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Abstract. Adaptable similarity queries based on quadratic form distance
functions are widely popular in data mining applications, particularly for do-
mains such as multimedia, CAD, molecular biology or medical image data-
bases. Recently it hasbeen recognized that quantization of feature vectorscan
substantially improve query processing for Euclidean distance functions, as
demonstrated by the scan-based VA-file and the index structure IQ-tree. In
this paper, we address the problem that determining quadratic form distances
between quantized vectors is difficult and computationally expensive. Our
solution provides a variety of new approximation techniques for quantized
vectorswhich are combined by an extended multistep query processing archi-
tecture. In our analysis section we show that the filter steps complement each
other. Consequently, it isuseful to apply our filtersin combination. We show
the superiority of our approach over other architectures and over competitive
query processing methods. In our experimental evaluation, the sequential
scan isoutperformed by afactor of 2.3. Compared to the X-tree, on 64 dimen-
sional color histogram data, we measured an improvement factor of 5.6.

1. Introduction

Similarity search in large databases has gained much attention during the last years. A successful
gpproach is provided by feature-based similarity models where appropriate properties of the ob-
jects are mapped to vectors of a usualy high-dimensional space. The similarity of objectsis
defined in terms of their distance in the feature space. In addition to the Euclidean distance func-
tionwhichisavery smplebut inflexible similarity measure, quadratic forms often provide more
gppropriate smilarity models. Given apositive definite so-called similarity matrix A, thedistance
of two vectorsp and qisdefined to be

disty(p. 0) = +/(p—q) ALp-0q)T.

Asthelocus of all points p having adistance dist (p, q) < € isan dllipsoid centered around
g, thequadratic form-based queriesarecalled € lipsoid queries[ 12] .Quadratic form distance func-
tions have been successfully employed for avariety of smilarity modelsin different domains. Ex-
amples include the color histogram model for color images in IBM's Query By Image Content
(QBIC) system [7, 8], histogram and non-histogram distances for images [13], the shape similarity
model for 3D surface segments in a biomolecular database [10], a 2D shape similarity model for
clip arts [3], a 3D shape histogram model for proteins [2], or a relevance feedback system [9].

It has been widely recognized that in many application domains, there is not simply one valid
measure for the similarity of objects. Instead, the notion of similarity changes with the user’s focus
of search. This observation has led to the need of user-adaptable similarity models where the user
may adapt the similarity distance function to changing application requirements or even personal
preferences. As an example, the color histogram approach was extended to become user-adaptable
[12]. The query system of [9] based on relevance feedback through multiple examples relies on
iterated modifications of the query matrix thus approaching the ‘hidden’ distance function in the
user’s mind.

For an efficient query evaluation, feature vectors are often managed in a multidimensional in-
dex. Various index structures have been proposed for this purpose [11, 14, 6]. Due to a bunch of
problems usually called theurse of dimensionalityéven specialized index structuresdeteriorate
with increasing dimension of the feature space. It has been shown [15] that in many Situations,
depending on parameters such as the dimension, the data distribution and the number of objects
inthe database, indexes often fail to outperform simpler eval uation methods based on the sequen-




tial scan of the set of feature vectors. The solution proposed by Weber, Schek and Bl ott istherefore
an improvement of the sequentia scan by quantizing the feature vectors, called VA-file[15]. The
genera ideaof the VA-fileisto store the features not with the full precision of e.g. 32 bit floating
point val ues but to use areduced number of bits. For thispurpose anirregular, quantile based grid
islaid over the dataspace. Following the paradigm of multistep query processing, candidates pro-
duced by thisfilter step are exactly evauated by a subsequent refinement step. The gain of the
lossy datacompression isareduced timeto load the feeture vectorsfrom secondary storage. Que-
riesusing Euclidean distance metric can be accelerated by factors up to 6.0 with thistechnique, if
the search is1/0 bound.

WhiletheVA-fileisan excellent choicefor Euclidean and weighted Euclidean distance metric,
severa problemscomeup whenthesimilarity measureisaquadratic formdistancefunction. First,
the scan based processing of ellipsoid queriesistypically CPU bound, because the determination
of thedistance function has quadrati c time compl exity with respect to the dimension of thefeature
space. Therefore, apure acceleration of thel/O timewill hardly improve the answer time. A sec-
ond problem isthat it isgenerdly difficult to determine the distance between the query point and
the grid approximation of the feature vector if the distance measure is agenera (i.e. not iso-ori-
ented) ellipsoid. Thereason isthat the intersection point between theellipsoid and the approxima-
tion cell can only be determined by expensive numerical methods.

Our solution to these problemsis a series of three filter steps with increasing evaluation cost
and decreas ng number of produced candidates. Thesefilter steps approximate both, the query -
lipsoid and the grid cdlls at different levels of accuracy. Our firg filter step performsanew kind
of approximation of the query dlipsoid, the approximation by an axis-parald dlipsoid. Asit cor-
responds to aweighted euclidean distance cal culation, this approximation can be evaluated very
efficiently for vector approximations. Unfortunately the selectivity of thisfilter step isfor some
query elipsoids not good enough as desired. The selectivity can be improved by large factors,
however, if thefirst filter isfollowed by anovel technique approximating thegrid cells. Thistech-
nique determines the di stance between the query point and the center of thegrid cell, additionaly
considering a maximum approximeation error. The maximum approximation error representsthe
maximum (ellipsoid) distance between the center point of thegrid cell and its most distant corner
point. Thiswill beour last filter step. Asthe determination of the maximum approximeation error
has quadratic time complexity, we propose as an intermediate filter step another conservative ap-
proximation of the maximum approximation error which can be determined in linear time.

Thebenefitsof our techniqueare not limited to theextension of the VA-fileapproach. Our filter
steps can alwaysbe applied when ellipsoid distancesto rectilinear rectangleshaveto beefficiently
estimated. For instance, the pageregions of most index structures are rectangular. Therefore, pro-
cessing the directory pages of a multidimensional index structure can be improved by our tech-
nique. Recently, the idea of vector approximation of grid cells was aso applied to index based
query processing inthe so-called | Q-tree[4]. Our multi-step query processing architectureenables
efficient processing of elipsoid queriesin the | Q-tree. Asone concrete example, however, we put
our focusinthispaper to processing of adaptablesimilarity queriesby the VA-file. Out of thefocus
of thispaper isdimensionality reduction [7, 12]. Reduction techniquesbased onthe principal com-
ponents anaysis, fourier transformation or similar methods can be applied to our technique and
al competitive techniques as a preprocessing step.

Therest of thispaper isorganized asfollows: In section 2 (related work) weintroduce various
techniques for evaluating dlipsoid queries and the vector quantization. In section 3 we describe
our novel techniques for approximating grid cells by minimum bounding elipsoidsin quadratic
time, our linear approximation of the minimum bounding €llipsoid and our new approximation of
the query elipsoid by an iso-oriented elipsoid. Section 4 is dedicated to the filter architecture.
Here, wedemonstratein what situation what filter has particular strengthsand how our threefilters
complement each other. Thus, it is useful to combine our three proposed filters, and each of the
filters yields additiona performance gains. The most efficient order of filter stepsis aso deter-
mined. Finally, we perform acomprehensive experimenta evaluation in section 5.

2. Related Work

The evauation of élipsoid queries requires quadratic time in the data and directory nodes of the
index. In order to reduce this effort, approximation techniques for elipsoid queries have been
developed that have alinear complexity thus supporting linear filter steps[1]. Conservative ap-
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proximations of query dlipsoids such as the minimum bounding sphere, the minimum bounding
box or the intersection of both guarantee no fal se dismissalsfor range queries. Asamore genera
concept, equivaent lower-bounding distance functions were presented that guarantee no fase
dismissasfor (k-)nearest neighbor queriesin addition to similarity range queries.

Sphere Approximation. The greatest lower-bounding sphere distance function d ;. a) Of
andli p30|d isascaed Euclidean distancefunction defined asfollows. Let Abeas mllarl?y %airi
and W n bethe minimum eigenvalue of the matrix A, then

dgips(ay (P &) = Wi Op—qf -

In[1], itis shown that the function dy,qp) isthe greatest scaled Euclldeen distance function
that lower boundsthe ellipsoid distance functiondy, i.e. foral p, g [ Od

dgibsa)(P: @) < da(p. 0) .

Note particularly that dynga) is well-defined since the eigenvalues of the positive definite simi-
larity matrix are posmve
In addition to the minimum bounding sphere, a so the minimum bounding box approximation has
been generalized to an equiva ent distance function:

Box Approximation. The greatest |ower-bounding box distance function dgp ) of an élip-
soid isaweighted maximum distance function. For any similarity matrix A, theinverse Al exists,
and we define:

Agibb(ay(P: ) = maxD—',' =1..d

The function dgpp ) is the greatest weighted maX|mum distance function that lower bounds the
dlipsoid distancefunction dy, i.e. foral p, g O O d

dgippay)(P: @) < A(p, a)

Vector Quantization. The general idea of the VA-file[15] isto store the components of the
featurevectorsnot withfull (e.g. 32 bit) precision, but with areduced precision of e.g. 5-6 bits. For
this purpose, the data space is partitioned by an irregular grid which is determined according to
the quantiles of the components of the feature vectors. Instead of the exact position of each point
inthe database, only the grid cell isstored in the VA-file. Scanning the reduced VA-fileinstead of
thefile containing the full precision datasaves|/O time proportional to the compressionrate. If a
cell is partidly intersected by the query region, it cannot be decided whether the point isin the
result set or not. Inthiscase, an expensivelookup to thefile containing thefull precision point data
isdue. Therefore, thisapproach correspondsto the paradigm of multistep query processing where
the distance to the grid cell isalower bound of the distance to the point. For Euclidean distance
measures, the distance to a given cell can be determined very efficiently by precomputing the
sguared distances between thequery point and thequantiles. Therefore, such adistancecalculation
can even be dightly chegper than determining the distance between two points.

Recently, the idea of vector quantization was adopted to index based query processing. Inthe
IQtree[4] aseparateregular grid islaid over each page region. Each data page has two represen-
tations. one contai ning the compressed (quantized) representation of the data points and the sec-
ond containing the pointsin full precision. The optimal precision for the compressed data page as
well as an optimal page schedule using a “fast index scan” operation are determined according to
a cost model [5].

3. Ellipsoid Querieson Quantized Vectors
Compared to axis-parallel ellipsoids and

spheres, it is much more difficult to determine
whether a general ellipsoid intersects a rectan .
gle. The reason for this difference is depicted

in figure 1: For the axis-parallel ellipsoid, the
closest point to the center of the ellipsoid can
be easily determined by projecting the centérig. 1. Distance determination of axis-paral-
point. In contrast, the general ellipsoid may intel and general ellipsoids to a rectangle




tersect the rectangle at its upper right corner although the center of the € lipsoid isunderneath the
lower boundary of the rectangle. This is impossible for unskewed ellipsoids and this property
facilitates distance determination for Euclidean and weighted Euclidean metric.

The exact ellipsoid distance between apoint and arectangle can therefore only be determined
by atime consuming numerical method [12], whichisnot suitable as afilter step. An approxima:
tion of the exact distance is needed which fulfills the lower bounding property. Our ideafor this
filter step isnot to approximeate the query (which isdonein another filter step) but to gpproximate
the rectangle. Unfortunately, the most common approximation by minimum bounding spheres
suffers from the same problem as the rectangleitsdlf: It isnumericaly difficult to determine the
ellipsoid distance between the query point and the sphere. A suitable gpproximation, however, is
an dlipsoid which has the same shape as the query dlipsoid, i.e. the same lengths and directions
of the principa axes. We will show in the following that this approximation can be determined
with low effort and that it can be used to define alower bounding of the exact ellipsoid distance.

3.1 TheMinimum Bounding Ellipsoid Approximation (M BE)

Wewant to determinetheminimum ellipsoid enclosing agivenrectangleR -~ Vimax
whichisgeometricaly smilar to the query dlipsoid. Dueto the convexity
of an dlipsoid, therectangleiscontained inthe dlipsoidif al of itscorners
are contained. But we cannot investigate all 24 corners of the rectangleto
determine the minimum bounding €llipsoid. We need to determine the cor-
ner of the rectangle with maximum (ellipsoid) distance from the center of  _. .
the rectangle. Thefollowing lemmawill show that it isthe corner whichis F19- 2. Minimum
closest to the eigenvector corresponding to the largest eigenval ue. boundingellipsoid

Lemmal. A rectangleiscontained in an ellipsoid with the same center iff the corner
which is closest to the eigenvector corresponding to the largest eigenvalue is contained
intheellipsoid.

Proof. Let A = VW2VT with VVT = Id, W? = diag(w?)_bethe diagonalization of A
where V; denotesthe eigenvector corresponding to the eigenvalue wiz, and let c beany of the cor-
ners of arectangle centered at the origin. To compute the ellipsoid distance of the corner ¢ to the
origin 0, consider the following transformation: cAET = cDVWRVT kT =
(cV) W2 cV)T = (cVW) {cVW) T . These terms are quadratic forms for the matrices A,
W2 ‘and Id applied to the vectors ¢, ¢V and cVW, respectively, i.e. d A€, 0) =d,\\2(C 0) =
dye(cV, 0) =d4(cVW, 0) = [cVW .

V\f)ue tothe orthogonal ity of V, al theorigina corner points c and transformed cornerscV have
thesame Euclidean distance |c| = |cV/| totheorigin. Only after theiso-oriented weighting by W,
i.e. stretching the axis € by the weight wi, the lengths [cVW differ. Let e, be the axis corre-
sponding to the maximum weight W,g, = max {w;} . The maximum vaue ofaTcVV\A isobtained
for thecorner cVthat is closest to the axis €,,,, i€ the angle between cV and g5, isSminimal:

B Ve C OV phax
max) = @C0S————— = ac0S———
|Vl Henay [

fC

™o

angle(cV, e

Proof. Atall, the corner ¢4 having the maximal distance value d(C,,,,» 0) isthe corner that
isclosest to vy, i-€. the eigenvector corresponding to the maximal eigenval ue. O
The corner closest to the largest eigenvector can be determined in linear time by considering
the sign of each component of the eigenvector: If thesignis positive, wetake the upper boundary
of therectanglein thisdimens on, otherwise the lower boundary. If acomponent isO, it makesno
differencewhethelr Wetﬁkethel ower or upper boundary becauseboth cornersyield equa distance:
Algorithm A4:
closé (e: vector [d], I: vector [d], u: vector[d]): vector[d]
fori:=1toddo

if €i] >= 0then closest[i] := (u[i] - I[i])/2;

eseclosest[i] := (I[i] - ui])/2;
If cisthe closest corner determined by algorithm A 4, thedistance dy, g isthe maximum €llipsoid
distance between the center of thegrid cell and an arbitrary point inthe cell wheredy,gg isgiven:

dyge = VCOALET




For the distance between an arbitrary point pin the cell with center point p. and the query point
q, thefollowing inequdlity holds:

da(p, 9) = da(Pe ) — dyge

Thisissmply aconsequence of thetriangleinequality whichisvalid for dlipsoid distances. The
computation of dy,gg has a quadratic time complexity, because the multiplication of the matrix
and avector isquadratic. In the next section, we will develop an additional approximation which
isan upper bound of dy,gg. Given aquery object and adatabase object, these gpproximations can
be evaluated in timelinear in the number of dimensions.

3.2 TheRhomboidal Ellipsoid Approximation (RE)

The computation of the gpproximated distance d(p.., 9) —dy g
isquadratic in the number of the dimensions. Thisisaready muc
better than determining the exact distance between query point and
approximation cell which can only be done by expensive numerical
methods. In order to further reduce the computational effort, we de-
velopinthissectionan additiona filtering tepwhichislinear inthe
number of dimensions. It would be possible to avoid the computa-
tion of dyygE for each item stored in the VA-file, if we would deter- <7
mine dyipe max i-6- the ellipsoid gpproximation of the largest cell
stored in the VA-file. Unfortunately, the sizes of the grid celsvary
extremely for red data sets due to the quantile concept. Therefore,
dvBE max 1S@bad approximation of most of the grid cells. Thesize
of anindividua cell must be considered in asuitable way.

Our way to consider the cell sSize isbased on the sum of the side lengths of the cell. Thissum
can obvioudy be determined in O(d) time. Theideaisto determinein apreprocessing step an el-
lipsoid which containsal cells having astandardized sum of the side lengths. If the actual sum of
thesidelengthsof agrid cell islarger or smaler than thisstandardized value, theellipsoidisscal ed,
which isan operation of constant time complexity.

Asdepictedinfigure 3thehull of al rectangleshavingasums=2; _; 45 of theextensions
5 of sformsarhomboid with diameter sor “radius”s2. The corners of the rhomboid are the unit
vectors, each multiplied withe®2 and 5/2, respectively. Due to convexity and symmetry, the min-
imum bounding ellipsoid of the rhomboid touches at least two of the corners, which are on oppo-
site sides with respect to the origin.

This observation leads to the following lemma:

Lemma2. For asimilarity matrix A = [a;], the minimum bounding ellipsoid over all
cellsthat haveasums=2;_; 45 of extensions has adistance value of

dee(s) = gmnaxua—”,i = 1...d}

Proof. The minimum bounding € lipsoid touches the rhomboid at the corners. Dueto symme-
try, wecanrestrict ourselvesto thepositiveunit vectorsscaledby s/ 2 ,i.e e [5/2,i = 1...d.
Therhombusistouched at the unit vector which hasthelargest ellipsoid di dancefromthe center,
because all other cornersmust not be outside of the elipsoid, and this distance equalstodg(S).
Proof. The elipsoid distance between the i-th unit vector g and the origin O is d,(e;, 0) =

/e, [A [eiT = Ja_” , and themaximum over thedimensionsi = 1...d isthesguareroot of the
maximal diagonal element of A, i.e. max{ d,(g;, 0)} = max{ A/aiii} . Scaling by s/2 iscom-
mutative with d, and with the maximum operator and, hence, the proposition holds. O

Withlemma2, we can estimate the maximum di stance between a point approximated by agrid
cell and the center of the grid cell. In contrast to the distance dy,gg introduced in section 3.1 this
bound can be determined inlinear time. Itisan upper bound of dy,gE, ascan be shown asfollows:

Lemma 3. drg(S) isan upper bound of dy,gEg.

Fig. 3. Rhomb. ellips. app.

Proof. Let Rh(s) be the locus of all pointsp where 2, - 1..dIp|< §2. By lemma 2, we know
that for each point p [ Rh(s) the ellipsoid distance to the origin d,(p, 0) Isat most dgg(s). Let
C(s) be an arbitrary grid cell centered at the origin having a sde sum of s. For every point



(a) original query elipsoid  (b) min. bound. rectangle (c) ratio of side lengths (d) scaled axis-parallel dlipsoid

-

Fig. 4. Construction of the minimum axis-parallel ellipsoid for agiven general ellipsoid

g 0 C(s) weknow that 2 -1 q|cj|< 5/2. It follows that dA(q, 0) < dge(S) . Asdygg isthe
maximum ellipsoid distance of alijpoi nts g O C(s) , we have

dyge = max{d,(q,0),q0C(s)} < dge(9) 0
Sincetherhomboidal ellipsoid approximation isless exact than the minimum bounding dlip-
soid gpproximation, it is likely to yield aworse filter selectivity (i.e. a higher number of candi-
dates). However, it can be determined by far faster. Wewill seein section 4 that the determination
of the rhomboida ellipsoid approximation causes almost no extracost compared to the MBE ap-
proximation, but avoids many expensive evaluations of the M BE approximation. Therefore, itis
intended to apply the combination of thesetwo filters.

3.3 Axis-Parallel Ellipsoid Approximation

In this section, we propose an additional filtering step which now approximates the query dlip-
soid, not the grid cdlls. In the next section, we will show that it isbeneficia to approximate both,
queries and grid cellsin separate filtering steps, because the two different approximation tech-
niques exclude quite different false hits from processing, and, therefore, the combination of both
methods yields a much better selectivity than either of the methods aone. We again propose an
gpproximation techniquewhich isparticularly well suited for grid based quantization. In the VA-
file (aswell asin the |Q-tree and any grid based method) the computation of weighted Euclidean
distancesisvery smple. Basically, it makes no difference whether to determine aweighted or an
unweightet Euclidean distance. Therefore, we approximate the generd query elipsoid by the
minimum axis-paralel dlipsoid that containsthe query dlipsoid.

The axis pardld elipsoid is constructed in two steps. In the first step, the ratio of the side
lengthsof theellipsoid isdetermined. It correspondstotheratio of thesidelengthsof theminimum
bounding rectangle of the dlipsoid. In the second step, the axis-paralld dlipsoid is scaled such
that itisaminimum bound of theorigind query elipsoid. Thisisdone by scaling both theorigina
and the axis-paralld dlipsoid non-uniformly such that the axis-parald dlipsoid becomes a
sphere. The matrix corresponding to the scaled original query dlipsoidisthen diagondizedto de-
terminethesmallest eigenva uew,,,i,,. Thiseigenvalue correspondsto thefactor by which theaxis-
paralle dlipsoid must be (uniformly) scaled such that it minimally boundsthe original query d-
:ci psoid. The process of constructing the minimum bounding axis-pardld elipsoid is shown in

igure4.

Lemma 4. Among al axis-parallel elipsoids our solution is a minimum bounding ap-
proximation of the query ellipsoid.

Proof. Followsimmediately from the construction process. O

4. Analysisof the Filter Architecture

In this section, we will develop afilter architecture for adaptable smilarity querieswhichis ad-
justed to the VA-file and other grid-based quantization methods and which optimizes query pro-
ng based on vector quanti zation. We have proposed three new approximation techniquesfor
this purpose in section 3, the minimum bounding ellipsoid approximation, the rhomboidal dlip-
soid agpproximation, and the minimum bounding axis-parale ellipsoid. Thefirst and second tech-
nique approximates the quantization cells by dlipsoids. The shape of these approximating elip-
soidsisdefined by the similarity matrix A. In contrast, the third technique approximatesthe query
ellipsoid by an axis-parallel dlipsoid which corresponds to aweighted euclidean distance calcu-
lation. We are now going to discussthe vari ous gpproximation techni ques according to their most
relevant parameters, computationa effort and filter selectivity.
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Fig. 5. Selectivity of axis-parallel approx.  Fig. 6. Selectivity of the MBE approx.

4.1 Basic Approximations

The axis-paralel gpproximation of the query dlipsoid requiresthe determination of the smallest
elgenvauewhichisdonein apreprocessng step when reading the similarity matrix for the query.

Although this operation has a bad time complexity, preprocessing operations are still considered

to be negligible aswe generally assume d « N . Once the smallest eigenvalue is determined, we

have only alinear effort O(d) per considered object. Asdiscussed in section 2, the VA-filedlows
aparticularly efficient determination of the wel ghted Euclidean distance between the query point

and the approximation cell, because the squared differences between the quantiles and the query

point can aso be precomputed outside the mainloop iterating over al objects. Therefore, d addi-

tions are the only floating point operations performed per object. To assess the selectivity of this

filter step, refer to figure 5. Here, we distinguish between queries which are more or less axis-

parald. Theleft sdeof figure 5 showsan elipsoid whichisvery well approximable. In contrast,

the right side presents an ellipsoid with an angle close to 45°. The axis-parallel approximations are
also depicted. Underlaid in gray is the volume which represents the approximation overhead.
Objects from this area are candidates produced by the filter step, however, they are no hits of the
similarity query. The smaller the gray overhead volume, i.e. the more axis-parallel the original
query ellipsoid, the better is the filter selectivity. Assuming a uniform distribution of points in the
data space, we would have a few percent overhead for the left query ellipsoid, but several hundred
percent overhead for the right query ellipsoid. For less axis-parallel original ellipsoids, the filter
selectivity is not sufficient.

The MBE approximation of the grid cells requires the highest CPU time of all considered fil-
ters. To determine whether a grid cell contains a candidate point or not, two ellipsoid distance com-
putations must be performed: First, the distance between the point and the center of the cell and
second, the distance between the center of the cell and the corner closest to the “largest” eigenvec-
tor have to be computed. To assess the selectivity of this filter, we apply a problem transformation.
For our analysis, we assume that all grid cells have identical shapes and, therefore, the minimum
bounding ellipsoids are all identical. This allows us to transform the problem in such a way that
we add the range of the MBE to the range of the query, as depicted in figure 6: In the left part, the
cell is a candidate if the query ellipsoid intersects the MBE approximation of the cell. In the right
part, we have transformed the query ellipsoid into a larger ellipsoid, where the range is the sum of
the two ranges of the query and the MBE. The cell is a candidate whenever the center of the cell
is contained in the enlarged ellipsoid. This concept of transformation is called Minkowski sum [5].
Again, in the right part of figure 6, the approximation overhead is marked in gray. Using this ap-
proximation, the overhead heavily depends on the size of the MBE approximation.

The RE approximation of the grid cells is very similar in both, computation time and selectivity.

In contrast to the MBE approximation, this techniques requires only one distance calculation: The
distance between the query point and the center of the grid cell. That means, one application of
this filter step causes about half the expenses compared to one application of the MBE filter, as-
suming that all other cost are negligible. For this technique, we have a similar selectivity assess-
ment as for the MBE approximation depicted in figure 6. The only difference is that the ellipsoid
approximating the cell is not minimal. Therefore, also the Minkowski sum and the implied ap-
proximation overhead are larger than the MBE overhead in figure 6.

Last but not least, we have to consider the cost of the refinement step. The computational cost
is limited to a single ellipsoid distance computation, which is even less expensive than an appli-
cation of the MBE filter and comparable to the cost of the RE filter. In contrast to all described
filter steps, the refinement step works on the exact coordinates of the data point and not on the grid
approximation. Therefore, the point must be loaded from background storage which usually caus-
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esone costly seek operation on the disk drive. Therefinement step isthe most expensive step un-
|ess the distance cd culation cost exceed the cost for a random disk access. Table 1 summarizes
the results of thissection.

4.2 Combined Approximations Table 1: Cost and selectivity of filters
In this section, we show that the combined ap-
plication of the developed filtersisuseful and |  Technique Cost Selectivity

results in systematic performance advantages -
compared to the gpplication of asingle filter. | axis parallel o(d)
First we consider the combined application of | ellip. approx.
the MBE filter and the rhomboidal ellipsoid > .
filter. We first show that the combined appli- | MBE approx. | 2 [0(d) fair
cation of MBE and RE does not cause any 2 :
considerable extracost compared to the appli- rhomb. ell. . | 10O(d) medium
cation of the MBE filter done. The applica- , 10 +1
tion of the MBE filter requires the digance | &@ctdistance | (oo
calculation between the query point and the
center of the cell, and the distance calculation between the cell center and acell corner. The RE
filter requiresthe distance cal cul ation between the query point and the center of the cell only. All
other cost arenegligible. If wefirst apply the RE filter and thenthe M BE filter, the MBE filter may
reuse the distance evaluated by the RE filter. The combined application performs one distance
calculation for al points and a second cal culation for those points which are not excluded by the
RE filter. Whether the filter combination is more efficient than the application of the MBE filter
aone depends on the selectivity of the two filters. We know that the MBE filter is a least as
s ective asthe RE filter. However, if the MBE filter does not save additional 1/0 accesses com-
pared to the RE filter, the additional distance calculations lead to a performance deterioration.
Since 1/0 accesses are usualy much more expensive than distance ca culations, the breakeven
point can be reached when the MBE filter is only dightly more selective than the RE filter. Our
experimental evaluation will show, that the selectivity of the MBE filter is significantly better. It
isbeneficia to apply the RE filter first and then the MBE filter, because the cost of the RE filter
arelower.

Next weare going to show that it is beneficia to combine the axis-parallel approximation and
the M BE approximation. Infigure 8, we can comparethe sdlectivitiesof thetwofilters. Incontrast
to the previoudy described combination, thefiltersare not lower bounds of each other, but access
rather different parts of the data space. The area of the main overhead of the axis-parale approx-
imation iswhere the query elipsoid is narrow (depicted on the left side of fig. 8). The MBE ap-
proximation, however, yields most of its overhead at the front and the bottom of the dlipsoid,
where the axis-paralel approximation yields no overhead at al. Therefore, the combined filter
yieldsadramatically improved selectivity compared to the axis-parale approximation aswell as
comparedtotheMBEfilter, asdepictedintherightmost il lustrationinfigure 8. Astheaxis-paralle
approximationisby far cheaper thanthe MBE filter, itisnatural to apply the axis-parallel approx-
imationfirst. For theorder of thesefilters, we consider thecost of thefilter step per evaluated point:

Caxis-par << CRE << CM BE << Cexax:t-

Therefore, we gpply the axis-pardld approximation asthefirst filter step. The second filter step
isthe RE filter. The MBE approximation isthe third filter followed by the refinement step.

low

exact

5. Experimental Evaluation

To evaluate our filter techniques experimentally, we have implemented a VA-file extension with
our four-step query processing architecture. Our implementation in C was tested on aHP C-160

Candidates of axis-parallel
Candidates of Combination
Candidates of MBE

Query hits
Candidates of MBE
Candidates of RE

Fig. 7. Combination of RE and MBE filters Fig. 8. Combined axis-parallel and MBE filter



workstation under the HPUX operating system. Both, vector quantizations and exact point data
were stored on the same disk drive with an average seek time of 8 ms and a transfer rate of
4 MByte/sfor continuous data transfer. The vector approximations were scanned in large blocks
of 1 MByte to minimize the influence of rotational delays or disk arm repositionings between
subsequent 1/0 requedts.

Our reference gpplication isasimilarity search system for color images which alows a user-
adaptable specification of the similarity measure based on color histograms[12]. Our dataset con-
tains 112,363 color images, each represented by a64-dimensional color histogram. We separated
our fileinto alarge datafile and asmaler query file by random sdlection. On our hardware, an
evauation of an ellipsoid distance cal culation needs 60 ps and a Euclidean distance calculation
requires about 0.5 ps. Our implementation performs elipsoid range queries. Unless otherwise
mentioned our experiments determine the 2 nearest neighbors of 10 query points.

We generate the dmilaity matrices A = [a;] by the formula
a;; = exp(—a(d(,j)/d )2) from[8] where d(i, |) denoteﬁ{hecrossrsi milarity of thecol-
orél andj. Sincethe adapt 185 milarity model supportsthe modification of loca similarities, we
introduce _ three addltlonal paamelers O, Oy Op and define  d(i,j) =
srt(o, Ar?+ g _Ag? + 0, Ab?) in the RGB color space. For our queries, we use five different
parameter settings for the lfuple (0, 0,, Oy Op ), namely M4 (1, 100, 1, 1), M5 (1, 1, 1, 100),
M3 (100, 1, 1, 1), M,4 (100, 100, 1, 1, 1) and Ms(1,1,1,1).

Inthe previous sections, we have postul ated severa claimswhich requirean experimental val-
idation beyond the actual proof of superiority over competitive techniques. The most important
clamsto justify our four-step query processing architecture were

» the superiority of the combination of the axis-para lel approximeation and the M BE filter and

» the benefit of the second filter step (RE approximation)

In our first experiment (cf. figure 9) we measure the se-
lectivities of the axis-parallel approximation and the
MBE filter both, separately as well as combined. As a-
ready pointed out in section 4, the quality of the axis-par-
allel approximation depends on the orientation of the que-
ry dlipsoid. Our elipsoid M4 has a bad sdlectivity
(14,473 candidates equivalent to 12.5% of dl points).
Only dlipsoid M3, which isalmost asphere, yields a sat-
isfactory sdlectivity of 3.3 candidates which means an
overhead of 1.3 candidates for 2 neighbors. The selectiv-
ity of the MBE filter, applied separatdly, iswith 457 can-
didates for elipsoid M, by far better than the selectivity 100

of the axis-parald approximation, but not satisfactorily. u_

For the queries M3, M, and Mg, the selectivity of the 0=
MBE filter is partly better, partly worse than that of the Mi M,
axis-parale approximation. The combination of both fil- P Ma g
ters, however, outperforms the separate applications of Fig. 9. Selectivity of filters.

the gpproximations by large factors (up to 176 compared

to the axis-paralel approximation and up to 5.6 compared to the MBE filter). Only for elipsoid
M3 where the axis-paralel approximation is almost optimal the combination does not yield fur-
ther selectivity improvements.

For the dlipsoids M, and M, the RE filter yieldsaround 12,000 candidates, and thus a selec-
tivity in the same order of magnitude as the axis-paralldl approximation. Now one may wonder
whether thesecond filter stepisuseful at al. Moreover, for dlipsoid Mg, the number of candidates
of the RE filter is even by afactor of 250 worse than the axis-pardld approximation. Our next
experiment depicted in figure 10, however, shows that the RE filter, like the MBE filter, is bene-
ficidly combinablewith the axis-paralel approximation. Aswe have pointed out in section 4, the
RE approximation asan additional filter stepisjudtifiedif it yieldsfewer candidatesthanthe axis-
parallel approximation but substantially more candidatesthanthe M BE filter (otherwise, theMBE
filter would be unnecessary). For thefirst two dllipsoids every filter step reducesthe candidate set
approximeately to 10%. Notethat thescaleinthisfigureislogarithmic. Inellipsoid M4, for instance,
the axis-pardle approximation reduces the candidate set from 112,000 to 14,473 (12.9%). The
second filter step reducesthis set further to 1,458 (10.1% of 14,473) and thethird filter step to 82

O Axis-Paral
m MBE Filter
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Number of Candidates
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(5.6% of 1,458). Even for dlipsoid Ms, for which the selectivity of the RE filter yielding 13,216
candidates(cf. figure 10) isextremely bad, the combination of theaxis-parallel approximationand
the RE filter clearly outperformsthe axis-pardld approximation by afactor 1.2.

The next experiment demonstrates the impact of the various numbers of candidates on the
overdl runtime of aquery. Therefore, we compare the runtime of our four-step architecture with
atwo-step architecture (axis-parallel approximation and refinement step) and alsowith two archi-
tectures consisting of three steps:. (1) axis-paralel approximation, RE approximation, refinement
step; (2) axis-paralle agpproximation, MBE approximation, refinement step. Figure 11 showsthe
results of our experiments using ellipsoid M inlogarithmic scale. In thisfigure the selectivity is
varied such that thenumber of retrieved neighborsrangesfrom 2 to 8. The performanceof thetwo-
step architecture performing merely the axis-parale approximation upon the VA fileisvery bad
(119 to 234 seconds of total time). Itisclearly outperformed by thethree-step and four-step archi-
tectures using our new types of cell gpproximation in combination with the axis-paralel approx-
imation. The architecture with the additional rhomboidal ellipsoid filter requires between 14 and
51 secondsand thusisup to 8.5 timesfaster. Theimprovement factor of thethree-step architecture
with the MBE filter is even higher, up to 28.3. The constantly best performance shows our four-
step architecture: 3.5t0 7.7 secondstota eapsed time with animprovement factor of 34 over the
two-step architecture.

Inalast seriesof experimentswe compareour new technique (four-step architecture) with two
competitive techniques, the sequentia scan and the X-treeindex. Both competitivetechniquesare
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20.0 140+ " *Our Technique
(ﬁ — X-Tree + Sphere Appx. (%) 120
2 150 Scan + Sphere Appx. g g /
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Fig. 12. Comparison with varying selectivity (I.) and scalabiltiy (r.)
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alowed to use the sphere approximation as afilter step. In theleft diagram of figure 12, we mea
sure again the total processing time with varying selectivity. The sequentia scan which requires
between 8.1 and 10.2 secondsisoutperformed by factorsbetween 1.3 and 2.3, and the X -treeindex
(17.1to 23.4 sec.) is outperformed by factors between 3.0 and 4.9. Theright diagram showsthe
same experiment with varying database size. With increasing database s ze, theimprovement fac-
tor over the X-tree dightly increases from 4.7 (40,000 points) to 5.0 (112,000 points) while the
improvement factor over the sequential scan remains constant at 2.3.

6. Conclusions

In this paper, we have proposed three new approximation techniquesto cope with the problem of
efficiently processing user adaptable smilarity querieson quantized vectors. Thefirst and second
filter approximate the cells of the quantization grid by elipsoids with the same principal axesas
the query dlipsoids and enable us to exploit the triangle inequality. The MBE approximation
determines the minimum bounding elipsoid for each quantized vector and, hence, requires a
quadratic time complexity. In contrast, the RE filter requireslinear timein query processing. Our
third new filter technique approximatesthe query whichisagenera elipsoid (corresponding to a
quadratic formdistance) by itsminimum bounding axis-parallel dlipsoid. Axis-paralldl dlipsoids
correspond to weighted Euclidean distances which can be evaluated with particular efficiency on
grid based query processing techniques such asthe VA-fileor the1Q tree. We propose amultistep
query processing architecture with threefilter steps (our new axis-parald approximation and our
new filters RE and MBE) and show the superiority over architectures with fewer filter stepsand
over competitive techniques theoretically as well as experimentaly. Our anylysis demonstrates
that our filters complement each other. Hence, it is useful to combine our three filters, and we
determine asuitable order of thefilter steps. In our experimental evaluation, the sequential scanis
outperformed by afactor of 2.3. Compared to the X-tree on 64 dimensional color histogram data,
we measured an improvement factor of 5.7. For our future work, we plan to integrate our new
gpproximation techniquesinto the 1Q-tree.
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