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Motivation

We are dealing withhigh-dimensional data in information retrieval.

A typical text corpus has more than 10,000 features (words as features)!

What are the problems?

– Noisy features: Effective features are small

– Learnability: “curse of dimensionality”

– Inefficiency: Computational cost is too high

How to solve these problems?Dimensionality Reduction

– Feature selection: Select part of the features

– Latent semantic indexing (LSI): Learn a feature transformation from
high-dimensional input space to a low-dimensionallatent space
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Why MLSI

LSI is unsupervised:

– Unable to use prior knowledge or label information

– The indexing is not necessarily related to classification tasks

We want to have a feature transformation method that can

– Incorporate label information elegantly

– Derive both linear and non-linear mappings

– Explore the dependency between multiple categories

This leads toMulti-label informed Latent Semantic Indexing (MLSI).
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Before We Start ...

Some notations:

We haveN documents

Documenti is denoted asxi ∈ X ⊂ RM

Output for theith document is denoted asyi ∈ Y ⊂ RL

X ∈ RN×M , Y ∈ RN×L contain the input and output data as follows:

X =

 x11 · · · x1M
... ... ...
xN1 · · · xNM

 =

 xT
1
...

xT
N

 , Y =

 y11 · · · y1L
... ... ...
yN1 · · · yNL

 =

 yT
1
...

yT
N


We aim to derive a mappingΨ : X 7→ V such thatV ⊂ RK,K < M
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Latent Semantic Indexing

LSI finds the bestrank-K approximation to the data matrixX.

This can be equivalently solved by singular value decomposition (SVD) ofX:

X = VΣUT

We can sort diagonal entries ofΣ in decreasing order

U = [u1, . . . ,uK] gives theK mapping directions

Problem: How to incorporate label information into the mappings?
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Optimization Problem of LSI

Alternatively, LSI minimizes thereconstruction error of input data:

min
A,V

‖X−VA‖2
F

s.t. VTV = I,

with V ∈ RN×K the latent factors, andA ∈ RK×M the factor loadings.
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MLSI

In MLSI we are minimizing the reconstruction errors ofboth X and Y:

min
A,B,V

(1− β)‖X−VA‖2
F + β‖Y −VB‖2

F

s.t. VTV = I,V = XW.

MLSI is biased by the outputsY

MLSI minimizes theinter-correlation betweenX andY

MLSI minimizes theintra-correlation within Y (if multiple outputs)
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Solution of MLSI

The optimization problem is

min
A,B,V

(1− β)‖X−VA‖2
F + β‖Y −VB‖2

F

s.t. VTV = I,V = XW.

Following standard Lagrange formulism, we obtain, at the optimum,

A andB solely depend onV: A = VTX, B = VTY.

DenoteK := (1− β)XXT + βYYT , the minimum value is
∑N

i=K+1 λi.

We only need to optimize W since V = XW.
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MLSI: Primal Form

DenoteW = [w1, . . . ,wK], we turn to an equivalent problem w.r.t.w:

max
w∈RM

wTXTKXw

s.t. wTXTXw = 1.

This leads to theprimal form of the MLSI solution:

CalculateK = (1− β)XXT + βYYT ;

Solve a generalized eigenvalue problemXTKXw = λXTXw, obtain
eigenvectorsw1, . . . ,wK with largestK eigenvaluesλ1 ≥ . . . ≥ λK;

Form mapping functionsψj(x) =
√
λjw

T
j x, j = 1, . . . , K, and finally

Ψ(x) = [ψ1(x), . . . , ψK(x)]T defines the mappingΨ.

MLSI recovers LSI when β = 0.
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MLSI: Dual Form

Dual form is obtained by applyingrepresenter theorem and definedual vari-
able α as

w = XTα.

This leads to the equivalentdual form with respect toα:

max
α∈RN

αTKxKKxα

s.t. αTK2
xα = 1.

Kx = XXT , Ky = YYT , K = (1− β)Kx + βKy.

This is a simpler problem for N < M .
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Primal versus Dual

Which form to choose in real world applications?

Primal MLSI solves anM ×M generalized eigenvalue problem

– more efficient whenM < N

– can only learn alinear mapping forX

Dual MLSI solves anN ×N generalized eigenvalue problem

– more efficient whenN < M (usually true for text data)

– can learnnon-linear mappings using kernel trick
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Connection to Related Work

MLSI is more general to other supervised projection methods.

Fisher Discriminant Analysis (FDA)

– Only deal with binary classification problem

– Can only handle one output

Canonical Correlation Analysis (CCA)

– Only minimize the correlation betweenX andY

– Ignore intrinsic correlations of bothX andY

Partial Least Square (PLS)

– A penalized CCA

– Can not generalize well to new data
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Experiment Setup

The Goal: Evaluate indexing methods for multi-label classification.

Data sets

– Reuters-21578: 1600 documents with 6076 words, 47 categories

– RCV1: 3588 documents with 5496 words, 79 categories

Preprocessing

– Take categories with at least 50 documents

– Pick up words that occur at least 5 times in documents

– Use TFIDF features
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Methodology

We compare three methods:

Full Features: Use all features to do classification

LSI: Classification with new unsupervised features

MLSI: Classification with new supervised features

We test two settings for each data set:

Setting (I): We pick up70% categories for classification and employ 5-fold
cross-validation with one fold training and 4 folds testing

Setting (II): Evaluate the classification performance on the rest30% cate-
gories for previously unseen data with newly derived features
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Results for Reuters-21578

MLSI is significantly better than LSI.
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Results for RCV1

MLSI is significantly better than Full Features in setting (II).
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Sensitivity of β for MLSI

setting (I) setting (II)
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Conclusion

MLSI has the following advantages:

It is supervised and incorporates label information

It considers both the inter-correlation betweenX and Y, and the intra-
correlation ofY

Both linear and non-linear mappings are easy to derive

It handles multiple outputs simultaneously

It takes LSI as a special case (whenβ = 0)

Experimental results are very encouraging.
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Future Works

Compare with other supervised projection methods

Automatically set parameterβ

Try larger data sets

Apply the indexing to information retrieval tasks


