Techinical Proofs for
“Nonlinear Learning using Local Coordinate Coding”

1 Notations and Main Results

Definition 1.1 (Lipschitz Smoothness) A function f(z) on R? is (a,3,p)-Lipschitz smooth
with respect to a norm || - || if

f(@) = f(@)] < allz — 2|,
and

(@) = f(2) = Vf(2)" (' — 2)| < Blla —2'||"*P,

where we assume a, 3 >0 and p € (0, 1].

Definition 1.2 (Coordinate Coding) A coordinate coding is a pair (,C), where C C R is a
set of anchor points, and v is a map of x € R? to [v,(2)]vec € RI€! such that 3" vo(z) = 1. It
induces the following physical approzimation of x in R%:

~y(x) = Z Yo ().

veC

Moreover, for all x € R, we define the coding norm as

1/2
]y = (Z %(:v)2> :

veC

Proposition 1.1 The map x — Y .o V(x)v is invariant under any shift of the origin for repre-
senting data points in R? if and only if >, vy (z) = 1.

Lemma 1.1 (Linearization) Let (v,C) be an arbitrary coordinate coding on RL. Let f be an
(o, B, p)-Lipschitz smooth function. We have for all x € R%:

<alz =@+ 8 @]l =)

veC

‘f(fﬂ) = (@) f(v)

veC

Definition 1.3 (Localization Measure) Given «, 3,p, and coding (v,C), we define

Qa,ﬁ,p(’% C) =E;

allz = (@) + 8 (@)l [[v = ()|

veC



Definition 1.4 (Manifold) A subset M C RY is called a p-smooth (p > 0) manifold with intrinsic
dimensionality m = m(M) if there exists a constant c,(M) such that given any x € M, there exists
m vectors v1(x),...,vm(z) € R? s0 that Vo' € M:

m
inf |2/ —z— vi(2)|| < ep(M)||2" — x||*TP.
nf, 2 vi(@)| < cp(Mlla’ — ]

Definition 1.5 (Covering Number) Given any subset M C R%, and € > 0. The covering num-
ber, denoted as N (e, M), is the smallest cardinality of an e-cover C C M. That is,

sup inf ||z —v|| <e.
zeMvel

Theorem 1.1 (Manifold Coding) If the data points x lie on a compact p-smooth manifold M,
and the norm is defined as ||z|| = (x7 Az)Y/? for some positive definite matriz A. Then given any
€ > 0, there exist anchor points C C M and coding v such that

C] < (14 m(M)N (e, M),
Qo,3p(1,C) < [acy(M) + (1 + Vim + 257 /m) 8] €77,
Moreover, for all x € M, we have ||x||g <141+ ym)2

Given a local-coordinate coding scheme (v, C'), we approximate each f(x) € F¢ Bp DY

f( ) f% Zwv%}

veC

where we estimate the coefficients using ridge regression as:

Z¢ va’w xz y Yi +AZ )2]7 (1)

vel

[Wy] = arg mln

Theorem 1.2 (Generalization Bound) Suppose ¢(p,y) is Lipschitz: | (p,y)| < B. Consider
coordinate coding (y,C), and the estimation method (1) with random training ezamples S, =

{(x1,y1)s-- -, (n,yn)}. Then the expected generalization error satisfies the inequality:
Ez,yﬁb(fw,C(wax)vy)
< inf & (f(),y)+ A (f( +B—2E |2)|2 + BQa,sp(7,C)
T f€Fapp Hay = 2An oY B\ T2 %)

Theorem 1.3 (Consistency) Suppose the data lie on a compact manifold M C R?, and the
norm || - || is the Buclidean norm in R%. If loss function ¢(p,y) is Lipschitz. Asn — oo, we choose
o, — oo, a/n,B/n — 0 (a, B depends on n), and p = 0. Then it is possible to find coding (v, C)
using unlabeled data such that |C|/n — 0 and Qqp,(7,C) — 0. If we pick An — oo, and A\|C| — 0.
Then the local coordinate coding method (1) with g(v) = 0 is consistent as n — oo:

nh—{f)lo Es, Em,y¢(f(wa x)a y) = f:/i\flliR Ex,y¢ (f(ac), y) :



2 Proofs

2.1 Proof of Proposition 1.1

Consider a change of the R? origin by u € R¢, which shifts any point « € R% to = + u, and points
v € C to v + u. The shift-invariance requirement implies that after the change, we map x + u to
> vec Yo()v 4+ u, which should equal }°, .~ vy(x)(v + u). This is equivalent to u = > oY (®)u,
which holds if and only if > -y (z) = 1.

2.2 Proof of Lemmma 1.1

For simplicity, let v, = v,(x) and 2’ = y(z) = >, .o 7wv. We have

=l < @) = f@)]+ Y wlf @) - f(@)

veC veC

Y wlfw) = fa) = V) (v~ $’))|

veC

<If(@) = S+ ll(f ) = @) = V)T (0 —a'))

veC

<allz = a'lla+ 8 Iwllla’ — o'+
veC

=|f(z) — f@")] +

This implies the bound.

2.3 Proof of Theorem 1.1

Let m = m(M). Given any € > 0, consider an e-cover C’ of M with |C'| < N (e, M). Given each
u e ', define Cy, = {v1(u),...,vq(u)}, where vj(u) are defined in Definition 1.4. Define the anchor
points as
C =Upec{u+vju):j=1,...,mpucC’.
It follows that |C] < (1 +m)N (e, M).
In the following, we only need to prove the existence of a coding v on M that satisfies the

requirement of the theorem. Without loss of generality, we assume that ||v;(u)|| = € for each v and
J, and given u, {v;(u) : j = 1,...,m} are orthogonal with respect to A: va(u)AUk(u) = 0 when
J# k.

For each x € M, let u, € C' be the closest point to z in C’. We have ||z — u,|| < € by the
definition of C". Now, Definition 1.4 implies that there exists 7}(z) (j = 1,...,m) such that

T — Uy — Zﬁyj 2)v;(ug) || < cp(M)e TP,

The optimal choice is the A-projection of  —u, to the subspace spanned by {vj(u;): j=1,...,m}.
The orthogonality condition thus implies that

Z’VJ 2|lvj (ua)? < |z — ug||* < €



Therefore
m
> Aj@)? <,
j=1

which implies that for all x:

S @) < vim
j=1

We can now define the coordinate coding of © € M as

; V= Uy + vj(ug)
Yl(z) =49 1= V= U
0 otherwise

This implies the following bounds:
lz = (@)l < cp(M)e'*P

and

Yo=Y 0 =1l = (@) =y, (@)l (2 —MHZ!% (0 = uz) = (7(x) = ug) ||

vel
(2)
(L4 Vm)e P " ()| (e + €)' (3)
j=1
=[1 + /m + 2P /m]et P, (4)
where we have used ||v — uz|| =€, and ||y(x) — ug|| < ||z — uzl| < e.
2.4 Proof of Theorem 1.2
Consider n + 1 samples Sp+1 = {(1,91), .-+, (Tn+1,Yn+1)}. We shall introduce the following nota-
tion:
n+1
[Wy] = argmln Zd) Fro(w, ),y +)\Zw . (5)
veC

Let k be an integer randomly drawn from {1,...,n + 1}. Let [1211(, )] be the solution of

[ﬁ)q()k)] = arg min l Z o (f%c(w, i), Yi) + A Z w?] ,

n
[we] =1+ 1Ak vel

with the k-th example left-out.
We have the following stability lemma from [1], which can be stated as follows using our termi-
nology:



Lemma 2.1 The following inequality holds

| fyo (@™ ) — £ 0@, )| < Iz k”7|¢1(fw, (0, 7k), yr)|-

By using Lemma 2.1, we obtain for all a > 0:

O(fr,o(W, 2k), y) — ¢ (va(w(k)awk),yk)

=¢(fr.c(D, 1),y ) (fr.c (@™ ) yp) = S (o0 (@® ), y) (fr.o (@, 2x) = fr.o(@™),2)
+¢1( ( ’ﬂfk 7yk)(f’y, (717 k) — f'yC( w®) , Tk))

>¢1(f% ( ) )(fw (0, zy) — 7 o(w (k)al‘k:))

>~ (fre ( zk), uk) 2|2kl / (22n)

> - ||93k||7/(2)\n)'

In the above derivation, the first inequality uses the convexity of ¢(f,y) with respect to f, which
implies that ¢(f1,y) — ¢(f2,y) — 1 (f2,y)(f1 — f2) > 0. The second inequality uses Lemma 2.1, and
the third inequality uses the assumption of the loss function.

Now by summing over k, and consider any fixed f € F, g, we obtain:

n+1

Z (b(f%c(w(k) ) xk)v yk)
k=1

29 [¢ .10, + 5ol

1 n+1 2 n+1
[n 3o (S tontsn ) +3 5 g0 + 35S
k=1 vel veC
1 n+1 2 n+1
[n Faw),uk) + BQar) + A f(v)? ZH 213,
k=1 veC
where Q(z) = allz —y(x)|| + B ,cc [Vo(@)] v — ~(2)|[*P. In the above derivation, the second

inequality follows from the definition of @ as the minimizer of (5). The third inequality follows from
Lemma 1.1. Now by taking expectation with respect to Sp+1, we obtain

(n + 1)Esn+1¢(f’y C( ﬂ+ ) $n+1)7 yn+1)

" By (F0)o0) + T BQu (1, C) + A Y F(0)

veC

BQ(n—i—l)

<n Eq||z]l3.

This implies the desired bound.

2.5 Proof of Theorem 1.3

Note that any measurable function f : M — R can be approximated by F, g, with a, 3 — oo and
p = 0. Therefore we only need to show

lim Eg, Egyd(fyc(@,2),y) = lim inf E;,é(f(z),y).
n—oo n—oo feF, g.p



Theorem 1.1 implies that it is possible to pick (v, C') such that |C|/n — 0 and Q4 (7,C) — 0.
Moreover, ||z||, is bounded.

Given any f € F, 3,0 and any n independent fixed A > 0; if welet f4(2) = max(min(f(x), A), —A),
then it is clear that fa(x) € Faa+8,0- Therefore Theorem 1.2 implies that as n — oo,

ESn Ez,y¢(f7,€(w7 ZU), y) < Em,y¢ (fA(x)v y) + O(D'

Since A is arbitrary, we let A — oo to obtain the desired result.
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