Christian Böhm
University for Health Informatics and Technology

Powerful Database Primitives to Support High Performance Data Mining

Tutorial, IEEE Int. Conf. on Data Mining, Dec/09/2002

High Performance Data Mining

- Marketing
- Fraud Detection
- CRM
- Online Scoring
- OLAP

Fast decisions require knowledge just in time

Previous Approaches to Fast Data Mining

- Sampling
- Approximations (grid) $\}$ Loss of quality
- Dimensionality reduct.
- Parallelism Expensive \& complex

All approaches combinable with DB primitives
KDD appl. get parallelism for free

Simple Similarity Queries

- Specify query object and
- Find similar objects - range query
- Find the k most similar objects - nearest neighbor q.

Similarity - Range Queries

- Given: Query point q

Maximum distance ε

- Formal definition: $\operatorname{sim}_{q}(\varepsilon):=\{o \in D B \mid \mathrm{d}(q, o) \leq \varepsilon\}$
- Cardinality of the result set is difficult to control:
ε too small \rightarrow no results ε too large \rightarrow complete DB

Similarity - Nearest Neighbor Queries

- Given:

Query point q

- Formal definition:
$\mathrm{NN}_{q}:=\left\{o \in D B \mid \forall o^{\prime} \in D B \mathrm{~d}(q, o) \leq \mathrm{d}\left(q, o^{\prime}\right)\right\}$
- Ties must be handled:
- Result set enlargement
- Non-determinism (don't care)

Index Based Processing of NN Queries

k-Nearest Neighbor Search and Ranking

- k-nearest neighbor query:
- Do not only search only for one nearest neighbor but k
- Stop distance is the distance of the k_{th} (last) candidate point
- $k \mathrm{NN}_{q}$ is the smallest subset of $D B$ that contains $\geq k$ elements with $\forall o \in k \mathrm{NN}_{q}, \forall o^{\prime} \in D B \backslash k \mathrm{NN}_{q^{\prime}}:\|o-q\|<\left\|o^{\prime}-q\right\|$
- Ranking-query:
- Incremental version of k-nearest neighbor search
- First call of FetchNext() returns first neighbor
- Second call of FetchNext() returns second neighbor...
- Typically only few results are fetched \rightarrow Don't generate all!

Advanced Applications: Duplicates

- Duplicate detection
- E.g. Astronomical catalogue matching

- Similarity queries for large number of query obj

Advanced Applications: Data Mining

- Density based clustering (DBSCAN)

What is a Similarity Join?

- Given two sets R, S of points
- Find all pairs of points according to similarity

- Various exact definitions for the similarity join

Organization of the Tutorial

- Motivation
- Defining the Similarity Join
- Applications of the Similarity Join
- Similarity Join Algorithms
- Conclusion \& Future Potential

Defining the Similarity Join

What Is a Similarity Join?

Intuitive notion: 3 properties of the similarity join

- The similarity join is a join in the relational sense Two sets R and S are combined into one such that the new set contains pairs of points that fulfill a join condition $R \nwarrow_{\text {sim }} S \subseteq R \times S$
- Vector or metric objects rather than ordinary tuples of any type
- The join condition involves similarity

Distance Range Join (ε-Join)

- Intuitition: Given parameter ε All pairs of points where distance $\leq \varepsilon$
- Formal Definition:
$R \bowtie \lll:=\left\{\left(r_{i}, s_{j}\right) \in R \times S:\left\|r_{i}-s_{j}\right\| \leq \varepsilon\right\}$
- In SQL-like notation:

SELECT * FROM R, S WHERE $\| R$. obj $-S . o b j \| \leq \varepsilon$

Distance Range Join (ε-Join)

- Most widespread and best evaluated join
- Often also called the similarity join

\times Points of R
- Points of S

Distance Range Join (ε-Join)

- The distance range self join

$$
R \bowtie \lll
$$

is of particular importance for data mining
(clustering) and robust similarity search

- Change definition to exclude trivial results
- Lemma 1. the distance range self join is symmetric i.e.

$$
\left(r_{i}, r_{j}\right) \in R \bowtie \lll<\left(r_{j}, r_{i}\right) \in R \bowtie \lll
$$

Distance Range Join (ε-Join)

- Disadvantage for the user: Result cardinality difficult to control:
$-\varepsilon$ too small \rightarrow no result pairs are produced
$-\varepsilon$ too large $\quad \rightarrow$ all pairs from $R \times S$ are produced
- Worst case complexity is at least o $(|R| \cdot|S|)$
- For reasonable result set size, advanced join algorithms yield asymptotic behavior which is better than $\mathrm{O}(|R| \cdot|S|)$

k-Closest Pair Query

- Intuition:

Find those k pairs that yield least distance

- The principle of nearest neighbor search is applied on a basis per pair
- Classical problem of Computational Geometry
- In the database context introduced by
[Hjaltason \& Samet, Incremental Distance Join Algorithms, SIGMOD Conf. 1998]
- There called distance join

k-Closest Pair Query

- Formal Definition:
$R \longleftrightarrow$ 化 S is the smallest subset of $R \times S$ that contains at least k pairs of points and for which the following condition holds:

- Ties solved by result set enlargement
- Other possibility: Non-determinism (don't care which of the tie tuples are reported)
k-Closest Pair Query

In SQL notation: \quad SELECT * FROM R, S
ORDER BY $\| R$. obj - S. obj $\|$
STOP AFTER k

k-Closest Pair Query

- Self-join:
- Exclude $|R|$ trivial pairs $\left(r_{i}, r_{i}\right)$ with distance 0
- Result is symmetric
- Applications:
- Find all pairs of stock quota in a database that are most similar to each other
- Find music scores which are similar to each other
- Noise robust duplicate elimination

k-Closest Pair Query

- Incremental ranking instead of exact specification of k
- No STOP AFTER clause:

SELECT * FROM R, S
ORDER BY $\|$ R.obj $-S$. obj $\|$

- Open cursor and fetch results one-by-one
- Important: Only few results typically fetched
\rightarrow Don't determine the complete ranking
- Intuition:

Combine each point with its k nearest neighbors

- The principle of nearest neighbor search is applied for each point of R
k-Nearest Neighbor Join
- Formal Definition:
$R \underset{k N D}{ } S$ is the smallest subset of $R \times S$ that contains for each point of R at least k points of S and for which the following condition holds:
$\forall(r, s) \in R \underset{k}{<} S, \forall\left(r, s^{\prime}\right) \in R \times S \backslash R \underset{k N N}{\longleftrightarrow} S:\|r-s\|<\left\|r-s^{\prime}\right\|$
- Ties solved by result set enlargement
- Other possibility: Non-determinism (don't care which of the tie tuples are reported)

k-Nearest Neighbor Join

In SQL notation: \quad SELECT * FROM R, S (limited to $k=1$) GROUP BY R.obj ORDER BY $\| R$. obj $-S . o b j \|$
\times Points of R

- Points of S
k-Nearest Neighbor Join
- The k-NN-join is inherently asymmetric:
$R \npreceq<S$ and $S \ll R$ have completely different meaning: $R \nless k$ N S retrieves $k \cdot|R|$ pairs $S \underset{k N \mathbb{N}}{\sim} R$ retrieves $k|S|$ pairs

- Points of R

k-Nearest Neighbor Join

- Applications of the k-NN-join:
- k-means and k-medoid clustering
- Simultaneous nearest neighbor classification: A large set of new objects without class label are assigned according to the majority of k nearest neighbors of each of the new objects
- Astronomical observation
- Online customer scoring
- Ranking on the k-NN-join is difficult to define

Density Based Data Mining

Schema for Data Mining Algorithms

Algorithmic Schema \mathbf{A}_{1} foreach Point $p \in D$ PointSet S := SimilarityQuery (p, ε); foreach Point $q \in S$ DoSomething (p, q);

Iterative similarity queries and cache

- Due to curse of dimensionality: No sufficient inter-query locality of the pages

Iterative similarity queries and cache

Idea: Query Order Transformation

[Böhm, Braunmüller, Breunig, Kriegel: High Perf. Clustering based on the Sim. Join, CIKM 2000]

Schema Transformation

foreach DataPage P

LoadAndPinPage (P); foreach DataPage Q if (mindist $(P, Q) \leq \varepsilon$)

CachedAccess (Q);
foreach Point $p \in P$
foreach Point $q \in Q$ if (distance $(p, q) \leq \varepsilon$) DoSomething' (p, q);

Similarity Join

A_{2} is a Similarity-Join-Algorithm: foreach PointPair $(p, q) \in R \bowtie \ll$ DoSomething' (p, q);

Where $R \nwarrow_{\varepsilon} R$ denotes the Similarity-Join: SELECT * FROM $R r_{1}, R r_{2}$ WHERE distance (r_{1}.object, r_{2}.object) $\leq \varepsilon$

Implementation Variants

- Change of the order in which points are combined must partially be considered

Example Clustering Algorithms

- DBSCAN
[Ester, Kriegel, Sander, Xu: A Density Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise', KDD 1996]
- Flat clustering (non hierarchical)

Semantic Rewriting

- OPTICS

[Ankerst, Breunig, Kriegel, Sander: OPTICS: Ordering Points To Identify the Clustering Structure, SIGMOD Conf. 1999]

- Hierachical cluster-structure

Materialization

Transformation by Semantic Rewriting

- Rewrite the algorithm to take the changed order of pairs into account
- Don't assume any specific order in which pairs are generated \rightarrow Arbitrary similarity join algorithm possible

Example: DBSCAN

- p core object in D wrt. ε, MinPts: $\left|N_{\varepsilon}(p)\right| \geq$ MinPts
- p directly density-reachable from q in D wrt. ε, MinPts:

1) $p \in N_{\varepsilon}(q)$ and
2) q is a core object wrt. ε, MinPts

- density-reachable: transitive closure.
- cluster:
- maximal wrt. density reachability
- any two points are density-reachable from a third object

Implementation of DBSCAN on Join

- Core point property:

DoSomething() increments a counter attribute

- Determination of maximal density-reachable clusters: DoSomething():
- Assign ID of known cluster point to unknown cluster points
- Unify two known clusters

Implementing OPTICS (Materialization)

- The join result is predetermined before starting the actual OPTICS algorithm
- The result is materialized in some table with GROUP-BY on the first point of the pair
- The OPTICS algorithm runs unchanged
- Similarity queries are answered from the join materialization table (much faster)
- Disadvantage: High memory requirements

Experimental Results: Scalability

Robust Similarity Search

[Agrawal, Lin, Sawhney, Shim: Fast Similariy Search in the Presence of Noise,...., VLDB 1995]

- Usual similarity search with feature vectors: Not robust with respect to
- Noise:

Euclidean distance sensitive to mismatch in single dimension

- Partial similarity:

Not complete objects are similar, but parts thereof

- Concept to achieve robustness:

Decompose each data object and query object into sub-objects and search for a maximum number of similar subobjects

Robust Similarity Search

- Prominent concept borrowed from IR research: String decomposition: Search for similar words by indexing of character triplets (n-lets)
- Query transformed to set of similarity queries \rightarrow similarity join between query set and data set
- Robustness achieved in result recombination:
- Noise robustness: Ignore missing matches
- Partial search: Dont enforce complete recombination

Robust Similarity Search

Applications:

- Robust search for sequences:
[Agrawal, Lin, Sawhney, Shim: Fast Similariy Search in the Presence of Noise,...., VLDB 1995]
- Principle can be generalized for objects like
- Raster images
- CAD objects
- 3D molecules
- etc.

Astronomical Catalogue Matching

- Relative position of catalogues approx. known:
- Position and intensity parameters in different bands

- $\mathrm{C}_{1} \unrhd_{\varepsilon}$ C C_{2}
- Determine ε according to device tolerance

Astronomical Catalogue Matching

- Relative position unknown:
- Match according to triangles and intensity

- Search triangles and store parameters (height,...)
- triangles $\left(\mathrm{C}_{1}\right) \xrightarrow[\varepsilon]{~}$ triangles $\left(\mathrm{C}_{2}\right)$

k-Nearest Neighbor Classification

- Simultaneous classification of many objects
[Braunmüller, Ester, Kriegel, Sander: Efficiently Supporting Multiple Similarity Queries for Mining in Metric Databases, ICDE 2000]
- Astronomy
- Some 10,000 new objects collected per night
- Classify according to some millions of known objects
- Online customer scoring
- Some 1,000 customers online
- Rate them according to some millions of known patterns

k-Nearest Neighbor Classification

- Example:
- New objects $\underset{k-N N}{<}$ Known objects

- $\begin{aligned} & 0 \\ & \bullet \\ & \text { - Objects with known class }\end{aligned}$
- New objects
k-Means and k-Medoid Clustering
- k Points initially randomly selected (,,centers")
- Each database point assigned to nearest center
- Centers are re-determined
- k-means: Means of all assigned points (artificial p.)
- k-medoid: One central database point of the cluster
- Assignment and center determination are repeated until convergence
k-Means and k-Medoid Clustering
- Example: (k-means with $k=3$)

- Each assignment phase: DB-Points

Similarity Join Algorithms

Nested Loop Join

- Simple nested loop join:
- Iterate over R-points
- Nested iteration over S-points
 $\rightarrow S$ is scanned $|R|$ times, high I / O cost
- Nested block loop join:
- First iterate over blocks
- Nested iterate over tuples $\rightarrow S$ scanned $|R||B|$ times

Indexed Nested Loop Join

- Iterate over every point of R
- Determine matches in S by similarity queries on the index

- Due to the curse of dimensionality:
\rightarrow Performance deterioration of the similarity q .
\rightarrow Then not competitive with nested loop join
(Depends on dimensionality and selectivity determined by ε)

Spatial Join $\leftrightarrow \quad$ Similarity Join

- 2D polygon databases - High-D point databases
- Join-predicate: Overlap - Join-predicate: Distance
- Conserv. approximation: - Map ε-join to spatial join MBR (ax-par. rectangle) Cube with edge-length ε

- Some strategies can be borrowed from the spatial join

R-tree Spatial Join (RSJ)

[Brinkhoff, Kriegel, Seeger: Efficient Process. of Spatial Joins Using R-trees, SIGMOD Conf. 1993]

- Originally: Spatial join for 2D rect. intersection
- Depth-first search in R-trees and similar indexes
- Assumption: Index preconstructed on R and S
- Simple recursion scheme (equal tree height): procedure r_tree_join (R, S : page)
foreach $r \in R$.children do
foreach $s \in S$.children do
if intersect (r, s) then r_tree_join (r, s);

R-tree Spatial Join (RSJ)

- Adaptation for the similarity join:

Distance predicate rather than intersection

- For pair (R, S) of pages: mindist (R, S) \rightarrow Least possible distance of two points in (R, S)

R-tree Spatial Join (RSJ)

procedure r_tree_sim_join (R, S, ε) if IsDirpg $(R) \wedge \operatorname{IsDirpg}(S)$ then
foreach $r \in R$.children do foreach $s \in S$.children do
if mindist $(r, s) \leq \varepsilon$ then
CacheLoad(r); CacheLoad(s);
r_tree_sim_join (r, s, ε); else (* assume R, S both DataPg *) foreach $p \in R$.points do
foreach $q \in S$.points do
if $|p-q| \leq \varepsilon$ then report (p, q);

R-tree Spatial Join (RSJ)

- Extension to different tree heights straightforw.
- Several additional optimizations possible
- CPU-bound
- Cost dominated by point-distance calculations
- Disadvantages
- No clear strategies for page access priorization
- Single page accesses
\rightarrow Can be outperformed by nested block loop join

Parallel RSJ

[Brinkhoff, Kriegel, Seeger: Parallel Processing of Spatial Joins Using R-trees, ICDE 1996]

- A task corresponds to a pair of subtrees
- At high tree level (e.g. root or second level)

Various Strategies:

- Static Range Assignment
- Static Round Robin
- Dynamic Task Assignment

Breadth-First R-tree Join (BFRJ)

[Huang, Jing, Rundensteiner: Spatial Joins Using R-trees: Breadth-First Traversal..., VLDB 1997]

- Again spatial join for 2D rectangle intersection
- Shortcoming of RSJ:
- No strategy in outer loop improving locality in inner
- Depth-first traversal not flexible, because a pair of tree branches must be ended before next pair started
\rightarrow unnecessary page accesses

Breadth-First R-tree Join (BFRJ)

- Solution:
- Proceed level by level (breadth-first traversal)
- Determine all relevant pairs for the next level \rightarrow intermediate join index (IJI)
- Sort the IJI according to suitable order before accessing the next level
\rightarrow global optimization strategy

Breadth-First R-tree Join (BFRJ)

Approaches without Preconstructed Index

- Indexes can be constructed temporarily for join
- R-tree construction by INSERT too expensive \rightarrow Use cheap bottom-up-construction
- Hilbert R-trees: O $(n \log n)$
[Kamel, Faloutsos: Hilbert R-trees: An Improved R-tree using Fractals, VLDB 1994]
Sort points by SFC and pack adjacent points to page
- Buffer trees
[van den Bercken, Seeger, Widmayer: A Generic Approach to Bulk Loading.., VLDB 1997]
- Repeated partitioning
[Berchtold, Böhm, Kriegel: Improving the Query Performance ..., EDBT 1998]
- Index construction can amortize during join

Seeded Trees

[Lo, Ravishankar: Spatial Joins Using Seeded Trees, SIGMOD Conf. 1994]

- Again spatial join for 2 D rectangle intersection
- Assumption:

Only one data set (R) is supported by index

- Typical application: Set S is subquery result
- Idea:

Use partitioning of R as a template for S

Seeded Trees

- Motivation
- Early inserts to R-trees decide initial organization
- We know that S will be matched with R
- Start with small template tree instead of empty root \rightarrow seed levels

Data object in tree 2

The ε-kdB-tree

[Shim, Srikant, Agrawal:
High-dimensional Similarity Joins, ICDE 1997]

- Algorithm for the range distance self join
- General idea: Grid approximation where grid line distance $=\varepsilon$

- Not all dimensions used for decomposition: As many dimensions as needed to achieve a defined node capacity

The ε-kdB-tree

The ε-kdB-tree

- Node fanout: $\lceil 1 / \varepsilon\rceil$ (assuming data space $[0 . .1]^{d}$)
- Tree structure is specific to given parameter ε \rightarrow must be constructed for each join
- The ε-kdB-trees of two adjacent stripes are assumed to fit into main memory

The ε-kdB-tree
procedure t_match $(R, S$: node)
if is_leaf $(R) \vee$ is_leaf (S) then
else
for $i:=1$ to $\lceil 1 / \varepsilon\rceil-1$ do
t_match(R.child $[i], S . c h i l d ~[i])$;
t_match (R.child[$i], S . c h i l d ~[i+1])$;
t _match (R.child $[i+1]$, S.child $[i]$);
t_match $(R . \operatorname{child}[\lceil 1 / \varepsilon\rceil], S . \operatorname{child}[\lceil 1 / \varepsilon\rceil])$;

The ε-kdB-tree

- Limitation:

For large ε values not really scalable

- In high-dimensional cases, $\varepsilon=0.3$ can be typical $\rightarrow 60 \%$ of data must be held in main memory
- As long as data fit into main memory: ε-kdB-tree is one of the best similarity join algorithms

The Parallel ε-kdB-tree

[Shafer, Agrawal: Parallel Algorithms for High-dimensional Similarity Joins, VLDB 1997]

- Parallel construction of the ε-kdB-tree:
- Each processor has random subset of the data $(1 / N)$
- Each processor constructs ε-kdB-tree of its own set
- Identical structure is enforced e.g. by split broadcast

The Parallel ε-kdB-tree

- Workload distribution:
- Global determination of the cumulated node sizes
- A unit workload is a pair (r, s) of leaf nodes
- The cost of a workload is $|r||s|$ for different leaves and $|r| \cdot(|r|+1) / 2$ for a single leaf (self join)
- Data is redistributed: Each processor gets $1 / N$ work
- join units are clustered to preserve locality
- minimize redistribution (communication) and replication

The Parallel ε-kdB-tree

- Workload execution:
- delete internal structure
- cum. node size too large \rightarrow second growth phase
- data redistribution performed asynchronously: Data sent in depth-first
 order of tree traversal to avoid network flooding

Plug \& Join

[van den Bercken, Schneider, Seeger: Plug\&Join: An Easy-to-Use Generic Algorithm, EDBT 2000]
Generic technique for several kinds of join

- Main-memory R-tree constructed from R-sample
- Partition R and S acc. to R-tree (buffers at leaves)

Partition Based Spatial Merge Join

- Spatial join method using replication
[Patel, DeWitt: Partition Based Spatial-Merge Join, SIGMOD Conf. 1997]
- Both sets R and S are partitioned with replication
- Space is regularly tiled
- Partitions either correspond to tiles or are determined from them using hashing
- Similar: Spatial Hash Join
[Lo, Ravishankar: Spatial Hash Joins, SIGMOD Conf. 1996]

Approaches Using Space Filling Curves

- Space filling curves recursively decompose the data space in uniform pieces

- Various different orders:

Approaches Using Space Filling Curves

- Efficient filter for the join: Objects in different cells cannot intersect each other
\rightarrow Sort-merge-join e.g. on Z-order
- Problem:

Object may cross grid lines

- either decompose object (redundant)
- or assign to containing cell

Approaches Using Space Filling Curves

- If all cells have uniform size:
\rightarrow Equi-join on grid cell numbers (bit strings)
- If cells have varying size: \rightarrow Bit strings of varying length
- Objects may intersect ...
- if bitstr (r) is prefix of bitstr (s)
- or bitstr (s) is prefix of bitstr (r)

Orenstein's Spatial Join

[Orenstein: An Algorithm for Computing the Overlay of k-Dim. Spaces, SSD 1991]

- Allows (limited) redundancy, object decompos.
- Algorithm:
- Objects are decomposed
- Partial objects are ordered according to the lexicographical order of the bit strings
- Objects are accessed in sort-merge like fashion
- Two stacks are maintained to keep track of the prefix objects of R and S.

Orenstein‘s Spatial Join

- Stacks for prefix objects:

File R :
00111000: $\mathrm{r}_{17} 00111001: r_{18} \ldots$

File S :
001111: $s_{10} 01: s_{11} \ldots$

Multidimensional Spatial Join

[Koudas, Sevcik: High-Dimensional Similarity Joins, ICDE 1997, Best Paper Award]

- No redundancy allowed at all
- Instead of stacks: Separate level files for different bitstring length
- Problems with no redundancy:
- With increasing dimension: increasing ε
- Increasing chance that object intersects one of the primary decomposition lines \rightarrow approx. by $<>$

Figure 8: Performance of joins between stock market data

Epsilon Grid Order

[Böhm, Braunmüller, Krebs, Kriegel:
Epsilon Grid Order, SIGMOD Conf. 2001]

- Motivation like ε - kdB -tree: Based on grid with grid line distance ε
- Possible join mates restricted to 3^{d} cells

- Here no tree structure but sort order of points based on lexicographical order of the grid cells

Epsilon Grid Order

Definition 1 Epsilon Grid Order $(\cdot \stackrel{\text { ego }}{ } \cdot)$

For two vectors p, q the predicate $p_{\text {ego }} q$ is true if (and only if) there exists a dimension d_{i} such that the following conditions hold:
(1) $\left\lfloor\frac{p_{i}}{\varepsilon}\right\rfloor<\left\lfloor\frac{q_{i}}{\varepsilon}\right\rfloor$

(2) $\left\lfloor\frac{p_{j}}{\varepsilon}\right\rfloor=\left\lfloor\frac{q_{j}}{\varepsilon}\right\rfloor \quad \forall j<i$

Epsilon Grid Order

- A simple exclusion test (used for I / O):

A point q with

$$
q_{\mathrm{ego}} p-[\varepsilon, \varepsilon, \ldots, \varepsilon]^{\mathrm{T}} \text { or } p+[\varepsilon, \varepsilon, \ldots, \varepsilon]^{\mathrm{T}} \text { eğ } q
$$

cannot be join mate of point p or any point beyond p (with respect to epsilon grid order)

- The interval between $p-[\varepsilon, \ldots, \varepsilon]^{\mathrm{T}}$ and $p+[\varepsilon, \ldots, \varepsilon]^{\mathrm{T}}$ is called ε-interval

Epsilon Grid Order

- Sort file and decompose it into I/O units

Epsilon Grid Order

Epsilon Grid Order

$\frac{101}{120}$

Closest Pair Queries

[Hjaltason, Samet: Incremental Distance Join Algorithms for Spatial DB, SIGMOD Conf. 1998]

- For both point objects and spatial objects
- Find k objects with least distance
- Basis algorithm* for nearest neighbor search extended to take point pairs into account
* [Hjaltason, Samet: Ranking in Spatial Databases, SSD 1995]

Basis Algorithm for NN Search

Active Page List:
$p_{14}\left|p_{4}\right| p_{24}\left|p_{3}\right| p_{12}\left|p_{23}\right| p_{13}\left|p_{21}\right| p_{22}$

Hjaltason/Samet: Closest Pair Queries

- Nearest Neighbor \rightarrow Closest Pair Query
- k result points $\quad \rightarrow k$ point pairs
- active page list $\quad \rightarrow$ list of active page pairs
- initialization root \rightarrow pair $\left(\operatorname{root}_{R}, \operatorname{root}_{S}\right)$
- distance point/query \rightarrow distance of point pair
- mindist page/query \rightarrow mindist betw. page pair

Hjaltason/Samet: Closest Pair Queries

Hjaltason/Samet: Closest Pair Queries

- Unidirectional node expansion: Given a pair $\left(r_{i}, s_{j}\right)$ only one node is expanded
- Closest pair ranking: Incremental version of k-closest pair queries \rightarrow stop criterion is validation of next pair
- k-nearest neighbor join:

Runs a closest pair ranking and filters out the $(k+1)_{\text {st }}$ occurrence (and more) of each point of R

Hjaltason/Samet: Closest Pair Queries

- Two strategies for tie breaks (same distance):
- Depth-first
- Breadth first
- Three policies for tree traversal
- Basic (one tree determines priority)
- Even (priority to node with shallower depth)
- Simultaneous (all possible pairs are candidates for traversal)

Alternative Approaches

[Shin, Moon, Lee: Adaptive Multi-Stage Distance Join Processing, SIGMOD Conf. 2000]

- Various improvements and optimizations
- Bidirectional node expansion

- Plane sweep technique for bidirectional node exp.
- Adaptive multi-stage algorithm
- Aggressive pruning using estimated distances

Alternative Approaches

[Corral, Manolopoulos, Theodoridis, Vassilakopoulos: Closest Pair Queries in Spatial Databases, SIGMOD Conf. 2000]

- 5 different algorithms for closest point queries
- Naive: Depth-first traversal of the two R-trees \rightarrow recursive call for each child pair $\left(r_{i} s_{j}\right)$ of (r, s)
- Exhaustive: like naive but prune page pairs the mindist of which exceeds the current k-CP-dist
- Simple recursive: addit. prune using minmaxdist

Alternative Approaches

- 5 different algorithms (...)
- Sorted distances recursive: Before descending sort child pairs acc. to their mindist
 \rightarrow fast get good distance for pruning. Analogous to
[Roussopoulos, Kelley, Vincent: Nearest Neighbor Queries. SIGMOD Conf. 1995]
- Heap algorithm:

Similar to the algorithm by Hjaltason \& Samet with some minor differences

- New strategies for ties and different tree height

Modeling and Optimization

[Böhm, Kriegel: A Cost Model and Index Architecture for the Similarity Join, ICDE 2001]

- Mating probability of index pages:
- Probability that distance between two pages $\leq \varepsilon$
- Two-fold application of Minkowski sum

Modeling and Optimization

- I/O cost:
- High const. cost per page
- Large capacity optimum
- CPU cost:
- Low const. cost per page
- Low capacity optimum

\rightarrow CPU-performance like CPU optimized index

\rightarrow I/O- performance like I/O optimized index

Conclusions

Summary

- Similarity join is a powerful database primitive
- Supports many new applications of
- Data mining
- Data analysis
- Considerable performance improvements

Summary

- Many different algorithms for the similarity join
- Most for the distance range join (ε join)
- Some approaches for closest pair queries
- Important operation of nearest neighbor join has almost not been considered yet
- All 3 types of join have different applications
- Comparison of different ε join algorithms:
- Mostly a competition for speed

Summary

- Only few other advantages/disadvantages:
- Scalability:
- MSJ and ε-kdB-tree have high main memory requirements in high-dimensional spaces
- Existence of an index:
- Actually no matter because R-trees can be fast constructed bottom-up. Construction time often much less than join time
- Even if preconstructed indexes exist: Approaches based on sorting often better
- No good criteria known for algorithm selection

Future Research Directions

- Applications:
- Many standard data mining methods accelerable:
- Outlier detection
- Various clustering algorithms (e.g. obstacle clustering)
- Hough transformation and similar analysis methods
- New data mining methods will become feasable:
- Subspace clustering \& correlation detection
- Methods may become interactive
- ...

Future Research Directions

- Algorithms
- Sufficient research for ε join and closest pair query
- Almost no convincing approaches for the k-NN-join Important database primitive for many applications
- Parallel Algorithms
- Non-vector metric data (e.g. text mining)
- Approximative join algorithms
- Similarity search: Approximative search often sufficient
- Join performance could be considerably improved

Future Research Directions

- Optimization of various critical parameters
- Dimension
- Replication
- Index scan strategies

