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Abstract. Adaptable similarity queries based on quadratic form distance
functions are widely popular in data mining applications, particularly for do-
mains such as multimedia, CAD, molecular biology or medical image data-
bases. Recently it has been recognized that quantization of feature vectors can
substantially improve query processing for Euclidean distance functions, as
demonstrated by the scan-based VA-file and the index structure IQ-tree. In
this paper, we address the problem that determining quadratic form distances
between quantized vectors is difficult and computationally expensive. Our
solution provides a variety of new approximation techniques for quantized
vectors which are combined by an extended multistep query processing archi-
tecture. In our analysis section we show that the filter steps complement each
other. Consequently, it is useful to apply our filters in combination. We show
the superiority of our approach over other architectures and over competitive
query processing methods. In our experimental evaluation, the sequential
scan is outperformed by a factor of 2.3. Compared to the X-tree, on 64 dimen-
sional color histogram data, we measured an improvement factor of 5.6.

1.  Introduction
Similarity search in large databases has gained much attention during the last years. A successful
approach is provided by feature-based similarity models where appropriate properties of the ob-
jects are mapped to vectors of a usually high-dimensional space. The similarity of objects is
defined in terms of their distance in the feature space. In addition to the Euclidean distance func-
tion which is a very simple but inflexible similarity measure, quadratic forms often provide more
appropriate similarity models. Given a positive definite so-called similarity matrix A, the distance
of two vectors p and q is defined to be

.

As the locus of all points p having a distance  is an ellipsoid centered around
q, the quadratic form-based queries are called ellipsoid queries [12].Quadratic form distance func-
tions have been successfully employed for a variety of similarity models in different domains. Ex-
amples include the color histogram model for color images in IBM’s Query By Image Content
(QBIC) system [7, 8], histogram and non-histogram distances for images [13], the shape similarity
model for 3D surface segments in a biomolecular database [10], a 2D shape similarity model for
clip arts [3], a 3D shape histogram model for proteins [2], or a relevance feedback system [9].

It has been widely recognized that in many application domains, there is not simply one valid
measure for the similarity of objects. Instead, the notion of similarity changes with the user’s focus
of search. This observation has led to the need of user-adaptable similarity models where the user
may adapt the similarity distance function to changing application requirements or even personal
preferences. As an example, the color histogram approach was extended to become user-adaptable
[12]. The query system of [9] based on relevance feedback through multiple examples relies on
iterated modifications of the query matrix thus approaching the ‘hidden’ distance function in the
user’s mind.

For an efficient query evaluation, feature vectors are often managed in a multidimensional in-
dex. Various index structures have been proposed for this purpose [11, 14, 6]. Due to a bunch of
problems usually called the ’curse of dimensionality’, even specialized index structures deteriorate
with increasing dimension of the feature space. It has been shown [15] that in many situations,
depending on parameters such as the dimension, the data distribution and the number of objects
in the database, indexes often fail to outperform simpler evaluation methods based on the sequen-
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tial scan of the set of feature vectors. The solution proposed by Weber, Schek and Blott is therefore
an improvement of the sequential scan by quantizing the feature vectors, called VA-file [15]. The
general idea of the VA-file is to store the features not with the full precision of e.g. 32 bit floating
point values but to use a reduced number of bits. For this purpose an irregular, quantile based grid
is laid over the data space. Following the paradigm of multistep query processing, candidates pro-
duced by this filter step are exactly evaluated by a subsequent refinement step. The gain of the
lossy data compression is a reduced time to load the feature vectors from secondary storage. Que-
ries using Euclidean distance metric can be accelerated by factors up to 6.0 with this technique, if
the search is I/O bound.

While the VA-file is an excellent choice for Euclidean and weighted Euclidean distance metric,
several problems come up when the similarity measure is a quadratic form distance function. First,
the scan based processing of ellipsoid queries is typically CPU bound, because the determination
of the distance function has quadratic time complexity with respect to the dimension of the feature
space. Therefore, a pure acceleration of the I/O time will hardly improve the answer time. A sec-
ond problem is that it is generally difficult to determine the distance between the query point and
the grid approximation of the feature vector if the distance measure is a general (i.e. not iso-ori-
ented) ellipsoid. The reason is that the intersection point between the ellipsoid and the approxima-
tion cell can only be determined by expensive numerical methods.

Our solution to these problems is a series of three filter steps with increasing evaluation cost
and decreasing number of produced candidates. These filter steps approximate both, the query el-
lipsoid and the grid cells at different levels of accuracy. Our first filter step performs a new kind
of approximation of the query ellipsoid, the approximation by an axis-parallel ellipsoid. As it cor-
responds to a weighted euclidean distance calculation, this approximation can be evaluated very
efficiently for vector approximations. Unfortunately the selectivity of this filter step is for some
query ellipsoids not good enough as desired. The selectivity can be improved by large factors,
however, if the first filter is followed by a novel technique approximating the grid cells. This tech-
nique determines the distance between the query point and the center of the grid cell, additionally
considering a maximum approximation error. The maximum approximation error represents the
maximum (ellipsoid) distance between the center point of the grid cell and its most distant corner
point. This will be our last filter step. As the determination of the maximum approximation error
has quadratic time complexity, we propose as an intermediate filter step another conservative ap-
proximation of the maximum approximation error which can be determined in linear time.

The benefits of our technique are not limited to the extension of the VA-file approach. Our filter
steps can always be applied when ellipsoid distances to rectilinear rectangles have to be efficiently
estimated. For instance, the page regions of most index structures are rectangular. Therefore, pro-
cessing the directory pages of a multidimensional index structure can be improved by our tech-
nique. Recently, the idea of vector approximation of grid cells was also applied to index based
query processing in the so-called IQ-tree [4]. Our multi-step query processing architecture enables
efficient processing of ellipsoid queries in the IQ-tree. As one concrete example, however, we put
our focus in this paper to processing of adaptable similarity queries by the VA-file. Out of the focus
of this paper is dimensionality reduction [7, 12]. Reduction techniques based on the principal com-
ponents analysis, fourier transformation or similar methods can be applied to our technique and
all competitive techniques as a preprocessing step.

The rest of this paper is organized as follows: In section 2 (related work) we introduce various
techniques for evaluating ellipsoid queries and the vector quantization. In section 3 we describe
our novel techniques for approximating grid cells by minimum bounding ellipsoids in quadratic
time, our linear approximation of the minimum bounding ellipsoid and our new approximation of
the query ellipsoid by an iso-oriented ellipsoid. Section 4 is dedicated to the filter architecture.
Here, we demonstrate in what situation what filter has particular strengths and how our three filters
complement each other. Thus, it is useful to combine our three proposed filters, and each of the
filters yields additional performance gains. The most efficient order of filter steps is also deter-
mined. Finally, we perform a comprehensive experimental evaluation in section 5.

2.  Related Work
The evaluation of ellipsoid queries requires quadratic time in the data and directory nodes of the
index. In order to reduce this effort, approximation techniques for ellipsoid queries have been
developed that have a linear complexity thus supporting linear filter steps [1]. Conservative ap-
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proximations of query ellipsoids such as the minimum bounding sphere, the minimum bounding
box or the intersection of both guarantee no false dismissals for range queries. As a more general
concept, equivalent lower-bounding distance functions were presented that guarantee no false
dismissals for (k-)nearest neighbor queries in addition to similarity range queries.

Sphere Approximation. The greatest lower-bounding sphere distance function  of
an ellipsoid is a scaled Euclidean distance function defined as follows. Let A be a similarity matrix,
and  be the minimum eigenvalue of the matrix A, then

.

In [1], it is shown that the function dglbs(A) is the greatest scaled Euclidean distance function
that lower bounds the ellipsoid distance function dA, i.e. for all :

.

Note particularly that dglbs(A) is well-defined since the eigenvalues of the positive definite simi-
larity matrix are positive.
In addition to the minimum bounding sphere, also the minimum bounding box approximation has
been generalized to an equivalent distance function:

Box Approximation. The greatest lower-bounding box distance function dglbb(A) of an ellip-
soid is a weighted maximum distance function. For any similarity matrix A, the inverse A–1 exists,
and we define:

The function dglbb(A) is the greatest weighted maximum distance function that lower bounds the
ellipsoid distance function dA, i.e. for all :

Vector Quantization. The general idea of the VA-file [15] is to store the components of the
feature vectors not with full (e.g. 32 bit) precision, but with a reduced precision of e.g. 5-6 bits. For
this purpose, the data space is partitioned by an irregular grid which is determined according to
the quantiles of the components of the feature vectors. Instead of the exact position of each point
in the database, only the grid cell is stored in the VA-file. Scanning the reduced VA-file instead of
the file containing the full precision data saves I/O time proportional to the compression rate. If a
cell is partially intersected by the query region, it cannot be decided whether the point is in the
result set or not. In this case, an expensive lookup to the file containing the full precision point data
is due. Therefore, this approach corresponds to the paradigm of multistep query processing where
the distance to the grid cell is a lower bound of the distance to the point. For Euclidean distance
measures, the distance to a given cell can be determined very efficiently by precomputing the
squared distances between the query point and the quantiles. Therefore, such a distance calculation
can even be slightly cheaper than determining the distance between two points.

Recently, the idea of vector quantization was adopted to index based query processing. In the
IQ tree [4] a separate regular grid is laid over each page region. Each data page has two represen-
tations: one containing the compressed (quantized) representation of the data points and the sec-
ond containing the points in full precision. The optimal precision for the compressed data page as
well as an optimal page schedule using a “fast index scan” operation are determined according to
a cost model [5].

3.  Ellipsoid Queries on Quantized Vectors
Compared to axis-parallel ellipsoids and
spheres, it is much more difficult to determine
whether a general ellipsoid intersects a rectan-
gle. The reason for this difference is depicted
in figure 1: For the axis-parallel ellipsoid, the
closest point to the center of the ellipsoid can
be easily determined by projecting the center
point. In contrast, the general ellipsoid may in-
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Fig. 1. Distance determination of axis-paral-
lel and general ellipsoids to a rectangle
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tersect the rectangle at its upper right corner although the center of the ellipsoid is underneath the
lower boundary of the rectangle. This is impossible for unskewed ellipsoids and this property
facilitates distance determination for Euclidean and weighted Euclidean metric. 

The exact ellipsoid distance between a point and a rectangle can therefore only be determined
by a time consuming numerical method [12], which is not suitable as a filter step. An approxima-
tion of the exact distance is needed which fulfills the lower bounding property. Our idea for this
filter step is not to approximate the query (which is done in another filter step) but to approximate
the rectangle. Unfortunately, the most common approximation by minimum bounding spheres
suffers from the same problem as the rectangle itself: It is numerically difficult to determine the
ellipsoid distance between the query point and the sphere. A suitable approximation, however, is
an ellipsoid which has the same shape as the query ellipsoid, i.e. the same lengths and directions
of the principal axes. We will show in the following that this approximation can be determined
with low effort and that it can be used to define a lower bounding of the exact ellipsoid distance.

3.1 The Minimum Bounding Ellipsoid Approximation (MBE)
We want to determine the minimum ellipsoid enclosing a given rectangle R
which is geometrically similar to the query ellipsoid. Due to the convexity
of an ellipsoid, the rectangle is contained in the ellipsoid if all of its corners
are contained. But we cannot investigate all 2d corners of the rectangle to
determine the minimum bounding ellipsoid. We need to determine the cor-
ner of the rectangle with maximum (ellipsoid) distance from the center of
the rectangle. The following lemma will show that it is the corner which is
closest to the eigenvector corresponding to the largest eigenvalue. 

Lemma 1.  A rectangle is contained in an ellipsoid with the same center iff the corner
which is closest to the eigenvector corresponding to the largest eigenvalue is contained
in the ellipsoid.

Proof. Let  with ,  be the diagonalization of A
where Vi denotes the eigenvector corresponding to the eigenvalue wi

2, and let c be any of the cor-
ners of a rectangle centered at the origin. To compute the ellipsoid distance of the corner c to the
origin 0, consider the following transformation:  =  =

 = . These terms are quadratic forms for the matrices A,
 and Id applied to the vectors c, cV and cVW, respectively, i.e.  =  =

 =  = .
Due to the orthogonality of V, all the original corner points c and transformed corners cV have

the same Euclidean distance  =  to the origin. Only after the iso-oriented weighting by W,
i.e. stretching the axis ei by the weight wi, the lengths  differ. Let emax be the axis corre-
sponding to the maximum weight wmax = max {wi}. The maximum value of  is obtained
for the corner cV that is closest to the axis emax, i.e. the angle between cV and emax is minimal:

Proof. At all, the corner cmax having the maximal distance value  is the corner that
is closest to vmax, i.e. the eigenvector corresponding to the maximal eigenvalue. ❏

The corner closest to the largest eigenvector can be determined in linear time by considering
the sign of each component of the eigenvector: If the sign is positive, we take the upper boundary
of the rectangle in this dimension, otherwise the lower boundary. If a component is 0, it makes no
difference whether we take the lower or upper boundary because both corners yield equal distance:

Algorithm A1:
closest (e: vector [d], l: vector [d], u: vector[d]): vector[d]

for i:=1 to d do
if e[i] >= 0 then closest[i] := (u[i] - l[i])/2 ;

else closest[i] := (l[i] - u[i])/2 ;
If c is the closest corner determined by algorithm A1, the distance dMBE is the maximum ellipsoid
distance between the center of the grid cell and an arbitrary point in the cell where dMBE is given:

Fig. 2. Minimum
bounding ellipsoid 

vmax
c

A VW2VT= VVT Id= W2 diag wi
2( )=
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c

------------------acos= =
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For the distance between an arbitrary point p in the cell with center point pc and the query point
q, the following inequality holds:

This is simply a consequence of the triangle inequality which is valid for ellipsoid distances. The
computation of dMBE has a quadratic time complexity, because the multiplication of the matrix
and a vector is quadratic. In the next section, we will develop an additional approximation which
is an upper bound of dMBE. Given a query object and a database object, these approximations can
be evaluated in time linear in the number of dimensions.

3.2 The Rhomboidal Ellipsoid Approximation (RE)
The computation of the approximated distance 
is quadratic in the number of the dimensions. This is already much
better than determining the exact distance between query point and
approximation cell which can only be done by expensive numerical
methods. In order to further reduce the computational effort, we de-
velop in this section an additional filtering step which is linear in the
number of dimensions. It would be possible to avoid the computa-
tion of dMBE for each item stored in the VA-file, if we would deter-
mine dMBE,max i.e. the ellipsoid approximation of the largest cell
stored in the VA-file. Unfortunately, the sizes of the grid cells vary
extremely for real data sets due to the quantile concept. Therefore,
dMBE,max is a bad approximation of most of the grid cells. The size
of an individual cell must be considered in a suitable way. 

Our way to consider the cell size is based on the sum of the side lengths of the cell. This sum
can obviously be determined in O(d) time. The idea is to determine in a preprocessing step an el-
lipsoid which contains all cells having a standardized sum of the side lengths. If the actual sum of
the side lengths of a grid cell is larger or smaller than this standardized value, the ellipsoid is scaled,
which is an operation of constant time complexity.

As depicted in figure 3 the hull of all rectangles having a sum s = Σi = 1…d si of the extensions
si of s forms a rhomboid with diameter s or “radius” s/2. The corners of the rhomboid are the unit
vectors, each multiplied with +s/2 and -s/2, respectively. Due to convexity and symmetry, the min-
imum bounding ellipsoid of the rhomboid touches at least two of the corners, which are on oppo-
site sides with respect to the origin.

This observation leads to the following lemma:

Lemma 2.  For a similarity matrix A = [aij], the minimum bounding ellipsoid over all
cells that have a sum s = Σi = 1…d si of extensions has a distance value of

Proof. The minimum bounding ellipsoid touches the rhomboid at the corners. Due to symme-
try, we can restrict ourselves to the positive unit vectors scaled by , i.e. , .
The rhombus is touched at the unit vector which has the largest ellipsoid distance from the center,
because all other corners must not be outside of the ellipsoid, and this distance equals to dRE(s).
Proof. The ellipsoid distance between the i-th unit vector ei and the origin 0 is  =

 = , and the maximum over the dimensions  is the square root of the
maximal diagonal element of A, i.e.  = . Scaling by  is com-
mutative with dA and with the maximum operator and, hence, the proposition holds. ❏

With lemma 2, we can estimate the maximum distance between a point approximated by a grid
cell and the center of the grid cell. In contrast to the distance dMBE introduced in section 3.1 this
bound can be determined in linear time. It is an upper bound of dMBE, as can be shown as follows :

Lemma 3. dRE(s) is an upper bound of dMBE.

Proof. Let Rh(s) be the locus of all points p where Σi = 1…d |pi| ≤ s/2. By lemma 2, we know
that for each point the ellipsoid distance to the origin  is at most dRE(s). Let
C(s) be an arbitrary grid cell centered at the origin having a side sum of s. For every point

dA p q,( ) dA pc q,( ) dMBE–≥

Fig. 3. Rhomb. ellips. app.

dA pc q,( ) dMBE–

dRE s( )
s
2
--- max aii i 1…d=,{ }⋅=

s 2⁄ ei s 2⁄⋅ i 1…d=

dA ei 0,( )
ei A ei

T⋅ ⋅ aii i 1…d=
max dA ei 0,( ){ } max aii{ } s 2⁄

p Rh s( )∈ dA p o,( )
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 we know that Σi = 1…d |qi| ≤ s/2. It follows that . As dMBE is the
maximum ellipsoid distance of all points , we have

❏

Since the rhomboidal ellipsoid approximation is less exact than the minimum bounding ellip-
soid approximation, it is likely to yield a worse filter selectivity (i.e. a higher number of candi-
dates). However, it can be determined by far faster. We will see in section 4 that the determination
of the rhomboidal ellipsoid approximation causes almost no extra cost compared to the MBE ap-
proximation, but avoids many expensive evaluations of the MBE approximation. Therefore, it is
intended to apply the combination of these two filters.

3.3 Axis-Parallel Ellipsoid Approximation
In this section, we propose an additional filtering step which now approximates the query ellip-
soid, not the grid cells. In the next section, we will show that it is beneficial to approximate both,
queries and grid cells in separate filtering steps, because the two different approximation tech-
niques exclude quite different false hits from processing, and, therefore, the combination of both
methods yields a much better selectivity than either of the methods alone. We again propose an
approximation technique which is particularly well suited for grid based quantization. In the VA-
file (as well as in the IQ-tree and any grid based method) the computation of weighted Euclidean
distances is very simple. Basically, it makes no difference whether to determine a weighted or an
unweightet Euclidean distance. Therefore, we approximate the general query ellipsoid by the
minimum axis-parallel ellipsoid that contains the query ellipsoid. 

The axis parallel ellipsoid is constructed in two steps. In the first step, the ratio of the side
lengths of the ellipsoid is determined. It corresponds to the ratio of the side lengths of the minimum
bounding rectangle of the ellipsoid. In the second step, the axis-parallel ellipsoid is scaled such
that it is a minimum bound of the original query ellipsoid. This is done by scaling both the original
and the axis-parallel ellipsoid non-uniformly such that the axis-parallel ellipsoid becomes a
sphere. The matrix corresponding to the scaled original query ellipsoid is then diagonalized to de-
termine the smallest eigenvalue wmin. This eigenvalue corresponds to the factor by which the axis-
parallel ellipsoid must be (uniformly) scaled such that it minimally bounds the original query el-
lipsoid. The process of constructing the minimum bounding axis-parallel ellipsoid is shown in
figure 4.

Lemma 4. Among all axis-parallel ellipsoids our solution is a minimum bounding ap-
proximation of the query ellipsoid.
Proof. Follows immediately from the construction process. ❏

4.  Analysis of the Filter Architecture
In this section, we will develop a filter architecture for adaptable similarity queries which is ad-
justed to the VA-file and other grid-based quantization methods and which optimizes query pro-
cessing based on vector quantization. We have proposed three new approximation techniques for
this purpose in section 3, the minimum bounding ellipsoid approximation, the rhomboidal ellip-
soid approximation, and the minimum bounding axis-parallel ellipsoid. The first and second tech-
nique approximates the quantization cells by ellipsoids. The shape of these approximating ellip-
soids is defined by the similarity matrix A. In contrast, the third technique approximates the query
ellipsoid by an axis-parallel ellipsoid which corresponds to a weighted euclidean distance calcu-
lation. We are now going to discuss the various approximation techniques according to their most
relevant parameters, computational effort and filter selectivity.

q C s( )∈ dA q o,( ) dRE s( )≤
q C s( )∈

dMBE max dA q o,( ) q C s( )∈,{ } dRE s( )≤=

(a) original query ellipsoid (b) min. bound. rectangle (c) ratio of side lengths (d) scaled axis-parallel ellipsoid

Fig. 4. Construction of the minimum axis-parallel ellipsoid for a given general ellipsoid
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4.1 Basic Approximations
The axis-parallel approximation of the query ellipsoid requires the determination of the smallest
eigenvalue which is done in a preprocessing step when reading the similarity matrix for the query.
Although this operation has a bad time complexity, preprocessing operations are still considered
to be negligible as we generally assume . Once the smallest eigenvalue is determined, we
have only a linear effort O(d) per considered object. As discussed in section 2, the VA-file allows
a particularly efficient determination of the weighted Euclidean distance between the query point
and the approximation cell, because the squared differences between the quantiles and the query
point can also be precomputed outside the main loop iterating over all objects. Therefore, d addi-
tions are the only floating point operations performed per object. To assess the selectivity of this
filter step, refer to figure 5. Here, we distinguish between queries which are more or less axis-
parallel. The left side of figure 5 shows an ellipsoid which is very well approximable. In contrast,
the right side presents an ellipsoid with an angle close to 45°. The axis-parallel approximations are
also depicted. Underlaid in gray is the volume which represents the approximation overhead.
Objects from this area are candidates produced by the filter step, however, they are no hits of the
similarity query. The smaller the gray overhead volume, i.e. the more axis-parallel the original
query ellipsoid, the better is the filter selectivity. Assuming a uniform distribution of points in the
data space, we would have a few percent overhead for the left query ellipsoid, but several hundred
percent overhead for the right query ellipsoid. For less axis-parallel original ellipsoids, the filter
selectivity is not sufficient.

The MBE approximation of the grid cells requires the highest CPU time of all considered fil-
ters. To determine whether a grid cell contains a candidate point or not, two ellipsoid distance com-
putations must be performed: First, the distance between the point and the center of the cell and
second, the distance between the center of the cell and the corner closest to the “largest” eigenvec-
tor have to be computed. To assess the selectivity of this filter, we apply a problem transformation.
For our analysis, we assume that all grid cells have identical shapes and, therefore, the minimum
bounding ellipsoids are all identical. This allows us to transform the problem in such a way that
we add the range of the MBE to the range of the query, as depicted in figure 6: In the left part, the
cell is a candidate if the query ellipsoid intersects the MBE approximation of the cell. In the right
part, we have transformed the query ellipsoid into a larger ellipsoid, where the range is the sum of
the two ranges of the query and the MBE. The cell is a candidate whenever the center of the cell
is contained in the enlarged ellipsoid. This concept of transformation is called Minkowski sum [5].
Again, in the right part of figure 6, the approximation overhead is marked in gray. Using this ap-
proximation, the overhead heavily depends on the size of the MBE approximation.

The RE approximation of the grid cells is very similar in both, computation time and selectivity.
In contrast to the MBE approximation, this techniques requires only one distance calculation: The
distance between the query point and the center of the grid cell. That means, one application of
this filter step causes about half the expenses compared to one application of the MBE filter, as-
suming that all other cost are negligible. For this technique, we have a similar selectivity assess-
ment as for the MBE approximation depicted in figure 6. The only difference is that the ellipsoid
approximating the cell is not minimal. Therefore, also the Minkowski sum and the implied ap-
proximation overhead are larger than the MBE overhead in figure 6. 

Last but not least, we have to consider the cost of the refinement step. The computational cost
is limited to a single ellipsoid distance computation, which is even less expensive than an appli-
cation of the MBE filter and comparable to the cost of the RE filter. In contrast to all described
filter steps, the refinement step works on the exact coordinates of the data point and not on the grid
approximation. Therefore, the point must be loaded from background storage which usually caus-

d N«

Fig. 5. Selectivity of axis-parallel approx.

qq

Fig. 6. Selectivity of the MBE approx.
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es one costly seek operation on the disk drive. The refinement step is the most expensive step un-
less the distance calculation cost exceed the cost for a random disk access. Table 1 summarizes
the results of this section.

4.2 Combined Approximations
In this section, we show that the combined ap-
plication of the developed filters is useful and
results in systematic performance advantages
compared to the application of a single filter.
First we consider the combined application of
the MBE filter and the rhomboidal ellipsoid
filter. We first show that the combined appli-
cation of MBE and RE does not cause any
considerable extra cost compared to the appli-
cation of the MBE filter alone. The applica-
tion of the MBE filter requires the distance
calculation between the query point and the
center of the cell, and the distance calculation between the cell center and a cell corner. The RE
filter requires the distance calculation between the query point and the center of the cell only. All
other cost are negligible. If we first apply the RE filter and then the MBE filter, the MBE filter may
reuse the distance evaluated by the RE filter. The combined application performs one distance
calculation for all points and a second calculation for those points which are not excluded by the
RE filter. Whether the filter combination is more efficient than the application of the MBE filter
alone depends on the selectivity of the two filters. We know that the MBE filter is at least as
selective as the RE filter. However, if the MBE filter does not save additional I/O accesses com-
pared to the RE filter, the additional distance calculations lead to a performance deterioration.
Since I/O accesses are usually much more expensive than distance calculations, the breakeven
point can be reached when the MBE filter is only slightly more selective than the RE filter. Our
experimental evaluation will show, that the selectivity of the MBE filter is significantly better. It
is beneficial to apply the RE filter first and then the MBE filter, because the cost of the RE filter
are lower.

Next we are going to show that it is beneficial to combine the axis-parallel approximation and
the MBE approximation. In figure 8, we can compare the selectivities of the two filters. In contrast
to the previously described combination, the filters are not lower bounds of each other, but access
rather different parts of the data space. The area of the main overhead of the axis-parallel approx-
imation is where the query ellipsoid is narrow (depicted on the left side of fig. 8). The MBE ap-
proximation, however, yields most of its overhead at the front and the bottom of the ellipsoid,
where the axis-parallel approximation yields no overhead at all. Therefore, the combined filter
yields a dramatically improved selectivity compared to the axis-parallel approximation as well as
compared to the MBE filter, as depicted in the rightmost illustration in figure 8. As the axis-parallel
approximation is by far cheaper than the MBE filter, it is natural to apply the axis-parallel approx-
imation first. For the order of these filters, we consider the cost of the filter step per evaluated point:

Caxis-par << CRE << CMBE << Cexact.
Therefore, we apply the axis-parallel approximation as the first filter step. The second filter step
is the RE filter. The MBE approximation is the third filter followed by the refinement step.

5.  Experimental Evaluation
To evaluate our filter techniques experimentally, we have implemented a VA-file extension with
our four-step query processing architecture. Our implementation in C was tested on a HP C-160

Table 1: Cost and selectivity of filters 

Technique Cost Selectivity

axis parallel 
ellip. approx.

O(d) low 

MBE approx. 2 ⋅ O(d2) fair

rhomb. ell. ap. 1 ⋅ O(d2) medium

exact distance
1 ⋅ O(d2) + 1 
random I/O

exact

Query hits

Candidates of MBE

Candidates of RE

Fig. 7. Combination of RE and MBE filters Fig. 8. Combined axis-parallel and MBE filter

Candidates of axis-parallel

Candidates of Combination

Candidates of MBE
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workstation under the HPUX operating system. Both, vector quantizations and exact point data
were stored on the same disk drive with an average seek time of 8 ms and a transfer rate of
4 MByte/s for continuous data transfer. The vector approximations were scanned in large blocks
of 1 MByte to minimize the influence of rotational delays or disk arm repositionings between
subsequent I/O requests.

Our reference application is a similarity search system for color images which allows a user-
adaptable specification of the similarity measure based on color histograms [12]. Our data set con-
tains 112,363 color images, each represented by a 64-dimensional color histogram. We separated
our file into a large data file and a smaller query file by random selection. On our hardware, an
evaluation of an ellipsoid distance calculation needs 60 µs and a Euclidean distance calculation
requires about 0.5 µs. Our implementation performs ellipsoid range queries. Unless otherwise
mentioned our experiments determine the 2 nearest neighbors of 10 query points.

We generate the similarity matrices  by the formula
 from [8] where  denotes the cross-similarity of the col-

ors i and j. Since the adaptable similarity model supports the modification of local similarities, we
introduce three additional parameters σr, σg, σb and define  =
sqrt( ) in the RGB color space. For our queries, we use five different
parameter settings for the tuple (σ, σr, σg, σb ), namely M1 (1, 100, 1, 1), M2 (1, 1, 1, 100),
M3 (100, 1, 1, 1), M4 (100, 100, 1, 1, 1) and M5 (1, 1, 1, 1).

In the previous sections, we have postulated several claims which require an experimental val-
idation beyond the actual proof of superiority over competitive techniques. The most important
claims to justify our four-step query processing architecture were

• the superiority of the combination of the axis-parallel approximation and the MBE filter and 
• the benefit of the second filter step (RE approximation)

In our first experiment (cf. figure 9) we measure the se-
lectivities of the axis-parallel approximation and the
MBE filter both, separately as well as combined. As al-
ready pointed out in section 4, the quality of the axis-par-
allel approximation depends on the orientation of the que-
ry ellipsoid. Our ellipsoid M1 has a bad selectivity
(14,473 candidates equivalent to 12.5% of all points).
Only ellipsoid M3, which is almost a sphere, yields a sat-
isfactory selectivity of 3.3 candidates which means an
overhead of 1.3 candidates for 2 neighbors. The selectiv-
ity of the MBE filter, applied separately, is with 457 can-
didates for ellipsoid M1 by far better than the selectivity
of the axis-parallel approximation, but not satisfactorily.
For the queries M3, M4 and M5, the selectivity of the
MBE filter is partly better, partly worse than that of the
axis-parallel approximation. The combination of both fil-
ters, however, outperforms the separate applications of
the approximations by large factors (up to 176 compared
to the axis-parallel approximation and up to 5.6 compared to the MBE filter). Only for ellipsoid
M3 where the axis-parallel approximation is almost optimal the combination does not yield fur-
ther selectivity improvements.  

For the ellipsoids M1 and M2, the RE filter yields around 12,000 candidates, and thus a selec-
tivity in the same order of magnitude as the axis-parallel approximation. Now one may wonder
whether the second filter step is useful at all. Moreover, for ellipsoid M5, the number of candidates
of the RE filter is even by a factor of 250 worse than the axis-parallel approximation. Our next
experiment depicted in figure 10, however, shows that the RE filter, like the MBE filter, is bene-
ficially combinable with the axis-parallel approximation. As we have pointed out in section 4, the
RE approximation as an additional filter step is justified if it yields fewer candidates than the axis-
parallel approximation but substantially more candidates than the MBE filter (otherwise, the MBE
filter would be unnecessary). For the first two ellipsoids every filter step reduces the candidate set
approximately to 10%. Note that the scale in this figure is logarithmic. In ellipsoid M1, for instance,
the axis-parallel approximation reduces the candidate set from 112,000 to 14,473 (12.9%). The
second filter step reduces this set further to 1,458 (10.1% of 14,473) and the third filter step to 82

A aij[ ]=
aij σ d i j,( ) dmax⁄( )2–( )exp= d i j,( )

d i j,( )
σr r∆ 2 σg g∆ 2 σb b∆ 2+ +
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(5.6% of 1,458). Even for ellipsoid M5, for which the selectivity of the RE filter yielding 13,216
candidates (cf. figure 10) is extremely bad, the combination of the axis-parallel approximation and
the RE filter clearly outperforms the axis-parallel approximation by a factor 1.2. 

The next experiment demonstrates the impact of the various numbers of candidates on the
overall runtime of a query. Therefore, we compare the runtime of our four-step architecture with
a two-step architecture (axis-parallel approximation and refinement step) and also with two archi-
tectures consisting of three steps: (1) axis-parallel approximation, RE approximation, refinement
step; (2) axis-parallel approximation, MBE approximation, refinement step. Figure 11 shows the
results of our experiments using ellipsoid M1 in logarithmic scale. In this figure the selectivity is
varied such that the number of retrieved neighbors ranges from 2 to 8. The performance of the two-
step architecture performing merely the axis-parallel approximation upon the VA file is very bad
(119 to 234 seconds of total time). It is clearly outperformed by the three-step and four-step archi-
tectures using our new types of cell approximation in combination with the axis-parallel approx-
imation. The architecture with the additional rhomboidal ellipsoid filter requires between 14 and
51 seconds and thus is up to 8.5 times faster. The improvement factor of the three-step architecture
with the MBE filter is even higher, up to 28.3. The constantly best performance shows our four-
step architecture: 3.5 to 7.7 seconds total elapsed time with an improvement factor of 34 over the
two-step architecture. 

In a last series of experiments we compare our new technique (four-step architecture) with two
competitive techniques, the sequential scan and the X-tree index. Both competitive techniques are
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allowed to use the sphere approximation as a filter step. In the left diagram of figure 12, we mea-
sure again the total processing time with varying selectivity. The sequential scan which requires
between 8.1 and 10.2 seconds is outperformed by factors between 1.3 and 2.3, and the X-tree index
(17.1 to 23.4 sec.) is outperformed by factors between 3.0 and 4.9. The right diagram shows the
same experiment with varying database size. With increasing database size, the improvement fac-
tor over the X-tree slightly increases from 4.7 (40,000 points) to 5.0 (112,000 points) while the
improvement factor over the sequential scan remains constant at 2.3. 

6.  Conclusions 
In this paper, we have proposed three new approximation techniques to cope with the problem of
efficiently processing user adaptable similarity queries on quantized vectors. The first and second
filter approximate the cells of the quantization grid by ellipsoids with the same principal axes as
the query ellipsoids and enable us to exploit the triangle inequality. The MBE approximation
determines the minimum bounding ellipsoid for each quantized vector and, hence, requires a
quadratic time complexity. In contrast, the RE filter requires linear time in query processing. Our
third new filter technique approximates the query which is a general ellipsoid (corresponding to a
quadratic form distance) by its minimum bounding axis-parallel ellipsoid. Axis-parallel ellipsoids
correspond to weighted Euclidean distances which can be evaluated with particular efficiency on
grid based query processing techniques such as the VA-file or the IQ tree. We propose a multistep
query processing architecture with three filter steps (our new axis-parallel approximation and our
new filters RE and MBE) and show the superiority over architectures with fewer filter steps and
over competitive techniques theoretically as well as experimentally. Our anylysis demonstrates
that our filters complement each other. Hence, it is useful to combine our three filters, and we
determine a suitable order of the filter steps. In our experimental evaluation, the sequential scan is
outperformed by a factor of 2.3. Compared to the X-tree on 64 dimensional color histogram data,
we measured an improvement factor of 5.7. For our future work, we plan to integrate our new
approximation techniques into the IQ-tree.
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