
Techinical Proofs for

�Nonlinear Learning using Local Coordinate Coding�

1 Notations and Main Results

De�nition 1.1 (Lipschitz Smoothness) A function f(x) on Rd is (α, β, p)-Lipschitz smooth

with respect to a norm ‖ · ‖ if
|f(x′)− f(x)| ≤ α‖x− x′‖,

and

|f(x′)− f(x)−∇f(x)>(x′ − x)| ≤ β‖x− x′‖1+p,

where we assume α, β > 0 and p ∈ (0, 1].

De�nition 1.2 (Coordinate Coding) A coordinate coding is a pair (γ,C), where C ⊂ Rd is a

set of anchor points, and γ is a map of x ∈ Rd to [γv(x)]v∈C ∈ R|C| such that
∑

v γv(x) = 1. It

induces the following physical approximation of x in Rd:

γ(x) =
∑
v∈C

γv(x)v.

Moreover, for all x ∈ Rd, we de�ne the coding norm as

‖x‖γ =

(∑
v∈C

γv(x)2
)1/2

.

Proposition 1.1 The map x →
∑

v∈C γv(x)v is invariant under any shift of the origin for repre-

senting data points in Rd if and only if
∑

v γv(x) = 1.

Lemma 1.1 (Linearization) Let (γ,C) be an arbitrary coordinate coding on Rd. Let f be an

(α, β, p)-Lipschitz smooth function. We have for all x ∈ Rd:∣∣∣∣∣f(x)−
∑
v∈C

γv(x)f(v)

∣∣∣∣∣ ≤ α ‖x− γ(x)‖+ β
∑
v∈C
|γv(x)| ‖v − γ(x)‖1+p .

De�nition 1.3 (Localization Measure) Given α, β, p, and coding (γ,C), we de�ne

Qα,β,p(γ,C) = Ex

[
α‖x− γ(x)‖+ β

∑
v∈C
|γv(x)| ‖v − γ(x)‖1+p

]
.
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De�nition 1.4 (Manifold) A subsetM⊂ Rd is called a p-smooth (p > 0) manifold with intrinsic

dimensionality m = m(M) if there exists a constant cp(M) such that given any x ∈M, there exists

m vectors v1(x), . . . , vm(x) ∈ Rd so that ∀x′ ∈M:

inf
γ∈Rm

∥∥∥∥∥∥x′ − x−
m∑
j=1

γjvj(x)

∥∥∥∥∥∥ ≤ cp(M)‖x′ − x‖1+p.

De�nition 1.5 (Covering Number) Given any subset M⊂ Rd, and ε > 0. The covering num-

ber, denoted as N (ε,M), is the smallest cardinality of an ε-cover C ⊂M. That is,

sup
x∈M

inf
v∈C
‖x− v‖ ≤ ε.

Theorem 1.1 (Manifold Coding) If the data points x lie on a compact p-smooth manifold M,

and the norm is de�ned as ‖x‖ = (x>Ax)1/2 for some positive de�nite matrix A. Then given any

ε > 0, there exist anchor points C ⊂M and coding γ such that

|C| ≤ (1 +m(M))N (ε,M),

Qα,β,p(γ,C) ≤ [αcp(M) + (1 +
√
m+ 21+p√m)β] ε1+p.

Moreover, for all x ∈M, we have ‖x‖2γ ≤ 1 + (1 +
√
m)2.

Given a local-coordinate coding scheme (γ,C), we approximate each f(x) ∈ Faα,β,p by

f(x) ≈ fγ,C(ŵ, x) =
∑
v∈C

ŵvγv(x),

where we estimate the coe�cients using ridge regression as:

[ŵv] = arg min
[wv ]

[
n∑
i=1

φ (fγ,C(w, xi), yi) + λ
∑
v∈C

(wv − g(v))2
]
, (1)

Theorem 1.2 (Generalization Bound) Suppose φ(p, y) is Lipschitz: |φ′1(p, y)| ≤ B. Consider

coordinate coding (γ,C), and the estimation method (1) with random training examples Sn =
{(x1, y1), . . . , (xn, yn)}. Then the expected generalization error satis�es the inequality:

ESn Ex,yφ(fγ,C(ŵ, x), y)

≤ inf
f∈Fα,β,p

[
Ex,yφ (f(x), y) + λ

∑
v∈C

(f(v)− g(v))2
]

+
B2

2λn
Ex‖x‖2γ +BQα,β,p(γ,C).

Theorem 1.3 (Consistency) Suppose the data lie on a compact manifold M ⊂ Rd, and the

norm ‖ · ‖ is the Euclidean norm in Rd. If loss function φ(p, y) is Lipschitz. As n→∞, we choose

α, β →∞, α/n, β/n → 0 (α, β depends on n), and p = 0. Then it is possible to �nd coding (γ,C)
using unlabeled data such that |C|/n→ 0 and Qα,β,p(γ,C)→ 0. If we pick λn→∞, and λ|C| → 0.
Then the local coordinate coding method (1) with g(v) ≡ 0 is consistent as n→∞:

lim
n→∞

ESn Ex,yφ(f(ŵ, x), y) = inf
f :M→R

Ex,yφ (f(x), y) .
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2 Proofs

2.1 Proof of Proposition 1.1

Consider a change of the Rd origin by u ∈ Rd, which shifts any point x ∈ Rd to x + u, and points
v ∈ C to v + u. The shift-invariance requirement implies that after the change, we map x + u to∑

v∈C γv(x)v + u, which should equal
∑

v∈C γv(x)(v + u). This is equivalent to u =
∑

v∈C γv(x)u,
which holds if and only if

∑
v∈C γv(x) = 1.

2.2 Proof of Lemma 1.1

For simplicity, let γv = γv(x) and x′ = γ(x) =
∑

v∈C γvv. We have

|f(x)−
∑
v∈C

γvf(v)| ≤|f(x)− f(x′)|+

∣∣∣∣∣∑
v∈C

γv(f(v)− f(x′))

∣∣∣∣∣
=|f(x)− f(x′)|+

∣∣∣∣∣∑
v∈C

γv(f(v)− f(x′)−∇f(x′)>(v − x′))

∣∣∣∣∣
≤|f(x)− f(x′)|+

∑
v∈C
|γv||(f(v)− f(x′)−∇f(x′)>(v − x′))|

≤α‖x− x′‖2 + β
∑
v∈C
|γv|‖x′ − v‖1+p.

This implies the bound.

2.3 Proof of Theorem 1.1

Let m = m(M). Given any ε > 0, consider an ε-cover C ′ ofM with |C ′| ≤ N (ε,M). Given each
u ∈ C ′, de�ne Cu = {v1(u), . . . , vd(u)}, where vj(u) are de�ned in De�nition 1.4. De�ne the anchor
points as

C = ∪u∈C′{u+ vj(u) : j = 1, . . . ,m} ∪ C ′.
It follows that |C| ≤ (1 +m)N (ε,M).

In the following, we only need to prove the existence of a coding γ on M that satis�es the
requirement of the theorem. Without loss of generality, we assume that ‖vj(u)‖ = ε for each u and
j, and given u, {vj(u) : j = 1, . . . ,m} are orthogonal with respect to A: v>j (u)Avk(u) = 0 when
j 6= k.

For each x ∈ M, let ux ∈ C ′ be the closest point to x in C ′. We have ‖x − ux‖ ≤ ε by the
de�nition of C ′. Now, De�nition 1.4 implies that there exists γ′j(x) (j = 1, . . . ,m) such that∥∥∥∥∥∥x− ux −

m∑
j=1

γ′j(x)vj(ux)

∥∥∥∥∥∥ ≤ cp(M)ε1+p.

The optimal choice is the A-projection of x−ux to the subspace spanned by {vj(ux) : j = 1, . . . ,m}.
The orthogonality condition thus implies that

m∑
j=1

γ′j(x)
2‖vj(ux)‖2 ≤ ‖x− ux‖2 ≤ ε2.
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Therefore
m∑
j=1

γ′j(x)
2 ≤ 1,

which implies that for all x:
m∑
j=1

|γ′j(x)| ≤
√
m.

We can now de�ne the coordinate coding of x ∈M as

γv(x) =


γ′j v = ux + vj(ux)

1−
∑m

j=1 γ
′
j v = ux

0 otherwise

.

This implies the following bounds:

‖x− γ(x)‖ ≤ cp(M)ε1+p

and∑
v∈C
|1−

∑
j = 1mγ′j | ‖v − γ(x)‖

1+p =|γux(x)|‖γ(x)− ux‖+
m∑
j=1

|γ′j(x)| ‖(v − ux)− (γ(x)− ux)‖1+p

(2)

≤(1 +
√
m)ε1+p

m∑
j=1

|γ′j(x)|(ε+ ε)1+p (3)

=[1 +
√
m+ 21+p√m]ε1+p. (4)

where we have used ‖v − ux‖ = ε, and ‖γ(x)− ux‖ ≤ ‖x− ux‖ ≤ ε.

2.4 Proof of Theorem 1.2

Consider n+ 1 samples Sn+1 = {(x1, y1), . . . , (xn+1, yn+1)}. We shall introduce the following nota-
tion:

[w̃v] = arg min
[wv ]

[
1
n

n+1∑
i=1

φ (fγ,C(w, xi), yi) + λ
∑
v∈C

w2
v

]
. (5)

Let k be an integer randomly drawn from {1, . . . , n+ 1}. Let [ŵ(k)
v ] be the solution of

[ŵ(k)
v ] = arg min

[wv ]

 1
n

∑
i=1,...,n+1;i 6=k

φ (fγ,C(w, xi), yi) + λ
∑
v∈C

w2
v

 ,
with the k-th example left-out.

We have the following stability lemma from [1], which can be stated as follows using our termi-
nology:
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Lemma 2.1 The following inequality holds

|fγ,C(ŵ(k), xk)− fγ,C(w̃, xk)| ≤
‖xk‖2γ
2λn

|φ′1(fγ,C(w̃, xk), yk)|.

By using Lemma 2.1, we obtain for all α > 0:

φ(fγ,C(w̃, xk), yk)− φ(fγ,C(ŵ(k), xk), yk)

=φ(fγ,C(w̃, xk), yk)− φ(fγ,C(ŵ(k), xk), yk)− φ′1(fγ,C(ŵ(k), xk), yk)(fγ,C(w̃, xk)− fγ,C(ŵ(k), xk))

+ φ′1(fγ,C(ŵ(k), xk), yk)(fγ,C(w̃, xk)− fγ,C(ŵ(k), xk))

≥φ′1(fγ,C(ŵ(k), xk), yk)(fγ,C(w̃, xk)− fγ,C(ŵ(k), xk))

≥− φ′1(fγ,C(ŵ(k), xk), yk)2‖xk‖2γ/(2λn)

≥−B2‖xk‖2γ/(2λn).

In the above derivation, the �rst inequality uses the convexity of φ(f, y) with respect to f , which
implies that φ(f1, y)−φ(f2, y)−φ′1(f2, y)(f1− f2) ≥ 0. The second inequality uses Lemma 2.1, and
the third inequality uses the assumption of the loss function.

Now by summing over k, and consider any �xed f ∈ Fα,β,p, we obtain:
n+1∑
k=1

φ(fγ,C(ŵ(k), xk), yk)

≤
n+1∑
k=1

[
φ(fγ,C(w̃, xk), yk) +

B

2λn
‖xk‖2γ

]

≤n

[
1
n

n+1∑
k=1

φ

(∑
v∈C

γv(xk)f(v), yk

)
+ λ

∑
v∈C

f(v)2
]

+
B2

2λn

n+1∑
k=1

‖xk‖2γ

≤n

[
1
n

n+1∑
k=1

[φ (f(xk), yk) +BQ(xk)] + λ
∑
v∈C

f(v)2
]

+
B2

2λn

n+1∑
k=1

‖xk‖2γ ,

where Q(x) = α ‖x− γ(x)‖ + β
∑

v∈C |γv(x)| ‖v − γ(x)‖
1+p. In the above derivation, the second

inequality follows from the de�nition of w̃ as the minimizer of (5). The third inequality follows from
Lemma 1.1. Now by taking expectation with respect to Sn+1, we obtain

(n+ 1)ESn+1φ(fγ,C(ŵ(n+1), xn+1), yn+1)

≤n

[
n+ 1
n

Ex,yφ (f(x), y) +
n+ 1
n

BQα,β,p(γ,C) + λ
∑
v∈C

f(v)2
]

+
B2(n+ 1)

2λn
Ex‖x‖2γ .

This implies the desired bound.

2.5 Proof of Theorem 1.3

Note that any measurable function f :M→ R can be approximated by Fα,β,p with α, β →∞ and
p = 0. Therefore we only need to show

lim
n→∞

ESn Ex,yφ(fγ,C(ŵ, x), y) = lim
n→∞

inf
f∈Fα,β,p

Ex,yφ (f(x), y) .
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Theorem 1.1 implies that it is possible to pick (γ,C) such that |C|/n→ 0 and Qα,β,p(γ,C)→ 0.
Moreover, ‖x‖γ is bounded.

Given any f ∈ Fα,β,0 and any n independent �xedA > 0; if we let fA(x) = max(min(f(x), A),−A),
then it is clear that fA(x) ∈ Fα,α+β,0. Therefore Theorem 1.2 implies that as n→∞,

ESn Ex,yφ(fγ,C(ŵ, x), y) ≤ Ex,yφ (fA(x), y) + o(1).

Since A is arbitrary, we let A→∞ to obtain the desired result.
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