of points where distance ≤ ε

• Formal Definition:

• In SQL-like notation:
SELECT * FROM R, S WHERE ||R.obj − S.obj|| ≤ ε
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Distance Range Join (ε-Join)

•   Most widespread and best evaluated join 
•   Often also called the similarity join
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Distance Range Join (ε-Join)

• The distance range self join

is of particular importance for data mining
(clustering) and robust similarity search

• Change definition to exclude trivial results
•
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Distance Range Join (ε-Join)

• Disadvantage for the user:
Result cardinality difficult to control:
− ε too small    no result pairs are produced
− ε too large    all pairs from R × S are produced

• Worst case complexity is at least o(|R|⋅|S|)
• For reasonable result set size, advanced join

algorithms yield asymptotic behavior which is
better than O(|R|⋅|S|)
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k-Closest Pair Query

• Intuition:
Find those k pairs that yield least distance

• The principle of nearest neighbor search is
applied on a basis per pair

• Classical problem of Computational Geometry
• In the database context introduced by

[Hjaltason & Samet, Incremental Distance Join Algorithms, SIGMOD Conf. 1998]

• There called distance join
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k-Closest Pair Query

• Formal Definition:

• Ties solved by result set enlargement
• Other possibility: Non-determinism

(don’t care which of the tie tuples are reported)
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k-Closest Pair Query

In SQL notation: SELECT * FROM R, S
ORDER BY ||R.obj − S.obj||
STOP AFTER k
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k-Closest Pair Query

• Self-join:
- Exclude |R| trivial pairs (ri,ri) with distance 0
- Result is symmetric

• Applications:
- Find all pairs of stock quota in a database that are

most similar to each other
- Find music scores which are similar to each other
- Noise robust duplicate elimination
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k-Closest Pair Query

• Incremental ranking instead of exact
specification of k

• No STOP AFTER clause:
     SELECT * FROM R, S

  ORDER BY ||R.obj − S.obj||
• Open cursor and fetch results one-by-one
• Important: Only few results typically fetched

 Don’t determine the complete ranking
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k-Nearest Neighbor Join

• Intuition:
Combine each point with its k nearest neighbors

• The principle of nearest neighbor search is
applied for each point of R
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k-Nearest Neighbor Join

• Formal Definition:

• Ties solved by result set enlargement
• Other possibility: Non-determinism

(don’t care which of the tie tuples are reported)



C
hr

is
tia

n 
B

öh
m

31
120

k-Nearest Neighbor Join

In SQL notation:
(limited to k = 1)

SELECT * FROM R, S
GROUP BY R.obj
ORDER BY ||R.obj − S.obj||
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k-Nearest Neighbor Join

• The k-NN-join is inherently asymmetric:
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k-Nearest Neighbor Join

• Applications of the k-NN-join:
- k-means and k-medoid clustering
- Simultaneous nearest neighbor classification:

A large set of new objects without class label are
assigned according to the majority of k nearest
neighbors of each of the new objects

• Astronomical observation
• Online customer scoring

• Ranking on the k-NN-join is difficult to define
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ApplicationsApplications
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Density Based Data Mining
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Schema for Data Mining Algorithms

Algorithmic Schema A1

foreach Point p ∈ D
PointSet S := SimilarityQuery (p, ε);
foreach Point q ∈ S

DoSomething (p,q) ;
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Iterative similarity queries and cache

Due to curse of dimensionality:
No sufficient inter-query locality of the pages
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Iterative similarity queries and cache
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Idea: Query Order Transformation

[Böhm, Braunmüller, Breunig, Kriegel: High Perf. Clustering based on the  Sim. Join, CIKM 2000]
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Schema Transformation

Algorithmic Schema A1

foreach Point p ∈ D
PointSet S := SimilarityQuery (p, ε);
foreach Point q ∈ S

DoSomething (p,q) ;

foreach DataPage P
LoadAndPinPage (P) ;
foreach DataPage Q

if (mindist (P,Q) ≤ ε)
CachedAccess (Q) ;
foreach Point p ∈ P

foreach Point q ∈ Q
if (distance (p,q) ≤ ε)

DoSomething’ (p,q) ;
UnFixPage (P) ;
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Similarity Join

A2 is a Similarity-Join-Algorithm:

foreach PointPair (p,q) ∈
DoSomething’ (p,q) ;

Where                 denotes the Similarity-Join:

SELECT * FROM R r1, R r2
WHERE distance (r1.object, r2.object) ≤ ε
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Implementation Variants

• Change of the order in which points are
combined must partially be considered

Implementation

Semantic Materialization
Change algorithm to take 
unknown order into account

Materialize join result j and 
answer original queries by j 
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Example Clustering Algorithms

DBSCAN
[Ester, Kriegel, Sander, Xu: A Density Based
Algorithm for Discovering Clusters in Large
Spatial Databases with Noise´, KDD 1996]

Flat clustering
(non hierarchical)

OPTICS
[Ankerst, Breunig, Kriegel, Sander: OPTICS:
Ordering Points To Identify the Clustering
Structure, SIGMOD Conf. 1999]

Hierachical
cluster-structure

1

2

3

Semantic Rewriting Materialization
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Transformation by Semantic Rewriting

• Rewrite the algorithm to take the changed order
of pairs into account

• Don´t assume any specific order in which pairs
are generated

 Arbitrary similarity join algorithm possible
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Example: DBSCAN

p core object in D wrt. ε, MinPts: | Nε (p) | ≥ MinPts
p directly density-reachable from q in D wrt. ε, MinPts:
  1) p ∈ Nε(q)  and
  2) q is a core object wrt. ε, MinPts

density-reachable: transitive closure.

cluster:
- maximal wrt. density reachability
- any two points are density-reachable from

a third object
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Implementation of DBSCAN on Join

Core point property:
DoSomething() increments a counter attribute

Determination of maximal density-reachable clusters:
DoSomething():
- Assign ID of known cluster point to unknown cluster points
- Unify two known clusters
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Implementation of DBSCAN on Join
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Implementation of DBSCAN on Join
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Implementing OPTICS (Materialization)

• The join result is predetermined before starting
the actual OPTICS algorithm

• The result is materialized in some table with
GROUP-BY on the first point of the pair

• The OPTICS algorithm runs unchanged
• Similarity queries are answered from the join

materialization table (much faster)
• Disadvantage: High memory requirements
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Experimental Results: Page Capacity
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Experimental Results: Scalability
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Robust Similarity Search

[Agrawal, Lin, Sawhney, Shim: Fast Similariy Search in the Presence of Noise,...., VLDB 1995]

• Usual similarity search with feature vectors:
Not robust with respect to
- Noise:

Euclidean distance sensitive to mismatch in single dimension

- Partial similarity:
Not complete objects are similar, but parts thereof

• Concept to achieve robustness:
Decompose each data object and query object into sub-objects
and search for a maximum number of similar subobjects
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Robust Similarity Search

• Prominent concept borrowed from IR research:
String decomposition: Search for similar words
by indexing of character triplets (n-lets)

• Query transformed to set of similarity queries
 similarity join between query set and data set

• Robustness achieved in result recombination:
- Noise robustness: Ignore missing matches
- Partial search: Dont enforce complete recombination
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Robust Similarity Search

Applications:
• Robust search for sequences:

[Agrawal, Lin, Sawhney, Shim: Fast Similariy Search in the Presence of Noise,...., VLDB 1995]

• Principle can be generalized for objects like
- Raster images
- CAD objects
- 3D molecules
- etc.
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Astronomical Catalogue Matching

• Relative position of catalogues approx. known:
- Position and intensity parameters in different bands

C1

C2

• C1        C2

• Determine ε according to device tolerance
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Astronomical Catalogue Matching

• Relative position unknown:
- Match according to triangles and intensity

C1

C2

• Search triangles and store parameters (height,...)
• triangles (C1)             triangles (C2)
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k-Nearest Neighbor Classification

• Simultaneous classification of many objects
[Braunmüller, Ester, Kriegel, Sander: Efficiently Supporting Multiple Similarity
Queries for Mining in Metric Databases, ICDE 2000]

- Astronomy
• Some 10,000 new objects collected per night
• Classify according to some millions of known objects

- Online customer scoring
• Some 1,000 customers online
• Rate them according to some millions of known patterns
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k-Nearest Neighbor Classification

• Example:

Objects with known class

New objects

k = 3

• New objects            Known objects
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k-Means and k-Medoid Clustering

• k Points initially randomly selected („centers“)
• Each database point assigned to nearest center
• Centers are re-determined

- k-means:   Means of all assigned points (artificial p.)
- k-medoid: One central database point of the cluster

• Assignment and center determination are
repeated until convergence
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k-Means and k-Medoid Clustering

• Example: (k-means with k = 3)

Convergence!

• Each assignment phase: DB-Points         Centers
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Similarity Join AlgorithmsSimilarity Join Algorithms

C
hr

is
tia

n 
B

öh
m

62
120

Algorithms´ Overview

Similarity join

Range dist. join

Closest pair qu.

k-NN join

on-the-fly index

Hashing based

Sorting based

Index based

Optimization

Cost modeling

CPU optimizing
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Nested Loop Join

• Simple nested loop join:
- Iterate over R-points
- Nested iteration over S-points

 S is scanned |R| times, high I/O cost
• Nested block loop join:

- First iterate over blocks
- Nested iterate over tuples

 S scanned |R|/|B| times

R S

S-tuples

R-
tu

pl
es

S-
bl

oc
ks

R-
bl

oc
ks
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Indexed Nested Loop Join

• Iterate over every point of R
• Determine matches in S by

similarity queries on the index

• Due to the curse of dimensionality:
 Performance deterioration of the similarity q.
 Then not competitive with nested loop join

(Depends on dimensionality and selectivity determined by ε)

S

R
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       Spatial Join       ↔       Similarity Join

• 2D polygon databases
• Join-predicate: Overlap
• Conserv. approximation:

MBR (ax-par. rectangle)

• High-D point databases
• Join-predicate: Distance
• Map ε-join to spatial join

Cube with edge-length ε
ε

• Some strategies can be borrowed from the spatial join
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R-tree Spatial Join (RSJ)

[Brinkhoff, Kriegel, Seeger: Efficient Process. of Spatial Joins Using R-trees, SIGMOD Conf. 1993]

• Originally: Spatial join for 2D rect. intersection
• Depth-first search in R-trees and similar indexes
• Assumption: Index preconstructed on R and S
• Simple recursion scheme (equal tree height):

procedure r_tree_join (R, S: page)
    foreach r ∈ R.children do
        foreach s ∈ S.children do
             if intersect (r,s) then r_tree_join (r,s) ;
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R-tree Spatial Join (RSJ)

• Adaptation for the similarity join:
Distance predicate rather than intersection

• For pair (R,S) of pages: mindist (R,S)
 Least possible distance of two points in (R,S)
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R-tree Spatial Join (RSJ)

procedure r_tree_sim_join (R, S, ε)
  if IsDirpg (R) ∧ IsDirpg (S) then
    foreach r ∈ R.children do
      foreach s ∈ S.children do
        if mindist (r,s) ≤ ε then
          CacheLoad(r); CacheLoad(s);
          r_tree_sim_join (r,s,ε) ;
  else (* assume R,S both DataPg *)
    foreach p ∈ R.points do
      foreach q ∈ S.points do
        if |p − q| ≤ ε then report (p,q);

ε

R S
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R-tree Spatial Join (RSJ)

• Extension to different tree heights straightforw.
• Several additional optimizations possible
• CPU-bound

- Cost dominated by point-distance calculations
• Disadvantages

- No clear strategies for page access priorization
- Single page accesses

 Can be outperformed by nested block loop join
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Parallel RSJ

[Brinkhoff, Kriegel, Seeger: Parallel Processing of Spatial Joins Using R-trees, ICDE 1996]

• A task corresponds to a pair of subtrees
- At high tree level (e.g. root or second level)

Various Strategies:
• Static Range Assignment
• Static Round Robin
• Dynamic Task Assignment
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Breadth-First R-tree Join (BFRJ)

[Huang, Jing, Rundensteiner: Spatial Joins Using R-trees: Breadth-First Traversal..., VLDB 1997]

• Again spatial join for 2D rectangle intersection
• Shortcoming of RSJ:

- No strategy in outer loop improving locality in inner
- Depth-first traversal not flexible, because a pair of

tree branches must be ended before next pair started
 unnecessary page accesses
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Breadth-First R-tree Join (BFRJ)

• Solution:
- Proceed level by level (breadth-first traversal)
- Determine all relevant pairs for the next level

 intermediate join index (IJI)
- Sort the IJI according to suitable order before

accessing the next level
 global optimization strategy
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Breadth-First R-tree Join (BFRJ)
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Approaches without Preconstructed Index

• Indexes can be constructed temporarily for join
• R-tree construction by INSERT too expensive

 Use cheap bottom-up-construction
- Hilbert R-trees: O (n log n)

[Kamel, Faloutsos: Hilbert R-trees: An Improved R-tree using Fractals, VLDB 1994]

Sort points by SFC and pack adjacent points to page
- Buffer trees

[van den Bercken, Seeger, Widmayer: A Generic Approach to Bulk Loading.., VLDB 1997]

- Repeated partitioning
[Berchtold, Böhm, Kriegel: Improving the Query Performance ..., EDBT 1998]

• Index construction can amortize during join
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Seeded Trees

[Lo, Ravishankar: Spatial Joins Using Seeded Trees, SIGMOD Conf. 1994]

• Again spatial join for 2D rectangle intersection
• Assumption:

Only one data set (R) is supported by index
• Typical application:

Set S is subquery result
• Idea:

Use partitioning of R as a template for S
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Seeded Trees

• Motivation
- Early inserts to R-trees decide initial organization
- We know that S will be matched with R
- Start with small template tree instead of empty root

 seed levels
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The ε-kdB-tree

[Shim, Srikant, Agrawal:
 High-dimensional Similarity Joins, ICDE 1997]

• Algorithm for the
range distance self join

• General idea:
Grid approximation where
grid line distance = ε

• Not all dimensions used for decomposition:
As many dimensions as needed to achieve a defined
node capacity
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The ε-kdB-tree
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The ε-kdB-tree

• Node fanout: 1/ε (assuming data space [0..1]d)
• Tree structure is specific to given parameter ε

 must be constructed for each join
• The ε-kdB-trees of two adjacent stripes are

assumed to fit into main memory
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The ε-kdB-tree

procedure t_match (R, S: node)
   if is_leaf (R) ∨ is_leaf (S) then
      ...
   else
      for i:=1 to 1/ε − 1 do
         t_match(R.child[i], S.child [i]) ;
         t_match (R.child[i], S.child [i+1]) ;
         t_match (R.child[i+1], S.child[i]) ;
      t_match (R.child[1/ε], S.child[1/ε]) ;
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The ε-kdB-tree

• Limitation:
For large ε values not really scalable

• In high-dimensional cases, ε=0.3 can be typical
 60% of data must be held in main memory

• As long as data fit into main memory:
ε-kdB-tree is one of the best similarity join
algorithms
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The ε-kdB-tree
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The Parallel ε-kdB-tree

[Shafer, Agrawal: Parallel Algorithms for High-dimensional Similarity Joins, VLDB 1997]

• Parallel construction of the ε-kdB-tree:
- Each processor has random subset of the data (1/N)
- Each processor constructs ε-kdB-tree of its own set
- Identical structure is enforced e.g. by split broadcast

CPU1 CPU2
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The Parallel ε-kdB-tree

• Workload distribution:
- Global determination of the cumulated node sizes
- A unit workload is a pair (r,s) of leaf nodes
- The cost of a workload is

|r|⋅|s| for different leaves
and |r|⋅(|r|+1)/2 for a single leaf (self join)

- Data is redistributed: Each processor gets 1/N work
• join units are clustered to preserve locality
• minimize redistribution (communication) and replication
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The Parallel ε-kdB-tree

• Workload execution:
- delete internal structure
- cum. node size too large

 second growth phase
- data redistribution per-

formed asynchronously:
Data sent in depth-first
order of tree traversal to
avoid network flooding

C
hr

is
tia

n 
B

öh
m

86
120

The Parallel ε-kdB-tree
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Plug & Join

[van den Bercken, Schneider, Seeger: Plug&Join: An Easy-to-Use Generic Algorithm, EDBT 2000]

Generic technique for several kinds of join
- Main-memory R-tree constructed from R-sample
- Partition R and S acc. to R-tree (buffers at leaves)

1 2 3 4

main
memory

R

flush
1 2 3 4

main
memory

S
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Partition Based Spatial Merge Join

• Spatial join method using replication
[Patel, DeWitt: Partition Based Spatial-Merge Join, SIGMOD Conf. 1997]

- Both sets R and S are partitioned with replication
- Space is regularly tiled
- Partitions either corre-

spond to tiles or are
determined from them
using hashing

• Similar: Spatial Hash Join
[Lo, Ravishankar: Spatial Hash Joins, SIGMOD Conf. 1996]
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Approaches Using Space Filling Curves

• Space filling curves recur-
sively decompose the data
space in uniform pieces

• Various different orders:
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Approaches Using Space Filling Curves

• Efficient filter for the join:
Objects in different cells cannot
intersect each other

 Sort-merge-join e.g. on Z-order

• Problem:
Object may cross grid lines
- either decompose object (redundant)
- or assign to containing cell
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Approaches Using Space Filling Curves

• If all cells have uniform size:
 Equi-join on grid cell numbers (bit strings)

• If cells have varying size:
 Bit strings of varying length

• Objects may intersect ...
- if  bitstr (r) is prefix of bitstr (s)
- or bitstr (s) is prefix of bitstr (r)
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Orenstein‘s Spatial Join

[Orenstein: An Algorithm for Computing the Overlay of k-Dim. Spaces, SSD 1991]

• Allows (limited) redundancy, object decompos.
• Algorithm:

- Objects are decomposed
- Partial objects are ordered according to the

lexicographical order of the bit strings
- Objects are accessed in sort-merge like fashion
- Two stacks are maintained to keep track of the

prefix objects of R and S.
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Orenstein‘s Spatial Join

• Stacks for prefix objects:
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Multidimensional Spatial Join

[Koudas, Sevcik: High-Dimensional Similarity Joins, ICDE 1997, Best Paper Award]

• No redundancy allowed at all
• Instead of stacks:

Separate level files for different bitstring length
• Problems with no redundancy:

- With increasing dimension: increasing ε
- Increasing chance that object intersects one of the

primary decomposition lines  approx. by < >
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Multidimensional Spatial Join
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Epsilon Grid Order

[Böhm, Braunmüller, Krebs, Kriegel:
 Epsilon Grid Order, SIGMOD Conf. 2001]

• Motivation like ε-kdB-tree:
Based on grid with grid
line distance ε

• Possible join mates
restricted to 3d cells

• Here no tree structure but sort order of points based on
lexicographical order of the grid cells
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Epsilon Grid Order

•
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Epsilon Grid Order

• A simple exclusion test (used for I/O):
A point q with
                                  or
cannot be join mate of point p or any point
beyond p (with respect to epsilon grid order)

• The interval between p−[ε,...,ε]T and p+[ε,...,ε]T

is called ε-interval
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Epsilon Grid Order

• Sort file and decompose it into I/O units
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Epsilon Grid Order



C
hr

is
tia

n 
B

öh
m

101
120

Epsilon Grid Order
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Closest Pair Queries

[Hjaltason, Samet: Incremental Distance Join Algorithms for Spatial DB, SIGMOD Conf. 1998]

• For both point objects and spatial objects
• Find k objects with least distance

• Basis algorithm* for nearest neighbor search
extended to take point pairs into account

* [Hjaltason, Samet: Ranking in Spatial Databases, SSD 1995]
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Basis Algorithm for NN Search

Active Page List:
rootp2 | p1 | p4 | p3p1 | p4 | p24 | p3 | p23 | p21 | p22p14 | p4 | p24 | p3 | p12 | p23 | p13 | p21 | p22

1 2 3 4

11 12 14 2213 21 24 3223 31 33 41 4434 4342
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Hjaltason/Samet: Closest Pair Queries

• Nearest Neighbor   Closest Pair Query
• k result points   k point pairs
• active page list   list of active page pairs
• initialization root   pair (rootR, rootS)
• distance point/query  distance of point pair
• mindist page/query   mindist betw. page pair
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Hjaltason/Samet: Closest Pair Queries

Active Page List:
(root,root)(root,p1)|(root,p2)|(root,p3)|(root,p4)

1 2 3 4

C
hr

is
tia

n 
B

öh
m

106
120

Hjaltason/Samet: Closest Pair Queries

• Unidirectional node expansion:
Given a pair (ri,sj) only one node is expanded

• Closest pair ranking:
Incremental version of k-closest pair queries

 stop criterion is validation of next pair
• k-nearest neighbor join:

Runs a closest pair ranking and filters out the
(k+1)st occurrence (and more) of each point of R
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Hjaltason/Samet: Closest Pair Queries

• Two strategies for tie breaks (same distance):
- Depth-first
- Breadth first

• Three policies for tree traversal
- Basic (one tree determines priority)
- Even (priority to node with shallower depth)
- Simultaneous (all possible pairs are candidates for

traversal)
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Alternative Approaches

[Shin, Moon, Lee: Adaptive Multi-Stage Distance Join Processing, SIGMOD Conf. 2000]

• Various improvements and optimizations
- Bidirectional node expansion

- Plane sweep technique for bidirectional node exp.
- Adaptive multi-stage algorithm

• Aggressive pruning using estimated distances

(root,root) (p1,p3) | (p2, p3) | (p2, p4) | (p1, p2) | (p3, p4) | (p1, p4)
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Alternative Approaches

[Corral, Manolopoulos, Theodoridis,
  Vassilakopoulos: Closest Pair Queries in
  Spatial Databases, SIGMOD Conf. 2000]

• 5 different algorithms for closest point queries
- Naive: Depth-first traversal of the two R-trees

 recursive call for each child pair (ri,sj) of (r,s)
- Exhaustive: like naive but prune page pairs the

mindist of which exceeds the current k-CP-dist
- Simple recursive: addit. prune using minmaxdist

maxdist

minmaxdist
mindist
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Alternative Approaches

• 5 different algorithms (...)
- Sorted distances recursive:

Before descending sort child
pairs acc. to their mindist

 fast get good distance for pruning. Analogous to
[Roussopoulos, Kelley, Vincent: Nearest Neighbor Queries. SIGMOD Conf. 1995]

- Heap algorithm:
Similar to the algorithm by Hjaltason & Samet
with some minor differences

• New strategies for ties and different tree height

maxdist

minmaxdist

mindist
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Modeling and Optimization

[Böhm, Kriegel: A Cost Model and Index Architecture for the Similarity Join, ICDE 2001]

Mating probability of index pages:
Probability that distance between two pages ≤ ε
Two-fold application of Minkowski sum
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Modeling and Optimization

• I/O cost:
• High const. cost per page
• Large capacity optimum

• CPU cost:
• Low const. cost per page
• Low capacity optimum

→ CPU-performance like CPU optimized index
→ I/O- performance like I/O optimized index
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ConclusionsConclusions
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Summary

• Similarity join is a powerful database primitive
• Supports many new applications of

- Data mining
- Data analysis

• Considerable performance improvements
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Summary

• Many different algorithms for the similarity join
- Most for the distance range join (ε join)
- Some approaches for closest pair queries
- Important operation of nearest neighbor join has

almost not been considered yet
• All 3 types of join have different applications
• Comparison of different ε join algorithms:

- Mostly a competition for speed
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Summary

• Only few other advantages/disadvantages:
- Scalability:

• MSJ and ε-kdB-tree have high main memory
requirements in high-dimensional spaces

- Existence of an index:
• Actually no matter because R-trees can be fast

constructed bottom-up. Construction time often
much less than join time

• Even if preconstructed indexes exist:
Approaches based on sorting often better

- No good criteria known for algorithm selection
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Future Research Directions

• Applications:
- Many standard data mining methods accelerable:

• Outlier detection
• Various clustering algorithms (e.g. obstacle clustering)
• Hough transformation and similar analysis methods
• ...

- New data mining methods will become feasable:
• Subspace clustering & correlation detection
• Methods may become interactive
• ...
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Future Research Directions

• Algorithms
- Sufficient research for ε join and closest pair query
- Almost no convincing approaches for the k-NN-join

Important database primitive for many applications
- Parallel Algorithms
- Non-vector metric data (e.g. text mining)
- Approximative join algorithms

• Similarity search: Approximative search often sufficient
• Join performance could be considerably improved

- ...
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Future Research Directions

• Optimization of various critical parameters
- Dimension
- Replication
- Index scan strategies
- ...
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QuestionsQuestions


