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Abstract

In this paper, we propose the Pyramid-Technique, a new index-
ing method for high-dimensional data spaces. The Pyramid-
Technique is highly adapted to range query processing using the
maximum metric L 5. In contrast to all other index structures,
the performance of the Pyramid-Technigue does not deteriorate
when processing range queries on data of higher dimensionality.
The Pyramid-Technique is based on a specia partitioning strat-
egy which isoptimized for high-dimensional data. The basicidea
isto divide the data space first into 2d pyramids sharing the cen-
ter point of the space as atop. In a second step, the single pyra-
midsare cut into dices parallél to the basis of the pyramid. These
dicesform the data pages. Furthermore, we show that this parti-
tion provides a mapping from the given d-dimensiona space to
al-dimensiona space. Therefore, we are ableto use aB+-treeto
manage the transformed data. As an analytical evaluation of our
techniquefor hypercube range queries and uniform data distribu-
tion shows, the Pyramid-Technique clearly outperforms index
structures using other partitioning strategies. To demonstrate the
practical relevance of our technique, we experimentally com-
pared the Pyramid-Technique with the X-tree, the Hilbert R-tree,
and the Linear Scan. The results of our experiments using
both, synthetic and real data, demonstrate that the Pyramid-
Technique outperforms the X-tree and the Hilbert R-tree by a
factor of up to 14 (number of page accesses) and up to 2500 (total
elapsed time) for range queries.

1 Introduction

During recent years, a variety of new database applications has
been devel oped which substantially differ from conventional da-
tabase applicationsin many respects. For example, new database
applications such as data warehousing [11] produce very large
relations which require amultidimensional view on the data, and
in areas such as multimedia[ 16, 20] acontent-based search is es-
sentia which is often implemented using some kind of feature
vectors. All the new applications have in common that the under-
lying database system has to support query processing on large
amounts of high-dimensional data. Now, the reader may ask
what the difference is between processing low- and high-dimen-
sional data. A result of recent research activities[5, 6, 23] isthat
basically none of the querying and indexing techniques which
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provide good results on low-dimensional data also performs suf-
ficiently well on high-dimensional data for larger queries. The
only approach taken to solve this problem for larger queries was
paralelization [2]. In this paper, however, we will tackle the
problems leading to the so-called curse of dimensionality. A va-
riety of new index structures [18, 19], cost models [5, 14] and
guery processing techniques [7, 4] have been proposed. Most of
the index structures are extensions of multidimensional index
structures adapted to the requirements of high-dimensional in-
dexing. Thus, al these index structures are restricted with re-
spect to the data space partitioning. Additionally, they suffer
from the well-known drawbacks of multidimensional index
structures such as high costs for insert and delete operations and
apoor support of concurrency control and recovery.

Motivated by these disadvantages of state-of-the-art index
structures for high-dimensiona data spaces, we developed the
Pyramid-Technique. The Pyramid-Technique is based on a spe-
cial partitioning strategy which is optimized for high-dimen-
siona data. The basic ideais to divide the data space such that
the resulting partitions are shaped like peels of an onion. Such
partitions cannot be efficiently stored by R-tree-like index struc-
tures. However, we achieve the partitioning by first dividing the
d-dimensional spaceinto 2d pyramids having the center point of
the space as their top. In a second step, the single pyramids are
cut into slices parallel to the basis of the pyramid forming the
data pages. As we will show both analytically and experimen-
tally, this strategy outperforms other partitioning strategieswhen
processing range queries. Furthermore, we will analytically
show that range query processing using our method is not af-
fected by the so-called “curse of dimensionality” i.e., the perfor-
mance of the Pyramid-Technique does not deteriorate when go-
ing to higher dimensions. Instead, the performance improves for
increasing dimension. Note that this analytical result is obtained
for hypercube shaped queries and uniform data distribution.
Queries, which touch the boundary of the data space, or very
skewed queries are handled less efficiently. However, as we will
show in the experimental section of this paper, even slightly
skewed queries can be handled efficiently.

Another advantage of the Pyramid-Technique is the fact that
we use a mapping from the givdrdimensional data space to a
1-dimensional space in order to achieve the mentioned onion-
like partitioning. Therefore, we can use hiBee [1, 10] to store
the data items and take advantage of all the nice propertiés of B
trees such as fast insert, update and delete operations, good con-
currency control and recovery, easy implementation and re-us-
age of existing B-tree implementations. The Pyramid-Tech-
nique can easily be implemented on top of an existing DBMS.

The rest of this paper is organized as follows: In section 2, we
give an overview of the related work in high-dimensional indexing
and show how the Pyramid-Technique is related to this work. In
section 3, we analyze the behavior of the space partitioning strat-
egy traditionally used by multidimensional index structures. In
section 4 and section 5 we present our new method, especially fo-



cusing on the query processing agorithm of the Pyramid-Tech-
nique. Then, we analyze in section 6 the benefits of the Pyramid-
Technique. To improve the performance of the Pyramid-Tech-
niquein case of real data, we propose some extensions of the Pyr-
amid-Technique in section 7. Finally, we present a variety of ex-
periments demonstrating the practical impact of our technique. A
discussion of the weaknesses and limitations of the Pyramid Tech-
nique will conclude the paper.

2 Related Work

Recently, a few high-dimensional index structures have been
proposed.

Lin, Jagadish and Faloutsos presented the TV -tree [19] which
is an R-tree-like index structure. The central concept of the TV -
tree is the telescope vector (TV). Telescope vectors divide at-
tributes into three classes: attributes which are common to all
data items in a subtree, attributes which are ignored and at-
tributes which are used for branching in the directory. The moti-
vation for ignoring attributesisthat asufficiently high selectivity
can often be achieved by considering only a subset of the at-
tributes. Therefore, the remaining attributes have no chance to
substantially contribute to query processing. Obvioudy, redun-
dant storage of common attributes does not contribute to query
processing either. The major drawback of the TV treeisthat in-
formation about the behavior of single attributes, e.g. their selec-
tivity, isrequired.

Another R-tree-like high-dimensional index structure is the
SS-tree[23] which uses spheresinstead of bounding boxesinthe
directory. Although the SS-tree clearly outperforms the R*-tree,
spheres tend to overlap in high-dimensional spaces. Thus, re-
cently aimprovement of the SS-tree has been proposed in [18],
where the concepts of the R-tree and SS-tree are integrated into
anew index structure, the SR-tree. The directory of the SR-tree
consists of spheres (SS-tree) and hyper-rectangles (R-tree) such
that the area corresponding to adirectory entry istheintersection
between the sphere and the hyper-rectangle. Therefore, the SR-
tree outperforms both the R* -tree and the SS-tree.

In[17], Jain and White introduced the VAM-Split R-tree and
the VAM-Split KD-tree. Both are static index structuresi.e. al
data items must be available at the time of creating the index.
VAM-Split trees are rather similar to KD-trees [21], however in
contrast to KD-trees, splits are not performed using the 50%-
guantile of the data according to the split dimension, but on the
val ue where the maximum variance can be achieved. VAM Split
treesarebuilt in main memory and then stored on secondary stor-
age. Therefore, the size of a VAM Split tree is limited by the
main memory available during the creation of the index.

In [6], the X-tree has been proposed which is an index struc-
ture adapting the algorithms of R*-trees to high-dimensional
data using two techniques: First, the X-tree introduces an over-
lap-free split algorithm which is based on the split history of the
tree. Second, if the overlap-free split algorithm would lead to an
unbalanced directory, the X-tree omits the split and the accord-
ing directory node becomes a so-called supernode. Supernodes
aredirectory nodes which are enlarged by a multiple of the block
size. The X-tree outperforms the R* -tree by afactor of up to 400
for point queries.

All these approaches have in common that they must use the
50%-quantile when splitting adata pagein order to fulfill storage
utilization guarantees. As we will show in the next Section, this
is the worst case in high-dimensional indexing, because the re-
sulting pages have an access probability close to 100%.

balanced partitioning of space. The proposed technique is an ef-
ficient bulk-loading operation of an X-tree. However, the ap-
proach is applicable only if all the data is knosvpriori which

is not always the case. Additionally, due to restrictions of the X-
tree directory, a peel-like partitioning cannot be achieved which
is important for indexing high-dimensional data spaces, as we
will see.

3 Analysisof Balanced Splits

Itis well-known that for low-dimensional indexes it is beneficial
to minimize the perimeter of the bounding boxes of the page re-
gions so that all sides of the bounding box have approximately
the same length [9]. Such space partitioning is usually achieved
by recursively splitting the data space into equally filled regions
i.e. at the 50%-quantile. Therefore, we call such a split strategy
“balanced split”. In the following cost model, we assume a data-
base ofN objects in a-dimensional data space. The points are
uniformly distributed in the unit hypercube [O,dl]As we will
show in the experimental part, our results are also valid for real
data which are correlated and clustered. Further, we assume hy-
percubes with side-lengthas queries, which are taken randomly
from the data space.

In high-dimensional spaces, some unexpected effects lead to
performance degeneration when applying a balanced split. For a
more detailed description of these effects we refer the reader to
[5]. The first observation is that, at least when applying balanced
partitioning to a uniformly distributed data set, the data space
cannot be split in each dimension. For example, assuming a 20-
dimensional data space which has been split exactly once in each
dimension, would require2™" =1,000,000 data pages or
30,000,000 data objects if the average page occupancy is 30 ob-
jects. Following the notation used in the literature we will call the
average page occupancy effective page capégty The data
space is usually split only once in a numtesf dimensions and
is not splitin the remainingl(- d) dimensions. Thus, the bound-
ing boxes of the page regions include almost the whole extension
of the data space in these dimensions. If we assume the data
space to be thé-dimensional unit hypercube [O,dllhe bound-
ing boxes have approximately side length 1/2 in d’ dimensions
and approximately side length 1 th<(d’) dimensions. The num-
berd’ of dimensions, splitting the data space exactly once can be
determined from the numb#k of objects stored in the database
and the effective page capacity, as follows:

N

).
Ceff

d'" = logy(

The second observation is that a similar property holds for typ-
ical range queries. If we assume that the range query is a hyper-
cube and should have a selectidtyhen the side lengthequals
to thed-th root of s: q = /s . For a 20-dimensional range
query with selectivity 0.01% we obtain a side length 0.63
which is larger than half of the extension of the data space in this
dimension.

It becomes intuitively clear that a query with side length larger
than 0.5 must intersect with every bounding box having at least
side length 0.5 in each dimension. However, we are able to
model this effect more accurate: The performance of a multi-di-
mensional range query is usually modeled by means of the so-
called Minkowski sum which transforms the range query into an
equivalent point query by enlarging the bounding boxes of the
pages accordingly [5]. In low-dimensional spaces, usually so-

To overcome this drawback, Berchtold, Béhm and Kriegel re- called boundary effects are neglected i.e., the data space is as-
cently proposed another approach in [3] where they applied un-sumed to be infinite and everywhere filled with objects accord-
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ing to the same density and therefore, no objects intersect the
boundary of the data space.

To determine the probability that the bounding box of a page
region intersects the query region, we consider the portion of the
data space in which the center point of the query must be located
such that query and bounding box intersect. Therefore, we move
the center point of the query, the query anchor, to each point of
the data space marking the positions where the query rectangle
intersects the bounding box (c.f. Figure 1). The resulting set of
marked positionsis called the Minkowski sum which isthe orig-
inal bounding box having all sides enlarged by the query side
length . Taking into account that the volume of the data space
is 1, the Minkowski sum directly correspondsto the intersection
probability. In practice, often acorner of thequery rather thanthe
center is used as query anchor. Let LLC; ; and URG; ; denote the

j-th coordinates of the “lower left” and “upper r'|ght" corner of

bounding boxi (0<i<N, 0<j<d ). The expected value

Pro bound (Q) for page accesses when processing a range quer

with side lengthy then is
d-1

Pno_bound_eff(q) = Z rl (URCi,j_LLCi’j +a)
i ]:O

In order to adapt this formula to boundary effects, especially
considering that the bounding boxes as well as the query hyper-
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-
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Figure 3: Partitioning Strategies

pendent or. As in our special case, all pages have the same ac-
cess probability and thus, the expected value of data page ac-
cesses is:

log, (=)

Cer(d)
. 9.5 0 eff
tmin(l, 5= o0

N
E (d,q,N) = ==
bal anced Ceff(d)
Note that we require the minimum to assure that the expected
value doesn’t exceed the total number of data pages and that we
are able to ignore the remainingd)-(d’) dimensions because the
extension of the data pages in these dimensions is 1.

Figure 2 depicts the cost of range query processing using bal-
anced splits, as estimated by our model. In this figure, the dimen-
sion is varied, whereas the database size and the selectivity of the
query is constant. The percentage of accessed pages quickly ap-
proaches the 100%-mark which is actually met at dimension 10.

yEfficient query processing is only possible in dimensions less
th

an 8.

This performance degeneration is a problem of all index struc-
tures which strive for a split at or close to the 50%-quantile of a
data set. The only way around this dilemma is to split in an un-
balanced way. Figure 3 depicts the partitions resulting from a
balanced and a peel-like split of the Pyramid-Technique in a 2-
dimensional example. As depicted, a large range query will in-

cubes are always positioned completely in the data space, we obtersect all of the partitions when splitting in a balanced way, but

tain:
-1

min(URC; ;,1-q) -max(LLC; ;—q, 0)

1-q

i

d
Ppound eff () = Z
i j=0

The minimum and maximum are necessary to cut the parts of
the Minkowski sum exceeding the data space, whereas the de
nominator (1 -q) is due to fact that the stochastic “event space”

of the query anchor is not [0, 1] but rather [@(]1The model for

balanced splits can be simplified if the number of data pages is

power of two. Then, all pages have the extension @sdimen-

sions, accommodated in the lower or the upper half of the data

space, and full extension in the remaining dimensionsCgy

only a few pages, when splitting in peels. Besides, in the 2-di-
mensional example the effect, that most pages are intersected by
the query can only be seen for a maximum of four pages. When
going to higher dimensions, e.g. to a 5-dimensional space, then
2°=32 pages can be created by splitting in each dimension ex-
actly once. In this case, all 32 pages are accessed. In contrast, the
pyramid technique yields 10 pyramids in the 5-dimensional data
space. Each pyramid is partitioned into three or 4 pieces. Like in
the 2-dimensional example, some of the partitions are very likely
not to be intersected by the query (In our figure, half of the pyr-

3amids are scanned completely. In the other half, only one out of

three partitions are read. Together, 10 page accesses are saved.
This effect becomes stronger with increasing dimension).

we denote the effective (average) capacity of a data page. Itis de-
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Figure 2: Estimated Cost of Query Proc. Using the X-Tree

4 The Pyramid-Technique

The basic idea of the Pyramid-Technique is to transforrd-thie
mensional data points into 1-dimensional values and then store
and access the values using an efficient index structure such as the
B*-tree [1, 10]. Potentially, any order-preserving one-dimensional
access method can be used. Operations such as insert, update, de-
lete or search operations are performed using thed®. Figure 4
depicts the general procedure of an insert operation and the pro-
cessing of a range query. In both casesgttignensional input is
transformed into some 1-dimensional information which can be
processed by the'Btree. Note that, although we index our data us-
ing a 1-dimensional key, we stodedimensional pointglus the
corresponding 1-dimensional key in the leaf nodes of thied®.
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Figure 4: Operationson Indexes

Therefore, we do not have to provide an inverse transformation.
The transformation itself is based on a specific partitioning of the
data space into a set of d-dimensional pyramids. Thus, in order to
definethetransformation, we first explain the data space partition-
ing of the Pyramid-Technique.

4.1 Data Space Partitioning

The Pyramid-Technique partitions the data space in two steps: in
the first step, we split the data space into 2d pyramids having the
center point of the data space (0.5, 0.5, ..., 0.5) as their top and a
(d-1)-dimensional surface of the data space as their base. In a
second step, each of the 2d pyramidsis divided into severa par-
titions each corresponding to one data page of the B*-tree. In the
2-dimensional example depicted in Figure 5, the space has been
divided into 4 triangles (the 2-dimensional anal ogue of the d-di-
mensional pyramids) which all have the center point of the data
space as top and one edge of the data space as base (Figure 5
left). In a second step, these 4 partitions are split again into sev-
eral data pages parallel to the base line (Figure 5 right). Given a
d-dimensional spaceinstead of the 2-dimensional space, the base
of the pyramid isnot al-dimensional linesuch asin the example,
but a (d-1)-dimensional hyperplane. As a cube of dimension d
has 2d (d-1)-dimensional hyperplanes as asurface, we obviously
obtain 2d pyramids.

Numbering the pyramids as in the 2-dimensional example in
Figure 6a, we can make the foll owing observationswhich arethe
basis of the partitioning strategy of the Pyramid-Technique: All
points located on the i-th (d-1)-dimensiona surface of the cube
(the base of the pyramid) have the common property that either
their i-th coordinate is O or their (i —d) -th coordinate is 1. We
observe that the base of the pyramidisa(d - 1)-dimensional hy-
perplane, because one coordinateisfixed and (d - 1) coordinates
are variable. On the other hand, al points v located in the i-th
pyramid p; have the common property that the distance in the i-
th coordinate from the center point is either smaller than the dis-

(d-1)-dimensiona surface pyramid

\ partition

center
point y4 N\
Data space

Figure5: Partitioning the Data Space into Pyramids
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Figure 6: Propertiesof Pyramids

tance of all other coordinates if i <d, or larger if i=d. More
formally:

0j, 0<j<d,j#i: (j05-v|<|0.5-y) if(i <d)
0j, 0 <d,j# (i—d): (|0.5-v(;_g)| 2[0.5-,|) if(i = d)

Figure 6b depicts this property in two dimensions: all points
located in the lower pyramid are obviously closer to the center
point in their dy-direction than in their dq-direction. This com-
mon property provides avery simple way to determinethe pyra-
mid p; which includes a given point v: we only have to determine
the dimension i having the maximum deviation |O.5—vi| from
the center. More formally:

Definition 1: (Pyramid of a point v)
A d-dimensiond point v is defined to be located in pyramid p;,

imax iy, <05)

0
0
I =0

0 (imax*+ @) if(y,_ 205)

(J max

= (j|(Ok, 0= (j, k) <d,j #k: [05-v| 2|0.5-v,))

J max

Notethat all further considerations are based on this definition
which thereforeis crucial for our technique.

Another important property is the location of a point v within
its pyramid. This location can be determined by a single value
which isthe distance from the point to the center point according
to dimension jy As this geometrically corresponds to the
height of the point within the pyramid, we call this location
height of v (c.f. Figure 7)

Definition 2: (Height of a point v)
Given ad-dimensional point v. Let p; be the pyramid in which v

is located according to Definition 1. Then, the height h,, of the
point v is defined as

h, = |0.5-V; mop

v height of v
v
P / \,
Data space Pyramid py

Figure 7: Height of a Point within it's Pyramid



Using Definition 1 and Definition 2, we are able to transform
ad-dimensiona point vinto avalue (i+h,) wherei istheindex of hhigh e o
the according pyramid p; and h, isthe height of vwithin p;. More - .
formally:

Definition 3: (Pyramid value of a point v)

Given ad-dimensional point v. Let p; be the pyramid in which v
is located according to Definition 1 and h,, be the height of v ac-
cording to Definition 2. Then, the pyramid value pv,, of v is de-
fined as

pv, = (i+h)

Notethat i isan integer and h,, isareal number in the range [0,

0.5]. Therefore, each pyramid p; covers an interval of [i, (i+0.5)] query rectangle
pyramid vaues and the sets of pyramid values covered by any ] ] )
two pyramids p; and p; are disjunct. Note further that this trans- Figure 8: Transformation of Range Queries

formation is not injectivei.e., two points v and V. may have the
same pyramid value. But, as mentioned above, we do not requireaffected by the query, and second, we have to determine the
an inverse transformation and therefore we do not require aranges inside the pyramids. The test whether a point is inside the

bijective transformation. ranges is based on a single attribute criterlgnbetween two
. values). Therefore, determining all such objects is a one-dimen-
4.2 Index Creation sional indexing problem. Objects outside the ranges are guaran-

teed not to be contained in the query rectangle. Points lying in-
side the ranges, are candidates for a further investigation. It can
be seenin Figure 8 that some of the candidates are hits, others are

determine the pyramid valys, of the point and insert the point false h_its. Then, a simple point-in-rectangle-test is performed in
into a B'-tree usingpv, as a key. Finally, we store tdedimen- the refinement step. o _
sional pointv andpy, in the according data page of thé-Bee. For simplification, we focus the description of the algorithm
Update and delete operations can be done analogously. Note the@Nly on pyramidg; wherei <d , however, our algorithm can be
B*-trees can be bulk-loaded very efficiently e.g, when building €Xtended to all pyramids in a straight-forward way. As a first step
a B'-tree from a large set of data items. The bulk-loading tech- Of our algorithm, we transform the query rectangléto an

niques for B-trees can be applied to the Pyramid-Technique, as €duivalent rectanglg  such that the interval is defined relative
well. to the center point.

Given the transformation determining the pyramid value of a
pointq, it is a simple task to build an Index based on the Pyra-
mid-Technique. In order to dynamically insert a peinwe first

In general, the resulting data pages of tfi@rBe contain a set 9. =09 -05andg =g¢ -05,0,0<j<d
of points which all belong to the same pyramid and have the . ) ) i . .
common property that their pyramid value lies in an interval _ Additionally, we interpret any point mentioned in this sec-
given by the minimal and maximal key value of the data pages. tion to be defined relative to the center point of the data space.

Thus, the geometric correspondence of a sinfie® data page ~ Based on Definition 1, we are able to determine if a pyrgmid
is a partition of a pyramid as shown in Figure 7 (right). is affected by a given quely . As we will see, we have to deter-
mine the absolute minimum and maximum of an interval which

is defined as follows: LeMIN(r) be defined as the minimum of

5 Query Processing the absolute values of an interval
In contrast to the insert, delete and update operation, query pro- O )
cessing using the Pyramid-Technique is a complex operation. MIN(r) = g 0 i Tiin <0< ey
Let us focus on point queries first which are definetasen a B min(|r il [Fmax]) otherwise
O

guery point g, decide whether q is in the datababksing the
Pyramid-Technique, we can solve the problem by first comput-
ing the pyramid valugv, of g and querying the Btree using Note that|r ;| may be larger than,,,| . Analogously, we de-
pvg- As a result, we obtain a setaflimensional points sharing fine
pvq as a pyramid value. Thus, we scan the set and determine MAX(r) = max(|r
whether the set contaigsand output the result.

In case of range queries, the problem is defined as follows:
“Given a d-dimensional interval

min|' |rmax|)

Lemma 1: (I ntersection of a Pyramid and a Rectangle)
A pyramid p is intersected by a hyperrectangle

[Q() v do | [qd_j_ v g1 1, R R . R . .
min max min max [q()mm' q()max]' e [qd—lmm’ qd—lmax] |f and Only n‘
determine the points in the database which are inside the range.
Note that the geometric correspondence of a multidimensional Oj,0<j<d,j#i: qimm < —MIN(QJ—)

interval is a hyper-rectangle. Analogously to point queries, we

face the problem to transform tHedimensional query into a 1-  Proof:

dimensional query on the*Bree. However, as the simple 2-di- The query rectangle intersects pyrarpjdiff there exists a
mensional example depicted in Figure 8 (left) demonstrates, apointv inside the rectangle which falls into pyramjdThus, the
guery rectangle may intersect several pyramids and the compucoordinates*fvj of must all be smaller th ni} . This, however,
tation of the area of intersection is not trivial. As we also take is only possible if the minimum absolute value in the query rect-
from the example, we first have to examine which pyramids are angle in dimensiofis closer to the center point th&pmm is to
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the center point. Lemmal follows from the fact that this must
hold for al dimensionsj. g.ed.

In the second step, we have to determine which pyramid val-
uesinside an affected pyramid p; are affected by the query. Thus,
wearelooking for aninterval [hyq,, Nyignl in therange of [0, 0.5]
such that the pyramid values of all points inside the intersection
of the query rectangle and pyramid p; are in the interval [i+h;q,
i+Npignl . Figure 8 depicts thisinterval for two and three dimen-
sions.

In order to determine hyq,, and hy;g,, we first restrict our query
rectangleto pyramid p; i.e., we remove &l points above the cen-
ter point:

—_ A .
- qim\n' q Imax

= min(g; ,0),

’q\jmm = qjmm 'and ’q\jmax = qjmax 'Where (OSJ <d)’j £i.

Note that we restricted our considerations to the pyramids
Po. Py_1 - Therefore, therelevant valuesof §; and §;  are
negative. The effect of this restriction is depicmtgd in a two-di-
mensional example in Figure 9 (upper).

The determination of theinterval [hyq, hgnl isvery simpleif
the center point of the data space isincluded in the query rectan-
glei.e, 0, (0<j<d): (qjmms 0< qjmax) .Inthiscase, we sm-
ply use the extension of the query rectangle as a result, thus:

Mow = O and hygn = MAX(T) .

low

If the center point is not included in the query rectangle, we
first make the observation that hhigh = MAX(T}j),too. Thisis
due to the fact that the query rectangle must contain at least one
point v such that v; = MAX(T) because otherwise there
would be no intersection between the query rectangle and pyra-
mid p;.

In order to find the value hy,, we have to determine the min-
imum height of pointsinside the query rectangle and the pyramid
pi. As we consider points which areinside § and inside p;, we
canintersect al intervals [T ., T, ] (0<j<d),j#i with
[T, Ti,,] without affecting the value hq,,. Then, the mini-
mum of the min-values of all dimensions of the new rectangle g
equalsto hyq,,. Figure 9 (lower) shows an example of this opera-

Poi nt _Set PyrTree::range_query(range Q)

Poi nt _Set res;

for (i =0; i < 2d;, i++) {

if (intersect(p[i], q) {

/] using Lemma 1
determne_range(pli], q, hiom hnjign);
/] using Lemma 2

cs = btree_query(i+hion [+hpjgp);
for (c = cs.first; cs.end; cs.next){
if (inside(q, c))
res. add(c);
} }
}

} return res;

Figure 10: Processing Range Queries (Algorithm)

tions. Obviously, the checkered rectangles on the left and the
right side of each example are causing the same value h;q.

Lemma 2: (Interval of | ntersection of Query and Pyramid)
Given a query interval ¢ and an affected pyramid p;, the inter-
section interval [Ny, Mhighl is defined as follows:

Casel: (Lj,0<j<d: (g <0<q ))
hIow =0
hhigh = MAX(’Q\J
Case 2: (otherwise)

Mow = MiNogj<djzi)(T,) )

hhign = MAX(T)

ax(MAX(T;), MIN(E))) if MAX(T}) =MIN(T))

qjmm:
MIN(T)

otherwise

I:II:II:II%II:I

Proof:

We will show for any point v which islocated inside the query
rectangle g and an affected pyramid p; that the resulting query
interval [hpgh, hiow] contains |v;| . Note that we assumed i to be
smaller than d and thus v; < 0. Therefore, we have to show that

Diow S Vil < Phign -

L |vi| < Ppign:
This  holds because we chose hyg, such that
|vi| < MAX(Ti) = hpigh -
2. howsV;:
If § contains the center point, we have hy,,, = 0<|v|.

Otherwise, |vi| > |vj|, (0j, (0<j<d)) becausev isinsde the
pyramid i. On the other hand, vj 2 qj ,0j, (0<j<d) because
visinside the query rectangleand Uk ’(:ijm because dl coordi-



naes of v ae negative for O0<i<d. Thus,

Vil = MINCT)), (0j, 0<j <d).

Additionally, |vi| > MIN(T;) because of the same reasons.
Assembling the two results, we derive:
|vi| 2 max(MIN(T), MIN(TY)), 0j, 0<j <d. From equation
(*), however, follows that 9.2 h ow - So we finally obtain that
[vi| = max(MIN(Ti), MIN(TY))) = hy,, g.ed.

Lemma 1 and Lemma 2 imply the simple query processing al-
gorithm depicted in Figure 10.

6 Analysisof the Pyramid-Technique

For this analysis, we assume a uniform distribution of the data
space and of the query hypercubes. We propose a cost model for
the Pyramid-Technique, comparable to the model in section 3, to
analytically show the superiority of the Pyramid-Technique.
Thus, we model the cost for processing hypercube shaped range
gueries having a side length larger than 0.5 to achieve a reason-
able selectivity for high-dimensional queries. In this case, the
center of the data space is always contained in the query and
therefore, our window query istransformed into a set of exactly
2d one-dimensional range queries with,

= 0 and hhigh = MAX(T) .

hIow

We do not need the concept of the Minkowski sum here be-
cause we analyze the performance of one-dimensional interval
gueries. However, we have to take into account that, in contrast
to the points of the database, the pyramid values are not uni-
formly distributed.

In the first step of our model, we determine an expected value
for theamount of datain each pyramid, which has to be accessed
during query processing (the size of the candidate set). We con-
sder the lower left corner of the query
QA =(dy ,...0q_1 ) astheanchor point of the query. QA
is obviougi§/ taken 'from the multidimensiona interval
QAlI = [0,1- q]d to guarantee that the whole query is located
inside the data space. Therefore, the height hhigh inpyramid p; is
uniformly distributed in the interval H; = [q—-0.5, 0.5 (cf.
Figure 11). We call the part of the hyper-pyramid, starting with
hiow = 0 and ending with hyg, (underlaid in grey in Figure 11)
the affected part of the pyramid. The volume of affected part can
be determined using the fact that it is the 2d-th part of a hyper-
cube with side length 2 [hy;; g, :

d
(2 Chyigp)
Vbhign) =~ -

L -Query Rectangle

Query Anchor O Candidatesin p;

(The “Affected Part”)

Figure 11: Modeling the Pyramid-T echnique
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Figure 12: Number of page accesses when processing range
queriesfor the Pyramid Tree and Balanced Splitting

From this volume of the affected part for agiven hygn, we can
also determine the expected value by forming an average over all
possible positions of hy;g, intheinterval H;. Thus, wehavetoiin-
tegrate over hy g, and then divide the result by the size of the in-
terval H;, which yields the following integral formula:

0.5
I V(hpign)  dhyign
Ev(d o) = 25505
Theintegral can be evaluated and simplified to:
1-(2q- 1)d +1

Bv(0.9) = Z0m1—q) d+ 1)

As Ey/(d, q) isthe expected volume of the affected part for a
query of sizeqinasingle pyramid, under the uniformity assump-
tion, 2d [E,(d, g) {N/2d) = E,/(d, q) [N is the expected to-
tal number of objectsin the affected parts of all pyramids.

These objects are the candidates for an exact-geometry test of
d-dimensional range containment (c.f. Figure 11). Sinceit isun-
likely that the affected part is perfectly aigned with a break be-
tween two subsequent pages, the question is, how many data
pages are occupied by the candidates. Note that all candidates
belong to asingle interval of pyramid values and therefore, the
candidates are stored contiguously on the data pages. Thus, as-
suming a pagination with the effective page capacity Cet, We
have to descend the directory of the B*-tree for each pyramid to
find the object with the lowest pyramid value in each pyramid.
This object may be located anywhere inside a data page. Then,
we have to read a run with the length of E,(d, ) [N objects,
which occupies E,/(d, q) IN/ C; datapages. The last object is,
again located somewhere on a data page with an equal probabil-
ity of every position on the page. On average, we have to read
half a page before and after the run, respectively. Therefore, the
reguired number of accessesto datapagesfor al 2d pyramidsis:

_2d+NO1-(29-1)""1
Epyramiaree(d: & N) = 56—y Hav 1) i1 —q)

The number of accesses to directory pages is 2d times the
height of the B*-tree IogCeffd (N/C4) and can be neglected
,dirpg

because the directory fits into the cache. We made the same as-
sumption in the model for baanced splitting. Figure 12 depicts
the performance of the Pyramid-Technique as predicted by our
model and, in comparison, the estimated cost when using bal-
anced splitting. The Pyramid-Technique does not reveal any per-
formance degeneration in high dimensions.
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Note that we achieved this result by assuming hypercube
shaped queries, which are uniformly distributed over the data
space and, therefore, the result only holds for this query type.

7 The Extended Pyramid-Technique

All our considerations presented so far were based on the as-
sumption that the data is uniformly distributed. However, data
produced by real-life applications does not behave this way.
Therefore, the question arises, how to adapt the Pyramid-Tech-
nique to real data. Let us consider the following scenario: What
happens to the Pyramid-Technique if most of the datais located
in one corner of the data space (Figure 13 left). Obvioudy, only
afew pyramids (in the extreme case only one) will contain most
of the datawhilethe other pyramids are nearly empty. This, how-
ever, will result in the suboptimal space partitioning depicted in
the example in Figure 13 (middle). Obviously, partitioning is
suboptimal because we can assume real-life queries to be simi-
larly distributed as the data itself. Under this realistic assump-
tion, amuch better partitioning for the same data set is shown in
Figure 13 (right).

The basic idea of the extended Pyramid-Technique is to
achieve such a partitioning by transforming the data space such
that the data cluster is located in the center point (0.5, ..., 0.5) of
space. Thus, we have to map the given data space to the canoni-
cal data space [0, 1]d such that the d-dimensional median of the
datais mapped to the center point. Note that we only haveto as-
surethat the median of the dataroughly coincideswith the center
point of the data space. The presence of clusters distributed over
the space does not cause a problem for our technique. However,
we only apply the transformation to determine the pyramid val-
ues of points and query rectangles, but not to the points itself.
Therefore, we do not haveto apply the inverse transformation to
our answer set.

As the computation of the d-dimensiona median is a hard
problem, we use the following heuristic to determine an approx-
imation of the d-dimensional median: We maintain a histogram
for each dimension to keep track of the median in thisdimension.
The d-dimensional median is then approximated by the combi-
nation of thed one-dimensional medians. Obviously, the approx-
imated d-dimensional median may belocated outside the convex
hull of the data cluster. As our experiments showed, this effect
occurs very rarely and therefore the performance of our algo-
rithmsis not affected. The computation of the median can either
be done dynamically in case of dynamic insertions, or once in
case of abulk-load of the index.

Given the d-dimensional median mp of the data set, we define
aset of dfunctionstj, 0<i < (d —1) transforming the given data
spacein dimension i such that the following conditions hold:

1.4(0) = 0

1 1 1
0.8 0.8 0.8
06 0.6 0.6
04 0.4 0.4

0.2 0.2 0.2

0 02 04 06 08 1 o 02 04 06 08 1 0 02 04 06 08 1

mp = 0.25 mp = 05 mp = 0.85

Figure 14: Transformation Functionst;

2.4(1) =1
3.t;(mp) = 05
4.t:[0,1] - [0, 1]

The three conditions are necessary to assure that the trans-
formed data space still has an extension of [O..l]d (1.and 2.),and
that the median of the data becomes the center point of the data
space (3.). Condition 4. assures that each point in the original
data space is mapped to a point inside the canonica data space.
The resulting functions t; can be chosen as an exponential func-
tion such that:

t(x) = X

Obvioudy, conditions 1., 2., and 4. are satisfied by X',
r=0,0<x< 1. Inorder to determine the parameter r, we have
to satisfyl condition 3: t(mp) = 05 = mgr. Thus,

~ log,(mp) and )
4 = X_Iogz(mp‘)

Now, in order to insert a point v into an index using the ex-
tended Pyramid-Technique, we simply transform v into a point
V;=t;(v;) and determinethe pyramid value pv,,. Then, weinsert
vusing pv,; asakey value as described in section 4.2. In order to
process a query, we first transform the query rectangle q (or
query point) into a query rectangle ' such thato; =t,(q; )
andq; =t(g; ) . Note thaty’ is arectangle because wemé;)-
plied ir?a:ependemnatxtransformations to each dimension. Next, we
use the algorithm presented in section 5, to determine the inter-
vals of affected pyramid values and query the B*-tree. Asare-
sult, we obtain a set of non-transformed d-dimensional points v
which wetest against the original query rectangle g. Notethat we
used the transformations tj only to determine the pyramid value
but we have not transformed the points itself.

If we dynamically build an index, the situation may occur that
the first 10% of inserted points have amedian different from that
of the other 90% of the data. M ore general, we have to handle the
situation that the median changes during the insertion process.
To handlethiscase, we maintain the current median by maintain-
ing a histogram for each dimension and re-build the index, if the
distance of the current median to the center point exceeds a cer-
tain threshold. Note that re-building the index is not too expen-
sive because we make use of a bulk-load technique for B*-trees.
In order to determine a good threshold, we use the value
th = (./d)/4 because the maximum distance from any point to
the center point is (,/d)/ 2 and therefore, the adapting processis
guaranteed to terminate after alogarithmic number of steps. Note



further that the probability that the median shifts and therefore included in the data space. Thus, in case of uniform data we used
the index has to be reorganized decreaseswith an increasing per- uniformly distributed hypercube shaped query rectangles.
centage of inserted data items. Therefore, a reorganization oc-

curs very rarely in practice. Furthermore, our experiments 8.1 Evaluation Us ng &/nthetic Data
showed that a dightly shifted median has a negligible influence

on the performance of the Pyramid-Technique. Our synthetic data set contains 2,000,000 uniformly distributed

points in a 100-dimensional data space. The raw data file occu-
8 Exper imental Evaluation pies 800 MBytes of disk space. The main advantage of uniformly

distributed point sets is, that it is possible to scale down the di-
To demonstrate the practical impact of the Pyramid-Technique mensionality of the point set by projecting out some of the di-
and to verify our theoretical results, we performed an extensive mensions without affecting the semantics of the query. We cre-
experimental evaluation of the Pyramid-Technique and com- ated files with varying dimension and varying number of objects
pared it to the following competitive techniques: by projection and selection and constructed various indexes us-
» X-tree [6] ing these raw data files.

* Hilbert-R-tree [13] In our first experiment (c.f. Figure 15) we measured the per-

* Sequential Scan. formance behavior with varying number of objects. We per-
The Hilbert-R-tree has been chosen for comparison, becausdormed range queries with 0.1% selectivity in a 16-dimensional
the Hilbert-curve and other space filling curves can be used indata space and varied the database size from 500,000 to

conjunction with a B-tree in a so-called one-dimensional embed- 2,000,000 objects. Unfortunately, using our implementation the
ding. Since the Pyramid-Technique also incorporates a very so-Hilbert-R-tree could only be constructed for a maximum of
phisticated one-dimensional embedding, the Hilbert R-tree ap- 1,000,000 objects due to limited main memory. The file sizes of
peared to us as a natural competitive method. all indexes in this experiment sum up to 1.1 GigaBytes. The page
Recently, the criticism arose that index-based query process-size in this experiment was 4096 Bytes, leading to an effective
ing is generally inefficient in high-dimensional data spaces [8], Page capacity of 41.4 objects per page in all index structures.
and that sequential scan processing yields better performance ifFigure 15 shows the performance of query processing in terms of
this case. Therefore, we included the sequential scan in our exlumber of page accesses, absorbed CPU-time and finally the to-
periments. We will confirm the observation that the sequential tal elapsed time, comprising CPU time and time spent in disk i/
scan outperforms the X-Tree and the Hilbert R-Tree for high di- 0- The speed-up with respect to the number of page accesses
mensionalities, but we will also see that our new technique out- S€€mSs to be almost constant and ranges between 9.78 and 10.91.
performs the sequential scan over in all experiments performed. The speed-up in CPU time is higher than the speed-up in page ac-
For clarity, we state our assumption that all relevant informa- cesses, but is only slightly increasing with growing database

tion is stored in the various indexes, as well as in the file used for>'#€S- The reason is that-Bees facilitate an efficient in-page

the sequential scan. Therefore, no additional accesses to fetct?earch for matching objects by applying bisection or interval

objects for presentation or further processing are needed in an)fetaTd; aIgo(;lttr_]ms. llt—|o;/vetver,_trr?(f)sttlm%ogrtgnt Is the spgesl-up Ig
of the techniques applied in our experiments. otal elapsed ime. 1L starls with Tactor 53, InCreases quickly an

) reaches its highest value with the largest database: The Pyramid-
Our experiments have been computed on HP-9000/780 work-

) ) ) Technique with 2 million objects performs range queries 879
stations with several GigaBytes of secondary storage. times faster than the corresponding X-tree! Range query process-

Our evaluation comprises both, real and synthetic data sets. Ining on Bf-trees can be performed much more efficient than on X-
all experiments, we performed range queries with a defined se-trees because large parts of the tree can be traversed efficiently
lectivity because range queries serve as a basic operation foby following the side links in the data pages. Moreover, long-dis-
other queries such as nearest neighbor queries or partial rangéance seek operations inducing expensive disk head movements
queries. The query rectangles are selected randomly from thehave a lower probability due to better disk clustering possibilities
data space such that the distribution of the queries equals the disin B*-trees. The bar diagram on the right side of Figure 15 sum-
tribution of the data set itself and the query rectangles are fully marizes the highest speed-up factors in this experiment.
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Figure 15: Performance Behavior over Database Size
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Figure 16: Performance Behavior over Data Space Dimension

In a second experiment, visualized in Figure 16, we deter-
mined the influence of the data space dimension on the perfor-
mance of query processing. For this purpose we created 5 data
files as projections of the original data files with the dimension-
aities 8, 12, 16, 20, and 24 (the database size in this experiment
is 1,000,000 objects) and created the corresponding indexes. The
total amount of disk space occupied by theindex structures used
in this experiment sums up to 1.6 GigaBytes. The page size in
this experiment was again 4096 Bytes. The effective data page
capacity depends on the dimension and ranged from 28 to 83 ob-
jects per page. We investigated range queries with a constant se-
lectivity of 0.01%. For a constant selectivity, the query range
varies according to the data space dimension.

We observed that the efficiency of query processing using the
X-tree rapidly decreases with increasing dimension up to the
point where large portions of the index are completely scanned
(16-dimensional data space). From this point on, the page ac-
cesses are growing linearly with theindex size. Even worseisthe
performance of the Hilbert R-tree. A comparable deterioration of
the performance with increasing dimension is not observable
when using the Pyramid-Technique. Here, the number of page
accesses, the CPU and tota elapsed time grow slower than the
size of the data set. The percentage of accessed pages with re-
spect to all data pagesis even reduced with growing dimensions
(decreasing from 7.7% in the 8-dimensional experiment to 5.1%
in the 24-dimensional experiment). The experiment yields a
speed-up factor over the X-tree of up to 14.1 for the number of
page accesses, and 103.5 for the CPU time. Furthermore, the
Pyramid-Technique is up to 2500.7 times faster in terms of total
elapsed time than the X-tree.
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Figure 17: Per centage of Accessed Pages

To demonstrate this observation that the percentage of pages
accessed by the Pyramid-Technique decreases when going to
higher dimensions, we determined the percentage of data pages
accessed during query processing when indexing very high di-
mensions. Figure 17 depicts the result of this experiment: The
percentage drops from 8.8% in 20 dimensionsto 8.0% in 100 di-
mensions.

8.2 Evaluation Using Real Data Sets

In this series of experiments, we used data sets from two differ-
ent application domains, information retrieval and data ware-
housing to demonstrate the practical impact of our technique.

The first data set contains text descriptors, describing sub-
strings from a large text database extracted from WWW-pages.
These text descriptors have been converted into 300,000 points
in a 16-dimensional data space and were normalized to the unit
hypercube. We varied the selectivity of the range queries from
10 to 31% and measured the query execution time (total
elapsed time). The result is presented in Figure 18 and confirms
our earlier results on synthetic data that the Pyramid-Technique
clearly outperforms the other index structures. The highest
speed-up factor observed was 51. Additionally, the experiment
shows that the Pyramid-Technique outperforms the competitive
structures for any selectivity i.e., for very small queries as well
asfor very large queries.

In alast series of experiments, we analyzed the performance
of the Pyramid-Technique on a data set taken from a real-life
data warehouse. The relation we used has 13 attributes: 2 cate-
gorical, 5 integer, and 5 floating point attributes. There are some
very strong correlaions in some of the floating point attributes,
some of the attributesfollow avery skewed distribution, whereas
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Figure 18: Query Processing on Text Data



§ 80
N, 70
[}
e :8 —&— Pyramid T.
e
z 40 —— X Tree
9 30 —&— Hilbert
Luj 20 —%—Sequ. Scan
= 10
o 0
[ - - = - - -~

o o o o P

g 8 g -°

= o

[=}

Selectivity

Figure 19: Query Processing on Warehousing Data

some other attributes are rather uniformly distributed. The actual
data set we used comprises a subset of 803,944 tuples containing
data of afew months. In afirst experiment, we measured the real
time consumed during query processing. Again, the Pyramid-
Technique outperformed the other index structures by orders of
magnitude. As expected, the speed-up increases when going to
higher dimensions because the effects described in section 3 ap-
ply morefor larger query ranges. However, even for the smallest
guery range in the experiment, the speed-up factor over the X-
tree was about 10.47, whereas the speed-up for the largest query
range was about 505.18 in total query execution time.

In a second experiment, we measured the effect of the exten-
sion of the Pyramid-Technique proposed in section 7. We made
the experiment on this data set because the dataiis very skew and
the median is rather close to the origin of the data space in most
of the dimensions. Figure 21 shows the effect of the extension.
For dl selectivities, there was a speed-up of about 10-40%. This
shows first that for very skewed data, it isworth it reorganizing
the index, and second that, if we refuse to do so, the loss of per-
formance is not too high compared to the high speed-up factors
over other index structures.

A magjor point of criticism is the argument that the Pyramid-
Technique is designed for hypercube shaped range queries and
might perform bad for other queries. Therefore, we ran an addi-
tional experiment investigating the behavior of the Pyramid-
Technique for skewed queries. We generated partial range que-
ries shrinking the data space in k dimensions and having the full
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Figure 21: Performance of the Extended Pyramid-T.

extension of the data space in (d-k) dimensions. These queries

can be considered as (d-k)-dimensional hyper-slices in a d-di-
mensional space. As Figure 20 shows, the Pyramid-Technique
outperforms the linear scan for all of these queries except the 1-
dimensional queries. For 1-dimensiona queries, the Pyramid-
Technique required 2.6 sec. compared to 2.48 sec. for the linear
scan. However, alarge improvement was observed for 8-dimen-
sional to 13-dimensional queries. The X-Tree couldn’t compete
with the Pyramid-Technique for any of these queries.

Summarizing the results of our experiments, we make the fol-
lowing observations:

1) For almost hypercube shaped queries, the Pyramid-Tech-
nique outperforms any competitive technique, including lin-
ear scan. This holds even for skewed, clustered and categor-
ical data.

2) Forqueries having a bad selectivity, i.e. a high number of an-
swers, or extremely skewed queries, especially queries spec-
ifying only a small number of attributes, the Pyramid-Tech-
nique still outperforms competitive index structures, how-
ever, a linear scan of the database is faster.

9 Conclusions

In this paper, we proposed a new indexing method, the Pyramid-
Technique. It is based on a special partitioning strategy which
has been optimized for high-dimensional range queries. The data
space partitioning transformd-dimensional points into 1-di-
mensional values which can be efficiently managed bi-ad.

We showed both, theoretically (assuming uniform distribution)
as well as experimentally (for synthetic and real data) that the
Pyramid-Technique outperforms other index structures such as
the X-tree by orders of magnitude.

The concepts of the Pyramid-Technique come best into effect
for hypercube shaped range queries. For very skewed queries or
gueries specifying only one attribute, the Pyramid-Technique
performs worse than the linear scan. However, as our experi-
ments show, none of the index structures proposed so far can
handle very skewed queries efficiently. We plan to address the
problem of handling strong skew in our future work.
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