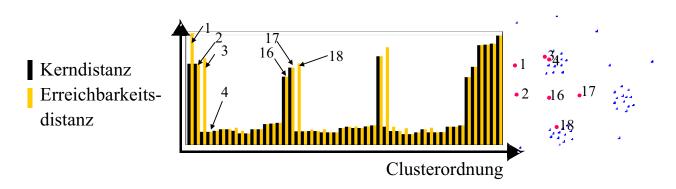
# Ludwig-Maximilians-Universität München Institut für Informatik

Dr. Peer Kröger Johannes Aßfalg, Karsten Borgwardt

# **Knowledge Discovery in Databases**


WS 2005/06

### Übungsblatt 5

Abgabe aller mit Hausaufgabe markierten Aufgaben bis Donnerstag, 8.12.2005, 8:30 Uhr, vor der Vorlesung beim Dozenten oder im Übungsbriefkasten

In der Woche vom 28.11.05 bis 2.12.05 entfallen Übungen und Vorlesung. Die Bearbeitungszeit für dieses Blatt beträgt daher 2 Wochen.

**Aufgabe 5-1** Zusammenhang zwischen DBSCAN und OPTICS **Hausaufgabe** 



Sei OPTICS auf eine Datenbank mit den Parametern  $\varepsilon$  und *MinPts* angewandt worden.

Geben Sie ein Verfahren an, wie man aus dem Resultat des OPTICS Laufes (Clusterordnung, Erreichbarkeitsdiagram und Kerndistanzdiagram) das DBSCAN-Clustering für ein gegebenes  $\varepsilon' \leq \varepsilon$  extrahieren kann! Benutzen Sie möglichst intuitiven Pseudocode.

Kann aus dem OPTICS-Ergebnis eine eindeutige Clusterzugehörigkeit abgeleitet werden, die DBSCAN bzgl. des gegebenen  $\varepsilon' \leq \varepsilon$  erzeugen würde? Mit anderen Worten: stimmt das Ergebnis ihres Verfahrens exakt mit dem Ergebis eines DBSCAN-Laufes bzgl.  $\varepsilon'$  überein? Begründen Sie Ihre Antwort!

### Aufgabe 5-2 Join-Schritt des Apriori-Algorithmus

Gegeben ist die Menge  $L_k$  der k-Frequent Itemsets. Im Join-Schritt des Apriori-Algorithmus wird aus dieser Menge die Menge  $C_{k+1}$  der (k+1)-Kandidaten berechnet.

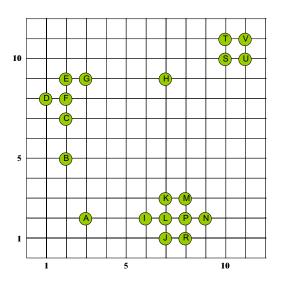
Beweisen Sie, daß der Join-Schritt korrekt ist, d.h. daß  $C_{k+1} \supseteq L_{k+1}$ .

# **Aufgabe 5-3** Apriori-Algorithmus

#### Hausaufgabe

Gegeben ist die Menge der Items  $I = \{A, B, C, D, E, F, G, H, I, K, L, M\}$ .

Weiterhin ist eine Menge von Transaktionen T laut folgender Tabelle gegeben:


Menge der Transaktionen  ${\cal T}$ 

| Transaktions ID | gekaufte Items |
|-----------------|----------------|
| 1               | BEGH           |
| 2               | ABCEGH         |
| 3               | ABCEFH         |
| 4               | BCDEFGHL       |
| 5               | ABEKH          |
| 6               | BEFGHIK        |
| 7               | ABDGH          |
| 8               | ABDG           |
| 9               | BDFG           |
| 10              | CEF            |
| 11              | ACEFH          |
| 12              | ABEG           |

Bestimmen Sie zum minimalen Support von 30% die häufig auftretenden Itemsets. Verwenden Sie dazu den Apriori-Algorithmus. Geben Sie insbesondere die Kandidatenmengen nach den Join-Schritten und nach den Prune-Schritten an, sowie die häufig auftretenden Itemsets mit ihrem jeweiligen Support.

Aufgabe 5-4 Outlier Detection

Gegeben ist - wieder einmal - der folgende 2-dimensionale Datensatz:



Verwenden Sie als Distanzfunktion auf den Punkten wieder die Manhattan-Distanz (L<sub>1</sub>-Norm):

$$L_1(x,y) = |x_1 - y_1| + |x_2 - y_2|$$

Bestimmen Sie die Outlier-Punkte der Tiefe 1 und 2 mit Hilfe der Depth-Based Outlier Detection!