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Abstract 
Tandem mass spectrometry is a promising new screening 
technology which permits screening within one analytical 
run not only for phenylketonuria (PKU) but also for a 
wide range of other metabolic disorders in newborns. 
We investigated two symbolic supervised machine 
learning techniques - logistic regression analysis (LRA) 
and decision trees (DT), where the knowledge is 
represented in an explicit way - to find classification rules 
for the presence of PKU. Our experiments were 
performed on pre-classified newborn screening data 
including a metabolite spectrum of 14 amino acids. LRA 
and DT classifiers showed high classification 
performance with a sensitivity of ≥ 97.7% and a 
specificity of ≥ 99.8%. In addition to the established 
diagnostic metabolites of phenylalanine and tyrosine, we 
also included alternative constellations of metabolites in 
our models showing comparable results in predictive 
power.  
The presented machine learning techniques are 
appropriate to investigate metabolic patterns in newborn 
screening data for constructing classification models for 
PKU.  
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1. Introduction 
 
Newborn screening involves laboratory testing of all 
newborn infants for certain genetic/metabolic or 
endocrine disorders of body chemistry. Inborn  
metabolism errors can hinder an infant's normal physical 
and mental development in a variety of ways. Recently, a 
new screening methodology based on the so-called 
tandem mass spectrometry (MS/MS) has been developed. 
This spectrometry technique can detect body fluids that 
are elevated or diminished in certain metabolic disorders. 
Thus, it is possible to screen for more than 20 inherited 
metabolic disorders with a single test. Considering the 
amount and complexity of data generated by MS/MS, it is 
increasingly difficult to derive medical interpretation by 
conventional means. Therefore, it might be indicated to 
apply  machine   learning    techniques   to   discover   and    

 
 
mine metabolic patterns in these data with respect to 
derive classification rules for the interpretation of high 
dimensional metabolic datasets.   
As an example we investigated classification rules for 
testing every newborn for phenylketonuria (PKU, OMIM 
#261600), an amino acid disorder, where phenylalanine 
cannot be metabolized to tyrosine due to a blockade of the 
enzyme phenylalanine-hydroxylase. This results in excess 
levels of phenylalanine in body fluids with possible 
neurotoxic reactions [1]. We apply two well-established 
symbolic supervised machine learning techniques, logistic 
regression analysis (LRA) and decision trees (DT), to the 
problem of constructing a classification model in order to 
judge how well a newborn disorder can be predicted. In 
symbolic methods, the knowledge is represented in an 
explicit way, e.g. in a formula or in a tree-like structure, 
whereas non-symbolic methods (e.g. k-nearest neighbor 
classifier or artificial neural networks) keep the 
knowledge only implicitly in internal data structures 
which cannot directly be interpreted by a clinical expert.  
To summarize, our task is to develop a symbolic classifier 
with highest classification performance from newborn 
screening data. With respect to the classifier’s simple 
handling and understandability in the daily clinical 
practice we denounce classification rules of the proposed 
symbolic learning algorithms under the condition that 
they show high discriminatory performance with high 
predictive power. 
 
2. Systems and Methods 
 
Mass spectrometry 
The mass spectrometer is a device that separates and 
quantifies ions based on their mass/charge (m/z) ratios. 
Characteristical patterns of fragments and relative peak 
intensities in the resulting spectrum allow qualitative as 
well as quantitative determination of chemical 
compounds. By coupling two mass spectrometers, usually 
separated by a reaction chamber or collision cell, the 
modern tandem mass spectrometry (MS/MS) allows 
simultaneous analysis of multi-compounds in a high-
throughput process. MS/MS thus permits very rapid, 
sensitive and, with appropriate internal standards, 
accurate measurement of many different types of 
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metabolites with minimal sample preparation and with 
adequate throughput to handle the large number of 
samples that are processed in newborn screening 
programs.  
 
Metabolic data 
Our experimental dataset was anonymously provided 
from the newborn screening program in Bavaria, 
Germany [2][3]. From the given database a total amount 
of 1599 clinically validated newborn datasets in two 
classes were selected. 1241 randomised controls and 307 
cases designated as PKU patients were sampled within 
two weeks after birth. Table 1 summarizes all analysed 
metabolites from a single blood spot representing a 
spectrum of 14 metabolites in amino acid metabolism. 
  
Table 1: Metabolites from MS/MS analysis of a single blood sample 
Amino acids (symbol)  PKU  Controls 
Alanine (Ala) 364.6 ± 118.7 508.9 ± 210.7 
Arginine (Arg) 734.6 ± 496.2 90.9 ± 49.7 
Argininosuccinate (Argsuc) 0.22 ± 0.80 0.01 ± 0.02 
Citrulline (Cit) 45.1 ± 37.4 28.7 ± 39.9 
Glutamate (Glu) 2595 ± 1790 235.9 ± 74.0 
Glycine (Gly) 248.2 ± 179.7 624.2 ± 315.9 
Methionine (Met) 29.2 ± 12.9 24.3 ± 7.4 
Ornitine (Orn) 146.5 ± 86.2 85.2 ± 60.7 
Phenylalanine (Phe) 721.6 ± 426.3 57.9 ± 17.9 
Pyroglutamate (Pyrglt) 19.6 ± 13.7 51.8 ± 31.6 
Serine (Ser) 710.5 ± 362.3 400.6 ± 358.2 
Tyrosine (Tyr) 83.5 ± 36.0 97.2 ± 64.2 
Valine (Val) 203.9 ± 64.9 170.6 ± 61.3 
Leuzine+Isoleuzine (Xle) 144.8 ± 68.3 264.5 ± 107.7 
Concentrations of amino acids (mean ± sd) for PKU and controls classes 
are denounced in µmol/L.  
 
Supervised machine learning techniques  
Usually, for a supervised classification problem, the 
training data sets are in the form of a set of tuples        
{(y1, x1,j),…, (yn, xn,j)} where yi is the class label and xij is 
the set of attributes for the instances. The task of the 
learning algorithm is to produce a classifier (model) to 
classify the instances into the correct class.  
Both learning methods (LRA and DT) used in this study 
were obtained from the WEKA machine learning package 
(http://www.cs.waikato.ac.nz/~ml/weka). An established 
methodology to evaluate the robustness of the classifier is 
to perform a cross validation on the classifier. Ten fold 
cross validation has been proved to be statistically good 
enough in evaluating the performance of the classifier [4].  
Logistic regression analysis (LRA), a learning technique, 
which is widely used in medical applications, construct a 
separating hyperplane between the two datasets which 
have to be distinguished by the classifiers. This 
hyperplane is described by a linear discriminant function  
z = f(x1,…xn) = b1x1 + b2x2 + … + bnxn + c. Here, x1,…xn 
are the input variables (in our case the metabolite 
concentrations), and b1,…bn as well as the constant c are 
the coefficients which have to be learned by the method. 
Once the coefficients have been learned according to the 

training set, each new individual (x1,…xn) can be 
classified by substituting the variables in the discriminant 
function. Additionally, a logistic function is used to 
consider the distance from the hyperplane as a probability 
measure of class membership. Logit(p) is the log (to base 
e) of the likelihood ratio that the resulting class is 1. In 
symbols it is defined as: logit(p)=log(odds)=log(p/(1-p)). 
Whereas p can only range from 0 to 1, logit(p) ranges 
from negative infinity to positive infinity. There is a 
(relatively) simple exponential transformation for 
converting log-odds back to probability: 

ze1
1p
−+

=      (1)     

where p is the conditional probability of the form          
P(z=1| x1,...,xn ) and z the discriminant function. The class 
membership to class “0” is indicated by p < 0.5, to class 
“1“, which represents the presence for a disorder, by        
p ≥ 0.5. LRA uses a maximum likelihood method, which 
maximises the probability of getting the observed results 
given the fitted coefficients [5]. 
Decision trees (DT) are rooted, usually binary trees, with 
simple classifiers placed at each internal node and a class 
label at each leaf. For most DT algorithms, these simple 
classifiers associated with the internal nodes are 
comparisons between an input variable and a fix value. 
Decision trees are generally trained by means of a top 
down growth procedure, which starts from the root node 
and greedily chooses a split of the data that maximizes 
some cost function, usually a measure of the class purity 
of the two subgroups defined by the split. After choosing 
a split, the subgroups are mapped to the two child nodes. 
This procedure is then recursively applied to the children, 
and the tree grows until some stopping criterion is met. If 
the resulting tree is too complex (and, therefore, often 
overfitted) some of the branches can be pruned. For 
instance, in figure 1 variable m1 is chosen as the first split 
variable, and a value of 0.6 is chosen for the split, because 
we obtain an optimal class purity (100% positives) on the 
left side and a fairly good class purity (only three 
positives in a high number of negatives) on the right side. 
No other split with a higher class purity is possible in this 
figure.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Example for splitting strategy of a DT classifier. Variable m1 
is chosen as first split variable. 
 
The algorithm most often used to generate decision trees 
is ID3 or its successors C4.5 and C5.0 respectively [6][7]. 
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This algorithm selects the next node to place in the tree by 
computing the information gain for all candidate features 
and then choosing that feature that gains the most 
information about the output category of the current 
example. Information gain is thus a measure of how well 
the given feature separates the remaining training data by 
minimizing the entropy [8]. In this work we used C4.5 for 
tree construction without pruning (cf. figure 3).  
 
Evaluation of classifier’s performance 
We evaluated the discriminatory power of the 
investigated methods constructing a so-called 
classification or contingency table for our binary class 
problem. The evaluation measure most frequently used in 
classification is accuracy (Acc) which describes the 
proportion of correctly classified instances: Acc = 
(TP+TN)/(TP+FP+TN+FN). Measures which  more 
precisely consider the influence of the class size are 
sensitivity (Sn) or recall, specificity (Sp), positive 
predictive value (PPV) or precision and negative (NPV) 
predictive value.  Sn = TP/(TP+FN) measures the fraction 
of actual positive instances that are correctly classified; 
while Sp = TN/(TN+FP) measures the fraction of actual 
negative examples that are correctly classified. The PPV 
(or the reliability of positive predictions) is computed by 
PPV=TP/(TP+FP), the NPV is defined as 
NPV=TN/(TN+FN).   
 
3. Results 
 
Both presented supervised learners, LRA and DT, first ran 
on newborn screening data including the entire feature 
spectrum of 14 amino acids. From these results, we 
observed that the LRA classifier showed a high 
classification performance with a Sn of 97.7%, a Sp of 
99.6% and an Acc of 99.2% (table 2). Applying feature 
selection methods, irrelevant and redundant features 
(metabolites) can be removed in order to retain or 
improve the predictive power of our classifiers. We 
performed a feature selection technique, which is based 
on information gain [8], an approach also implemented in 
the C4.5 learner. The ranking results are illustrated in  
figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Ranked features after running the information gain algorithm 
on the metabolite spectrum of 14 amino acids.  

The discovered metabolic patterns (figure 2) showed that 
besides Phe, also Glu and Arg have high dominance in 
PKU data. However, these results correspond just partly 
with the established diagnostic criteria, according to 
which Phe and Tyr are the established diagnostic 
metabolites indicating the presence of PKU [9]. It is 
remarkable that Tyr, which is reduced in the metabolism 
of PKU, ranks at the final position (see figure 2). Table 2 
summarizes the classification performance of LRA 
classifiers and DT learner running on the entire and 
reduced feature dimensionality. All combinations of top 
ranked metabolites yielded a Sn of  ≥ 97.7% accompanied 
by various Sp values, but all above 99.7%. The Acc was           
≥ 99.4%. The LRA learner including the primary 
diagnostic markers Phe and Tyr was given by a Sp of 
actually 100%. The highest Sn (98%) revealed the LRA 
learner with the metabolite combination of Phe and Arg. 
 
Table 2: Classification performance of LRA and DT classifier 
Model Sn (%) Sp (%) Acc (%) 
LRA (Phe, Arg) 98.0 99.9 99.7 
LRA (Phe, Tyr) 97.7 100 100 
LRA (Phe) 97.7 99.9 99.7 
LRA (Phe, Glu) 97.7 99.9 99.7 
LRA (all 14 acids) 97.7 99.6 98.4 
DT (Phe, Glu, Xle, Gly) 97.7 99.8 99.3 

Performance investigated on the entire and selected metabolite spectrum. 
 
The DT learner, which selects the next node to place in 
the tree by computing the information gain of all 
candidate features, selected four amino acids for its 
resulting decision tree, i.e. Phe as root node, Glu, Xle and 
Gly as child nodes. It showed the same Sn as the LRA 
learner, but with a slightly lower Sp of 99.8%. 
For clinical routine, feasible models have to ensure easy 
interpretation without losing predictive power. Equations 
2 - 4 represent the best LRA models including Phe alone 
or combining Phe with Arg or Tyr as model parameters: 
 
P(PKU = 1) = (1 + e–0.056 ⋅ Phe + 8.9269)-1      (2) 
 
Odds ratios (OR): Phe = 1.0573 
Overall model fit: χ2= 1445; df = 1; p<0.001 
 
P(PKU = 1) = (1 + e–0.0383 ⋅ Phe – 0.0068 ⋅ Arg + 8.524)-1  (3) 
 
OR: Phe = 1.0391, Arg = 1.0069 
Overall model fit: χ2= 1464; df = 2; p<0.001 
 
P(PKU = 1) = (1 + e–0.0662 ⋅ Phe – 0.0099 ⋅ Tyr + 8.723)-1  (4) 
 
OR: Phe = 1.0684, Tyr = 0.9902 
Overall model fit: χ2= 1459; df = 2; p<0.001 
 
The classification rule of the DT learner for predicting 
PKU is represented in figure 3. The tree is characterized 
by its size of 9 and its number of leaves of 5.  
 



 
 
 
 
 
 
 
 
 
 

 
 
Figure 3: Classification rule of the DT learner for PKU. Values in 
brackets indicate the number of correctly and wrongly classified cases. 

 
4. Discussion and Conclusion 
 
We investigated two symbolic supervised machine 
learning algorithms for their suitability to construct 
classification models for high dimensional metabolic data. 
LRA models (equations 2 – 4) are easy to handle by 
physicians, who only have to substitute absolute amino 
acid concentrations in the equations. Similarly, the tree 
structure of DT models with their decision rules at any 
node is simple to interpret. Non-symbolic techniques such 
as the k-nearest neighbor classifier, artificial neural 
networks or support vector machines keep the knowledge 
only implicitly in internal data structures without any 
ability for the clinical expert to understand and interpret 
the learned knowledge. Our models, which were 
constructed on 307 PKU cases and a reduced number of 
randomly sampled controls, are characterized by a high Sn 
of ≥ 97.7%, that  means that a small fraction of 2.3% 
newborns with PKU is incorrectly classified. The models 
ensure an overall fraction of invalid tests not exceeding 
0.2%. However, in order to determine the real specificity, 
a much larger dataset would be required.  
In detail, the LRA classifier, which is a linear-in-
parameter method using linear separating hyperplanes 
(e.g. support vector machines handle also non-linear 
separation problems), demonstrates superior classification 
performance . In this context it is to note that we also plan 
experiments on well established non-symbolic techniques 
as already discussed to investigate their discriminatory 
characteristics. In all model equations, Phe shows an    
OR > 1 which corresponds well with the elevated 
concentrations of Phe while e.g. Tyr demonstrates slightly 
decreased levels (OR < 1; cf. table 1). The model, 
implementing Arg (OR > 1) instead of Tyr, yields a 
comparable high classification accuracy. But the models 
in all show little differences in classification performance. 
However, our observations of strongly elevated Arg and 
Glu levels need to be discussed with clinical experts as 
factors like the date of sampling the newborn, the time of 
nutrition or a wrong handling to take a blood sample can 
additionally lead to abnormal changes of metabolite’s 
concentrations. Comparing our investigated classification 
rules with the clinically established diagnostic flags (for 

PKU: Phe ≥ 150µmol/L, Wisconsin newborn screening 
program [10]), we investigated similar results. Thereby, 
model equation 2, which includes only Phe, indicates a 
comparable threshold of 159.5µmol/L, the decision rule at 
the root node of our DT model already classifies 301 PKU 
cases at a threshold of 158.6µmol/L.  
Our results show that the use of symbolic machine 
learning techniques is appropriate to construct classifiers 
on high dimensional metabolic data. We have shown that 
the presented techniques enable us to investigate not only 
single pathway blockade disorders, moreover, these 
paradigms have a great potential to examine diseases 
based on more complex metabolic pathways.  
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