Christian Böhm University for Health Informatics and Technology

Powerful Database Primitives to Support High Performance Data Mining

Tutorial, IEEE Int. Conf. on Data Mining, Dec/09/2002

Motivation

Multidimensional Index Structure (R-Tree)

Directory Page: Rectangle₁, Address₁ Rectangle₂, Address₂ Rectangle₃, Address₃ Rectangle₄, Address₄

Similarity – Range Queries

- Given: Query point *q* Maximum distance ε
- Formal definition: $sim_q(\varepsilon) := \{ o \in DB \mid d(q, o) \le \varepsilon \}$
- Cardinality of the result set is difficult to control:
 ε too small → no results
 ε too large → complete DB

8 120

What is a Similarity Join?

- Given two sets *R*, *S* of points
- Find all pairs of points according to similarity

• Various exact definitions for the similarity join

Organization of the Tutorial

- Motivation
- Defining the Similarity Join
- Applications of the Similarity Join
- Similarity Join Algorithms
- Conclusion & Future Potential

Christian Böhm

 $\frac{15}{120}$

Defining the Similarity Join

What Is a Similarity Join?

Intuitive notion: 3 properties of the similarity join

- The similarity join is a **join** in the relational sense Two sets *R* and *S* are combined into one such that the new set contains pairs of points that fulfill a **join condition**

Christian Böhm

 $R \bowtie_{sim} S \subseteq R \times S$

Vector or metric objects

rather than ordinary tuples of any type

- The join condition involves similarity

120

Distance Range Join (ε-Join)

Disadvantage for the user: Result cardinality difficult to control:
ε too small → no result pairs are produced
ε too large → all pairs from R × S are produced
Worst case complexity is at least o(|R|·|S|)
For reasonable result set size, advanced join algorithms yield asymptotic behavior which is

better than $O(|R| \cdot |S|)$

k-Closest Pair Query

• Intuition:

Find those k pairs that yield least distance

• The principle of nearest neighbor search is applied on a basis **per pair**

Christian Böhm

 $\frac{24}{120}$

Classical problem of Computational Geometry

• In the database context introduced by [Hjaltason & Samet, Incremental Distance Join Algorithms, SIGMOD Conf. 1998]

• There called distance join

k-Closest Pair Query

Formal Definition:

 $R \underset{k \to \mathbb{CP}}{\longrightarrow} S$ is the smallest subset of $R \times S$ that contains at least k pairs of points and for which the following condition holds:

 $\forall (r,s) \in R \underset{k \in \mathbb{C}^p}{\longrightarrow} S, \forall (r',s') \in R \times S \setminus R \underset{k \in \mathbb{C}^p}{\longrightarrow} S: ||r-s|| < ||r'-s'||$

- Ties solved by result set enlargement
- Other possibility: **Non-determinism** (don't care which of the tie tuples are reported)

k-Closest Pair Query

k-Closest Pair Query

- Incremental ranking instead of exact specification of k
- No STOP AFTER clause:

```
SELECT * FROM R, S
ORDER BY ||R.obj - S.obj||
```

- Open cursor and fetch results one-by-one •
- Important: Only few results typically fetched
 - \rightarrow Don't determine the complete ranking

27

Christian Böhm

28

120

k-Nearest Neighbor Join

Intuition:

Combine each point with its k nearest neighbors

• The principle of nearest neighbor search is applied for each point of *R*

Christian Böhm 120

k-Nearest Neighbor Join

Formal Definition:

 $R \underset{k \in NN}{\sim} S$ is the smallest subset of $R \times S$ that contains for each point of R at least k points of S and for which the following condition holds:

 $\forall (r,s) \in R \bigotimes_{k \in \mathbb{NN}} S, \ \forall (r,s') \in R \times S \setminus R \bigotimes_{k \in \mathbb{NN}} S: ||r-s|| < ||r-s'||$

- Ties solved by result set enlargement
- Other possibility: Non-determinism
 (don't care which of the tie tuples are reported)

Christian Böhm

 $\frac{30}{120}$

k-Nearest Neighbor Join

k-Nearest Neighbor Join

Applications

Iterative similarity queries and cache

 Due to curse of dimensionality: No sufficient inter-query locality of the pages

Idea: Query Order Transformation

[Böhm, Braunmüller, Breunig, Kriegel: High Perf. Clustering based on the Sim. Join, CIKM 2000]

Example Clustering Algorithms

Example: DBSCAN

- *p* core object in *D* wrt. ε , *MinPts*: $|N_{\varepsilon}(p)| \ge MinPts$
- p directly density-reachable from q in D wrt. ε , MinPts: 1) $p \in N_{\varepsilon}(q)$ and 2) q is a core object wrt. ε , MinPts
- *density-reachable*: transitive closure.

cluster:

Christian Böhm

45

120

- maximal wrt. density reachability
- any two points are density-reachable from a third object

Implementation of DBSCAN on Join

	P_1		CORE POINT		NON-CORE POINT	
	P		ID	NULL	ID	NULL
Christian Böhm 150	CORE POINT	ID	$\begin{array}{c} \text{merge if} \\ P_1.\text{ID} \diamondsuit P_2.\text{ID} \\ (1) \end{array}$	$P_1.ID = P_2.ID$ (2)	(3)	$P_{1}.ID = P_{2}.ID$ (4)
		N U L L	$P_{2}.ID = P_{1}.ID$ (2)	$P_{1}.ID = P_{2}.ID = new ID$ (5)	(6)	$P_{1}.ID = P_{2}.ID = new ID$ (7)
	NON- CORE POINT	ID	(3)	(6)	(8)	(8)
		N U L L	$P_{2}.ID = P_{1}.ID$ (4)	$P_{1}.ID = P_{2}.ID = new ID$ (7)	(8)	(8)

Implementation of DBSCAN on Join

Implementing OPTICS (Materialization)

Experimental Results: Scalability

Robust Similarity Search

- Prominent concept borrowed from IR research: String decomposition: Search for similar words by indexing of character triplets (*n*-lets)
- Query transformed to set of similarity queries
 > similarity join between query set and data set
- Robustness achieved in result recombination:
 - Noise robustness: Ignore missing matches
 - Partial search: Dont enforce complete recombination

Applications:

- Robust search for sequences: [Agrawal, Lin, Sawhney, Shim: Fast Similariy Search in the Presence of Noise,...., VLDB 1995]
- Principle can be generalized for objects like
 - Raster images
 - CAD objects
 - 3D molecules
 - etc.

Christian Böhm

Christian Böhm

 $\frac{54}{120}$

Astronomical Catalogue Matching

- Relative position of catalogues approx. known:
 - Position and intensity parameters in different bands

- $\frac{55}{120}$
- $C_1 \bigotimes_{\varepsilon} C_2$
- Determine ε according to device tolerance

k-Nearest Neighbor Classification

k-Means and k-Medoid Clustering

Christian Böhm

 $\frac{59}{120}$

Similarity Join Algorithms

Nested Loop Join

Christian Böhm

66

120

[Brinkhoff, Kriegel, Seeger: Efficient Process. of Spatial Joins Using R-trees, SIGMOD Conf. 1993]

- Originally: Spatial join for 2D rect. intersection
- Depth-first search in R-trees and similar indexes
- Assumption: Index preconstructed on *R* and *S*
- Simple recursion scheme (equal tree height): procedure r_tree_join (R, S: page) foreach r ∈ R.children do foreach s ∈ S.children do if intersect (r,s) then r tree join (r,s);

R-tree Spatial Join (RSJ)

R-tree Spatial Join (RSJ)

procedure r_tree_sim_join (R, S, ε) if IsDirpg $(R) \land$ IsDirpg (S) then foreach $r \in R$.children do foreach $s \in S$.children do if mindist $(r,s) \le \varepsilon$ then CacheLoad(r); CacheLoad(s); r_tree_sim_join (r,s,ε) ; else (* assume R,S both DataPg *) foreach $p \in R$.points do foreach $q \in S$.points do if $|p - q| \le \varepsilon$ then report (p,q);

Christian Böhm

 $\frac{68}{120}$

R-tree Spatial Join (RSJ)

[Brinkhoff, Kriegel, Seeger: Parallel Processing of Spatial Joins Using R-trees, ICDE 1996]

• A task corresponds to a pair of subtrees

- At high tree level (e.g. root or second level)

 CPU_3

120

Various Strategies:

- Static Range Assignment
- Static Round Robin
- Dynamic Task Assignment

69 Christian Böhm

120

Breadth-First R-tree Join (BFRJ)

[Huang, Jing, Rundensteiner: Spatial Joins Using R-trees: Breadth-First Traversal..., VLDB 1997]

- Again spatial join for 2D rectangle intersection
- Shortcoming of RSJ:
 - No strategy in outer loop improving locality in inner
 - Depth-first traversal not flexible, because a pair of tree branches must be ended before next pair started
- \rightarrow unnecessary page accesses

Breadth-First R-tree Join (BFRJ)

Seeded Trees

[Lo, Ravishankar: Spatial Joins Using Seeded Trees, SIGMOD Conf. 1994]

- Again spatial join for 2D rectangle intersection
- Assumption:
 Only one data set (*R*) is supported by index
- Typical application: Set *S* is subquery result
- Idea:

Use partitioning of R as a template for S

Christian Böhm

75 120

The ε-kdB-tree

Christian Böhm

 $\frac{77}{120}$

[Shim, Srikant, Agrawal: High-dimensional Similarity Joins, ICDE 1997]

- Algorithm for the range distance self join
- General idea: Grid approximation where grid line distance = ε

• Not all dimensions used for decomposition: As many dimensions as needed to achieve a defined node capacity

The ε-kdB-tree

Christian Böhm

 $\frac{79}{120}$

- Tree structure is specific to given parameter ε
 → must be constructed for each join
- The ε-kdB-trees of two adjacent stripes are assumed to fit into main memory

The ε-kdB-tree

- Limitation: For large ε values not really scalable
- In high-dimensional cases, ε=0.3 can be typical
 → 60% of data must be held in main memory
- As long as data fit into main memory:
 ε-kdB-tree is one of the best similarity join algorithms

The Parallel ɛ-kdB-tree

[Shafer, Agrawal: Parallel Algorithms for High-dimensional Similarity Joins, VLDB 1997] • Parallel construction of the ε -kdB-tree: • Each processor has random subset of the data (1/N) • Each processor constructs ε -kdB-tree of its own set • Identical structure is enforced e.g. by split broadcast $V = \frac{CPU_1}{CPU_1}$

The Parallel ε-kdB-tree

Plug & Join

Christian Böhm

87

120

[van den Bercken, Schneider, Seeger: *Plug&Join: An Easy-to-Use Generic Algorithm*, EDBT 2000] Generic technique for several kinds of join

- Main-memory R-tree constructed from R-sample
- Partition R and S acc. to R-tree (buffers at leaves)

Approaches Using Space Filling Curves

- Space filling curves recursively decompose the data space in uniform pieces
- Various different orders:
 - Z-Order Grav-Code Hilbert

 $\langle \rangle$

0000/0001 0100 0101

0010

1001

1011

0110

1100

1110

01

11

0111

1101

-1111

00

10

0010

1000

1010

Approaches Using Space Filling Curves

Multidimensional Spatial Join

Epsilon Grid Order

[Böhm, Braunmüller, Krebs, Kriegel: *Epsilon Grid Order*, SIGMOD Conf. 2001]

Motivation like ε-kdB-tree: Based on grid with grid line distance ε

- Possible join mates restricted to 3^d cells
- Here no tree structure but sort order of points based on lexicographical order of the grid cells

96

120

Epsilon Grid Order

Definition 1 Epsilon Grid Order ($\cdot \leq_{ego} \cdot$)

For two vectors p, q the predicate $p_{e_{go}} q$ is *true* if (and only if) there exists a dimension d_i such that the following conditions hold:

Epsilon Grid Order

A simple exclusion test (used for I/O): A point q with $q \leq p - [\varepsilon, \varepsilon, ..., \varepsilon]^T$ or $p + [\varepsilon, \varepsilon, ..., \varepsilon]^T \leq q$ cannot be join mate of point p or any point beyond p (with respect to epsilon grid order)

The interval between *p*-[ε,...,ε]^T and *p*+[ε,...,ε]^T is called ε-interval

Christian Böhm

 $\frac{97}{120}$

Epsilon Grid Order

• Sort file and decompose it into I/O units

Epsilon Grid Order

Active Page List: $p_{14}|p_4|p_{24}|p_3|p_{12}|p_{23}|p_{13}|p_{21}|p_{22}$

Hjaltason/Samet: Closest Pair Queries • Nearest Neighbor \rightarrow Closest Pair Query • k result points \rightarrow k point pairs • active page list \rightarrow list of active page pairs • initialization root \rightarrow pair (root_R, root_S) • distance point/query \rightarrow distance of point pair • mindist page/query \rightarrow mindist betw. page pair

Hjaltason/Samet: Closest Pair Queries

Active Page List: $(root,p_1)|(root,p_2)|(root,p_3)|(root,p_4)$

Hjaltason/Samet: Closest Pair Queries

Christian Böhm

 $\frac{106}{120}$

[Shin, Moon, Lee: Adaptive Multi-Stage Distance Join Processing, SIGMOD Conf. 2000]

- Various improvements and optimizations
 - Bidirectional node expansion

(root,root) $(p_1,p_3) | (p_2,p_3) | (p_2,p_4) | (p_1,p_2) | (p_3,p_4) | (p_1,p_4)$

- Plane sweep technique for bidirectional node exp.
- Adaptive multi-stage algorithm
 - Aggressive pruning using estimated distances

Christian Böhm

120

Alternative Approaches

[Corral, Manolopoulos, Theodoridis, Vassilakopoulos: *Closest Pair Queries in Spatial Databases*, SIGMOD Conf. 2000]

- 5 different algorithms for closest point queries
 - Naive: Depth-first traversal of the two R-trees \rightarrow recursive call for each child pair (r_i, s_i) of (r, s)
 - **Exhaustive**: like **naive** but prune page pairs the mindist of which exceeds the current *k*-CP-dist
 - Simple recursive: addit. prune using minmaxdist

Modeling and Optimization

Conclusions

Summary

- Similarity join is a powerful database primitive
- Supports many new applications of
 - Data mining
 - Data analysis
- Considerable performance improvements

Summary

Future Research Directions

