Multi-Label Informed Latent Semantic Indexing

Shipeng Yu¹²

Joint work with Kai Yu¹ and Volker Tresp¹

August 2005

SIEMENS ¹Siemens Departme

¹Siemens Corporate Technology Department of Neural Computation

Ludwig LINU Maximilians – Universität <u>München</u>

²University of Munich Institute for Computer Science

- Motivation
- Latent Semantic Indexing
- Multi-label Informed Latent Semantic Indexing (MLSI)
- Experimental Results
- Conclusion and Future works

Motivation

We are dealing with high-dimensional data in information retrieval.

A typical text corpus has more than 10,000 features (words as features)!

- What are the problems?
 - Noisy features: Effective features are small
 - Learnability: "curse of dimensionality"
 - Inefficiency: Computational cost is too high
- How to solve these problems? Dimensionality Reduction
 - Feature selection: Select part of the features
 - Latent semantic indexing (LSI): Learn a feature transformation from high-dimensional input space to a low-dimensional latent space

Why MLSI

- LSI is unsupervised:
 - Unable to use prior knowledge or label information
 - The indexing is not necessarily related to classification tasks
- We want to have a feature transformation method that can
 - Incorporate label information elegantly
 - Derive both linear and non-linear mappings
 - Explore the dependency between multiple categories
- This leads to Multi-label informed Latent Semantic Indexing (MLSI).

Before We Start ...

Some notations:

- \blacksquare We have N documents
- Document *i* is denoted as $\mathbf{x}_i \in \mathcal{X} \subset \mathbb{R}^M$
- Output for the *i*th document is denoted as $\mathbf{y}_i \in \mathcal{Y} \subset \mathbb{R}^L$

• $\mathbf{X} \in \mathbb{R}^{N \times M}$, $\mathbf{Y} \in \mathbb{R}^{N \times L}$ contain the input and output data as follows:

$$\mathbf{X} = \begin{bmatrix} x_{11} & \cdots & x_{1M} \\ \vdots & \vdots & \vdots \\ x_{N1} & \cdots & x_{NM} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix}, \quad \mathbf{Y} = \begin{bmatrix} y_{11} & \cdots & y_{1L} \\ \vdots & \vdots & \vdots \\ y_{N1} & \cdots & y_{NL} \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1^T \\ \vdots \\ \mathbf{y}_N^T \end{bmatrix}$$

• We aim to derive a mapping $\Psi : \mathcal{X} \mapsto \mathcal{V}$ such that $\mathcal{V} \subset \mathbb{R}^K$, K < M

- Motivation
- Latent Semantic Indexing
- Multi-label Informed Latent Semantic Indexing
- Experimental Results
- Conclusion and Future works

Latent Semantic Indexing

LSI finds the best rank-K approximation to the data matrix X.

This can be equivalently solved by singular value decomposition (SVD) of X:

$$\mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T$$

 \blacksquare We can sort diagonal entries of Σ in decreasing order

 \blacksquare **U** = [**u**₁,...,**u**_K] gives the K mapping directions

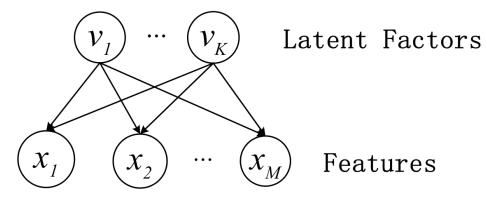
Problem: How to incorporate label information into the mappings?

Optimization Problem of LSI

Alternatively, LSI minimizes the reconstruction error of input data:

$$\min_{\mathbf{A}, \mathbf{V}} \| \mathbf{X} - \mathbf{V} \mathbf{A} \|_F^2$$
s.t. $\mathbf{V}^T \mathbf{V} = \mathbf{I},$

with $\mathbf{V} \in \mathbb{R}^{N \times K}$ the latent factors, and $\mathbf{A} \in \mathbb{R}^{K \times M}$ the factor loadings.

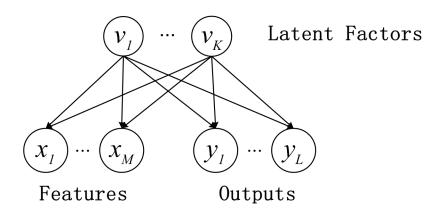


MLSI

In MLSI we are minimizing the reconstruction errors of both \mathbf{X} and \mathbf{Y} :

$$\min_{\mathbf{A},\mathbf{B},\mathbf{V}} (1-\beta) \|\mathbf{X} - \mathbf{V}\mathbf{A}\|_F^2 + \beta \|\mathbf{Y} - \mathbf{V}\mathbf{B}\|_F^2$$

st $\mathbf{V}^T \mathbf{V} = \mathbf{I}, \mathbf{V} = \mathbf{X}\mathbf{W}.$



- MLSI is **biased** by the outputs \mathbf{Y}
- \blacksquare MLSI minimizes the inter-correlation between ${\bf X}$ and ${\bf Y}$
- MLSI minimizes the intra-correlation within \mathbf{Y} (if multiple outputs)

- Motivation
- Latent Semantic Indexing
- Multi-label Informed Latent Semantic Indexing
 - Primal form: Linear mappings
 - Dual form: Non-linear mappings
- Experimental Results
- Conclusion and Future works

Solution of MLSI

The optimization problem is

$$\min_{\mathbf{A},\mathbf{B},\mathbf{V}} \quad (1-\beta) \|\mathbf{X} - \mathbf{V}\mathbf{A}\|_F^2 + \beta \|\mathbf{Y} - \mathbf{V}\mathbf{B}\|_F^2$$

s.t. $\mathbf{V}^T \mathbf{V} = \mathbf{I}, \mathbf{V} = \mathbf{X}\mathbf{W}.$

Following standard Lagrange formulism, we obtain, at the optimum,

- A and B solely depend on V: $A = V^T X$, $B = V^T Y$.
- Denote $\mathbf{K} := (1 \beta)\mathbf{X}\mathbf{X}^T + \beta \mathbf{Y}\mathbf{Y}^T$, the minimum value is $\sum_{i=K+1}^N \lambda_i$.
- We only need to optimize W since V = XW.

MLSI: Primal Form

Denote $\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_K]$, we turn to an equivalent problem w.r.t. w:

$$\max_{\mathbf{w} \in \mathbb{R}^{M}} \quad \mathbf{w}^{T} \mathbf{X}^{T} \mathbf{K} \mathbf{X} \mathbf{w}$$

s.t.
$$\mathbf{w}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w} = 1$$

This leads to the primal form of the MLSI solution:

- Calculate $\mathbf{K} = (1 \beta)\mathbf{X}\mathbf{X}^T + \beta\mathbf{Y}\mathbf{Y}^T$;
- Solve a generalized eigenvalue problem $\mathbf{X}^T \mathbf{K} \mathbf{X} \mathbf{w} = \lambda \mathbf{X}^T \mathbf{X} \mathbf{w}$, obtain eigenvectors $\mathbf{w}_1, \ldots, \mathbf{w}_K$ with largest K eigenvalues $\lambda_1 \ge \ldots \ge \lambda_K$;
- Form mapping functions $\psi_j(\mathbf{x}) = \sqrt{\lambda_j} \mathbf{w}_j^T \mathbf{x}, j = 1, \dots, K$, and finally $\Psi(\mathbf{x}) = [\psi_1(\mathbf{x}), \dots, \psi_K(\mathbf{x})]^T$ defines the mapping Ψ .

MLSI recovers LSI when $\beta = 0$.

MLSI: Dual Form

Dual form is obtained by applying representer theorem and define dual variable α as

$$\mathbf{w} = \mathbf{X}^T \boldsymbol{\alpha}.$$

This leads to the equivalent dual form with respect to α :

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^{N}} \quad \boldsymbol{\alpha}^{T} \mathbf{K}_{x} \mathbf{K} \mathbf{K}_{x} \boldsymbol{\alpha}$$

s.t.
$$\boldsymbol{\alpha}^{T} \mathbf{K}_{x}^{2} \boldsymbol{\alpha} = 1.$$

 $\mathbf{K}_x = \mathbf{X}\mathbf{X}^T, \mathbf{K}_y = \mathbf{Y}\mathbf{Y}^T, \mathbf{K} = (1 - \beta)\mathbf{K}_x + \beta\mathbf{K}_y.$

This is a simpler problem for N < M.

Primal versus Dual

Which form to choose in real world applications?

- Primal MLSI solves an $M \times M$ generalized eigenvalue problem
 - more efficient when $M < {\cal N}$
 - can only learn a linear mapping for ${\bf X}$
- Dual MLSI solves an $N \times N$ generalized eigenvalue problem
 - more efficient when N < M (usually true for text data)
 - can learn non-linear mappings using kernel trick

Connection to Related Work

MLSI is more general to other supervised projection methods.

- Fisher Discriminant Analysis (FDA)
 - Only deal with binary classification problem
 - Can only handle one output
- Canonical Correlation Analysis (CCA)
 - Only minimize the correlation between ${\bf X}$ and ${\bf Y}$
 - Ignore intrinsic correlations of both ${\bf X}$ and ${\bf Y}$
- Partial Least Square (PLS)
 - A penalized CCA
 - Can not generalize well to new data

- Motivation
- Latent Semantic Indexing
- Multi-label Informed Latent Semantic Indexing
- Experimental Results
- Conclusion and Future works

Experiment Setup

The Goal: Evaluate indexing methods for multi-label classification.

Data sets

- Reuters-21578: 1600 documents with 6076 words, 47 categories
- RCV1: 3588 documents with 5496 words, 79 categories

Preprocessing

- Take categories with at least 50 documents
- Pick up words that occur at least 5 times in documents
- Use TFIDF features

Methodology

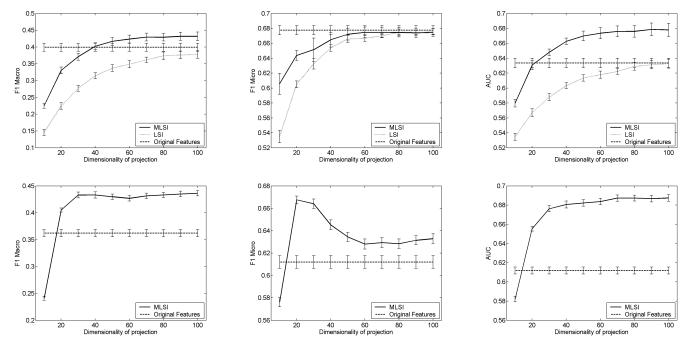
We compare three methods:

- Full Features: Use all features to do classification
- LSI: Classification with new unsupervised features
- MLSI: Classification with new supervised features

We test two settings for each data set:

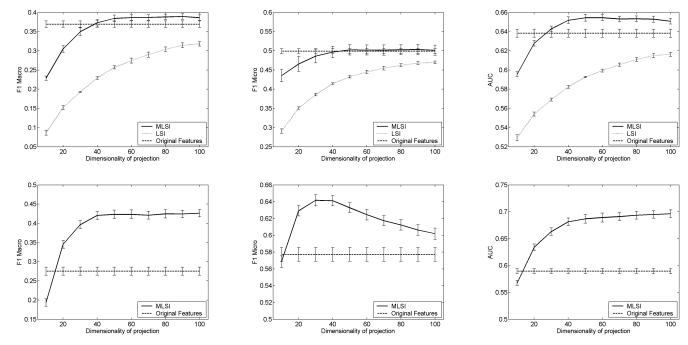
- Setting (I): We pick up 70% categories for classification and employ 5-fold cross-validation with one fold training and 4 folds testing
- Setting (II): Evaluate the classification performance on the rest 30% categories for previously unseen data with newly derived features

Results for Reuters-21578



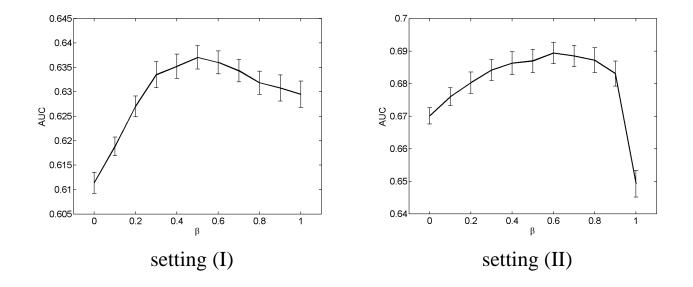
MLSI is significantly better than LSI.

Results for RCV1



MLSI is significantly better than Full Features in setting (II).

Sensitivity of β for MLSI



- Motivation
- Latent Semantic Indexing
- Multi-label Informed Latent Semantic Indexing
- Experimental Results
- Conclusion and Future works

Conclusion

MLSI has the following advantages:

- It is supervised and incorporates label information
- \blacksquare It considers both the inter-correlation between X and Y, and the intracorrelation of Y
- Both linear and non-linear mappings are easy to derive
- It handles multiple outputs simultaneously
- It takes LSI as a special case (when $\beta = 0$)

Experimental results are very encouraging.

Future Works

- Compare with other supervised projection methods
- Automatically set parameter β
- Try larger data sets
- Apply the indexing to information retrieval tasks