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Abstract
A broad class of algorithms for knowledge discovery in databases
(KDD) relies heavily on similarity queries, i.e. range queries or
nearest neighbor queries, in multidimensional feature spaces. Many
KDD algorithms perform a similarity query for each point stored in
the database. This approach causes serious performance degenera-
tions if the considered data set does not fit into main memory. Usual
cache strategies such as LRU fail because the locality of KDD algo-
rithms is typically not high enough. In this paper, we propose to
replace repeated similarity queries by the similarity join, a database
primitive prevalent in multimedia database systems. We present a
schema to transform query intensive KDD algorithms into a repre-
sentation using the similarity join as a basic operation without
affecting the correctness of the result of the considered algorithm. In
order to perform a comprehensive experimental evaluation of our
approach, we apply the proposed transformation to the clustering
algorithm DBSCAN and to the hierarchical cluster structure analy-
sis method OPTICS. Our technique allows the application of any
similarity join algorithm, which may be based on index structures or
not. In our experiments, we use a similarity join algorithm based on
a variant of the X-tree. The experiments yield substantial perfor-
mance improvements of our technique over the original algorithms.
The traditional techniques are outperformed by factors of up to 33
for the X-tree and 54 for the R*-tree.
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1  Motivation
Knowledge discovery in databases (KDD) is the complex process of
extracting implicit, previously unknown and potentially useful infor-
mation from data in databases [41]. In recent years, KDD has gained
increasing interest in the research community as well as in traditional
business data processing. The field of KDD knows various standard
tasks such as classification [37], mining association rules [3], trend
detection [11], and visualization [24]. One of the most important tasks
among those is clustering [23]. The goal of a clustering algorithm is to
group the objects of a database into a set of meaningful subclasses

(clusters), such that objects in the same cluster are more similar to each
other than objects belonging to different clusters. There are numerous
applications of clustering [42, 39, 26, 12]. 

Recently, algorithms for extracting knowledge from large multidimen-
sional data sets have become more and more important due to the fact
that multidimensional data are prevalent in numerous non-standard
applications for database systems. Examples of such systems include
CAD databases [22], medical imaging [32] and molecular biology [31].

When considering algorithms for KDD, we can observe that many algo-
rithms rely heavily on repeated similarity queries, i.e. range queries or
nearest neighbor queries, among feature vectors. For example, the algo-
rithm for mining spatial association rules proposed in [25] performs a
similarity query for each object of a specified type, such as a town. For
various other KDD algorithms, this situation comes to an extreme: a
similarity query has to be answered for each object in the database
which obviously leads to a considerable computational effort.

In order to accelerate this massive similarity query load, multidimen-
sional index structures [10, 33, 4] are usually applied for the manage-
ment of the feature vectors. Provided that the index quality is high
enough, which can usually be assumed for low and medium dimen-
sional data spaces, such index structures accelerate the similarity que-
ries to a logarithmic complexity. Therefore, the overall runtime
complexity of the KDD algorithm is in O(n log n). Unfortunately, the
overhead of executing all similarity queries separately is large. The
locality of the queries is often not high enough, so that usual caching
strategies for index pages such as LRU fail, which results in serious per-
formance degenerations of the underlying KDD algorithms. Several
solutions to alleviate this problem have been proposed, e.g. sampling
[16] or dimensionality reduction [14]. These techniques imply some
loss of information which may not be acceptable in some application
domains. Both can, however, also be applied to our approach as a pre-
processing step.

The basic intention of our solution is to substitute the great multitude of
expensive similarity queries by a similarity join operation using a dis-
tance-based join predicate, without affecting the correctness of the
result of the given KDD algorithm: Consider a KDD algorithm that per-
forms a range query (with range ε) in a large database of points Pi

(0<i<n) for a large set of query points Qj (0<j<m). During the process-
ing of such an algorithm, each point Pi in the database is combined with
each query point Qj which has a distance of no more than ε. This is
essentially a join operation between the two point sets P and Q with a
distance-based join predicate, a so-called distance join or similarity
join. The general idea of our approach is to transform query intensive
KDD algorithms such that the transformed algorithms are based on a
similarity join instead of repeated similarity queries. In this paper, we
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concentrate on algorithms which perform a range query for each point
in the database. In this case, the similarity join is a self-join on the set
of points stored in the database. Nevertheless, our approach is also
applicable for many other KDD algorithms where similarity queries are
not issued for each database object, but which are still query intensive.
Additionally, since a large variety of efficient processing strategies
have been proposed for the similarity join operation, we believe that our
approach opens a strong potential for performance improvements.

Note that this idea is not applicable to every KDD algorithm. There is
a class of algorithms which is not meant to interact with a database man-
agement system and thus is not based on database primitives like sim-
ilarity queries, but instead works directly on the feature vectors. What
we have in mind is the large class of algorithms which are based on
repeated similarity queries (or, at least, can be based on similarity que-
ries). Examples of methods where our idea can be applied successfully
are the distance based outlier detection algorithm RT [27], the density
based outliers LOF [7], the clustering algorithms DBSCAN [13], Den-
Clue [19], OPTICS [1], nearest-neighbor clustering [20], single-link
clustering [46], spatial association rules [25], proximity analysis [26],
and other algorithms. In this paper, we demonstrate our idea on the
known clustering algorithm DBSCAN and on the recently proposed
hierarchical clustering method OPTICS.

The remainder of our paper is organized as follows: Section 2 describes
related work. Section 3 proposes a schema for transforming KDD algo-
rithms using repeated range queries into equivalent algorithms using
similarity joins. In section 4, we present a comprehensive experimental
evaluation of our technique, and section 5 concludes our paper.

2  Related Work

2.1 Clustering Algorithms
Existing clustering algorithms can be classified into hierarchical and
partitioning clustering algorithms (see e.g. [23]). Hierarchical algo-
rithms decompose a database D of n objects into several levels of nested
partitionings (clusterings). Partitioning algorithms, on the other hand,
construct a flat (single level) partition of a database D of n objects into
a set of k clusters such that the objects in a cluster are more similar to
each other than to objects in different clusters. Popular hierarchical
algorithms are e.g. the Single-Link method [46] and its variants (see e.g.
[23, 38]) or CURE [16]. Partitioning methods include k-means [36], k-
modes [21], k-medoid [28] algorithms and CLARANS [39]. The basic
idea of partitioning methods is to determine the set of pairwise dis-
tances among the points in the data set. Points with minimum distances
are successively combined into clusters.

Density based approaches apply a local cluster criterion and are popular
for the purpose of data mining, because they yield very good quality
clustering results. Clusters are regarded as regions in the data space in
which the objects are dense, separated by regions of low object density.
The local densities are determined by repeated range queries. We can

distinguish between algorithms that execute these range queries
directly and algorithms that replace these range queries by a grid
approximation. 

Repeated range queries are executed directly in the DBSCAN algo-
rithm [13]. While DBSCAN as a partitioning algorithm computes only
clusters of one given density, OPTICS [1] generates a density based
cluster-ordering, representing the intrinsic hierarchical cluster structure
of the data set in a comprehensible form. Both algorithms execute
exactly one ε-range query for every point in the database.

Due to performance considerations several proposals rely on grid cells
[23] to accelerate query processing, e.g. WaveCluster [45], DenClue
[19] and CLIQUE [2]. Some of them, e.g. DenClue, can be easily trans-
formed into an equivalent form executing multiple similarity queries
instead, and, thus, our method can be applied.

2.2 Indexing Multidimensional Spaces
A wide variety of spatial access methods (SAM) have been proposed in
the literature. In [15] an extensive overview can be found. Among these
SAMs is the R-tree [17] with its variants, e.g. the R+-tree [44], the R*-
tree [10] and the X-tree [4]. In this subsection, we will briefly review
the R*-tree and the X-tree, since these will be the SAMs that we use for
our experimental evaluation.

The R-tree is an extension of the B+-tree for multidimensional data
objects. Leaf nodes of the R-tree contain entries of the form (oid, MBB)
where oid is an object identifier pointing to the exact object represen-
tation and MBB is the n-dimensional minimal bounding box enclosing
the corresponding data object. Non-leaf nodes contain entries of the
form (child, MBB) where child is a pointer to a successor node in the
next lower level of the R-tree and MBB is a minimal bounding box
which covers all entries in the child node. The R-tree uses the concept
of overlapping regions, i.e. nodes on the same level are allowed to over-
lap. From the variants of the original R-tree, the R*-tree seems to offer
the best query performance for moderate dimensions. The main idea of
the R*-tree is to use forced reinserts which defers splits by first rein-
serting some data objects lying in the overflowing node. Additionally,
an improved node splitting policy which also considers overlap and
region perimeters leads to a better structure of the directory. Based on
a detailed study of the R*-tree behavior when dealing with high-dimen-
sional data objects, Berchtold et al. proposed the X-tree (eXtended node
tree). The most important aspect of the X-tree is the concept of directory
supernodes. Whenever the split of a directory node would lead to a high
overlap of the resulting nodes or to overlap minimal but extremely
unbalanced nodes, the overflowing node is transformed into a supern-
ode, i.e. a node with a larger than usual block size. A supernode is split
(and possibly retransformed into two ordinary directory nodes) when-
ever an overlap minimal and balanced split exists. Another important
property of the X-tree is an advanced split algorithm, which provides (at
least for point data) an overlap free split using the history of previous
splits. In figure 1 the structure of the X-tree is depicted for various
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Figure 1. : Structure of the X-tree with respect to the dimension



dimensions. We can observe that with increasing dimension the direc-
tory of the X-tree degenerates to few and eventually to one large super-
node containing the lowest directory level of the corresponding R-tree.

2.3 Similarity Join Algorithms
A join combines the tuples of two relations R and S into pairs such that
a join predicate is fulfilled. In multidimensional databases, R and S con-
tain points (feature vectors) rather than ordinary tuples. In a similarity
join, the join predicate is similarity, i.e. the distance between two fea-
ture vectors stored in R and S must not exceed a threshold value ε in
order to appear in the result set of the join. If R and S are actually the
same relation, the join is called a self-join. 

Basic Strategies
The simplest way to evaluate a given join is the tuplewise nested loop
strategy [48]. One loop iterates over every tuple of R and a second
nested loop iterates over every point in S. Thus, the join predicate is
evaluated for every pair of points. This strategy can be improved by
changing the order in which the points are combined. For this purpose,
a part of the database cache is reserved for the points in R. Instead of
reading R tuple by tuple in the outer loop, it is read in blocks fitting in
the reserved part of the cache. For each block in R, the relation S is
scanned. This strategy reduces the number of times the relation S is
scanned. If the join predicate can be supported by an appropriate index,
the nested loop join can be improved by replacing the inner loop by an
indexed access to all points of S matching (with respect to the join pred-
icate) a given point of R. This evaluation strategy is called indexed
nested loop join.

Advanced Join Algorithms Using R-trees
Most related work on join processing using multidimensional index
structures is based on the spatial join. The spatial join operation is
defined for 2-dimensional polygon databases where the join predicate
typically is the intersection between two objects. This kind of join pred-
icate is prevalent in map overlay applications. We adapt the algorithms
to allow distance based predicates for point databases instead of the
intersection of polygons.

The most common technique is the R-tree Spatial Join (RSJ) [8], which
is based on R-tree like index structures constructed on R and S. RSJ is
based on the lower bounding property, which states that the distance
between two points is never smaller than the distance between the
regions of the two pages in which the points are stored. The RSJ algo-
rithm traverses the indexes for R and S synchronously. When a pair of
directory pages (PR,PS) is under consideration, the algorithm forms all
pairs of the child pages of PR and PS having distances of at most ε. For
these pairs of child pages, the algorithm is called recursively. Thus, the
corresponding indexes are traversed in a depth-first order.

Various optimizations of RSJ have been proposed. Huan, Jing and Run-
densteiner propose the BFRJ-algorithm [18] which traverses the
indexes according to a breadth-first strategy. In [9] the authors adapt
RSJ for join processing on parallel computers using shared virtual
memory. Their technique improves both CPU and I/O-time.

Other Advanced Join Algorithms
If no multidimensional index is available, it is possible to construct the
index on the fly before starting the join algorithm. Usually, the dynamic
index construction by repeated insert operations performs poorly and
cannot be amortized by performance gains during join processing. Sev-

eral techniques for bulk-loading multidimensional index structures
have been proposed [5, 6]. Their runtime is substantially lower than the
runtime of the repeated insert operations, even if the data set does not fit
into main memory. This effort is typically amortized by efficiency gains
in the join.

The seeded tree method [34] joins two point sets provided that only one
is supported by an R-tree. The partitioning of this R-tree is used for a
fast construction of the second index on the fly. This approach is not
applicable for self-joins. The spatial hash-join [35, 40] divides the set R
into a number of partitions according to system parameters. Sampling is
applied to determine initial buckets. If each bucket fits in main memory,
a single scan of the buckets is sufficient to determine all join pairs. The
join based on the ε-KDB-tree [47] uses tree matching. One ε-KDB-tree
is built on the fly for each relation and the given ε. The ε-KDB-tree is
a variant of the KDB-tree [43]. The Size Separation Spatial Join and the
Multidimensional Spatial Join are presented in [29, 30]. These
approaches consider each point as a cube with side-length ε and make
use of space filling curves to order the points in a multidimensional
space.

3  Similarity-Join Based Clustering

In section 2, we have seen that density based clustering algorithms per-
form range queries in a multidimensional vector space. Since a range
query is executed for each point stored in the database, we can describe
those algorithms using the following schema A1:

Algorithmic Schema A1:

foreach Point p ∈ D {
PointSet S = RangeQuery (p, ε) ;
foreach Point q ∈ S

DoSomething (p,q) ;
}

In order to illustrate this algorithmic schema, we consider as an exam-
ple task the determination of the core point property for each point of
the database. According to the DBSCAN definition, a point is a core
point if there is at least a number of MinPts points in its ε-neighborhood
(for a formal definition see [13]). For this task, the procedure
DoSomething (p,q) will simply increment a counter and set the core
point flag if the threshold MinPts is reached. Assume a sample data set
with one cluster as depicted on the left side of figure 2. On the right side
of figure 2 is the start of a sequence order in which schema A1 may eval-
uate the range queries. Since A1 does not use the information which
points belong to which page of the index, the sequence of the range que-
ries does not consider the number of page accesses or even optimize for
a low number of page accesses. 

Q1

Q2

Q3 Q5

Q4

Figure 2. Sequence of Range Queries for A1



Under the assumption of a page capacity of 4 data points, a pagination
as depicted in figure 3 is quite typical and, for our sample sequence, the
following page accesses must be performed: Query Q1 accesses page P1

and the queries Q2 and Q3 both access the pages P1 and P2. The query
Q4 accesses all three pages P1, P2 and P3, and so on. After processing the
upper part of the cluster, range queries for the lower part are evaluated
and thus P1 is accessed once again. But at this point in time, P1 is even-
tually discarded from the cache and therefore P1 must be loaded into
main memory again.

However, by considering the assignment of the points to the pages, a
more efficient sequence for the range queries can be derived, i.e. load-
ing identical data pages several times into main memory can be
avoided: First, determine all pairs of points on page P1 having a distance
no more than ε; then, all pairwise distances of points on page P2; and
afterwards, all cross-distances between points on page P1 and P2. Then,
P1 is no longer needed and can be deleted from the cache. Finally, we
load page P3 from secondary storage and determine the pairs on P3 and
the cross-distances between P2 and P3. Since the distance between the
pages P1 and P3 is larger than ε, there is no need to determine the cor-
responding cross-distances. Processing the data pages in this way
clearly changes the order in which data points with a distance no more
than ε are combined. The only difference from an application point of
view, however, is that we now count the ε-neighborhoods of many
points simultaneously. Therefore, we simply need an additional
attribute for each point which may be a database attribute unless all
active counters fit into main memory.

What we have actually done in our example is to transform the algorith-
mic schema A1 into a new algorithmic schema A2 and to replace the
procedure DoSomething (p,q) by a new, but quite similar procedure
DoSomething’ (p,q). The only difference between these two proce-
dures is that the counter which is incremented in each call is not a global
variable but an attribute of the tuple p. The changes in the algorithmic
schema A2 are more complex and can be expressed as follows:

Algorithmic Schema A2:
foreach DataPage P {

LoadAndFixPage (P) ;
foreach DataPage Q

if (mindist (P,Q) ≤ ε) {
CachedAccess (Q) ;
/* Run Algorithmic Schema A1 with */
/* restriction to the points on P and Q: */
foreach Point p ∈ P

foreach Point q ∈ Q
if (distance (p,q) ≤ ε)

DoSomething’ (p,q) ;
}

UnFixPage (P) ;
}

Here, mindist (P,Q) is the minimum distance between the page
regions of P and Q, i.e.

where lbi and ubi denote the lower and upper boundaries of the page
regions. CachedAccess (...) denotes the access of a page through

the cache. Thus, a physical page access is encountered if the page is not
available in the cache. In order to show the correctness of this schema
transformation, we prove the equivalence of schema A1 and A2 in the
following lemma.

Lemma: Equivalence of A1 and A2.

(1) The function DoSomething’ is called for each pair (p,q) in the algo-
rithmic schema A2 for which DoSomething is called in schema A1.

(2) DoSomething is called for each pair (p,q) for which DoSome-
thing’ is called.

Proof:

(1) If DoSomething (p,q) is called in A1, then q is in the ε-neighbor-
hood of p, i.e. the distance |p - q| ≤ ε. The points are either stored on the
same page P (case a) or on two different pages P and Q (case b).

(a) As mindist (P,P) = 0 ≤ ε the pair of pages (P,P) is considered in A2.
The pair of points (p,q) is then encountered in the inner loop of A2 and,
thus, DoSomething’ (p,q) is called.

(b) As the regions of the pages P and Q are conservative approxima-
tions of the points p and q, the distance between the page regions cannot
exceed the distance of the points, i.e. mindist(P,Q) ≤ |p - q| ≤ ε. There-
fore, the pair of pages (P,Q) is considered in A2 and DoSome-
thing’(p,q) is called.

(2) If DoSomething’ is called in A2, then |p - q| ≤ ε. As q is in the ε-
neighborhood of p, DoSomething (p,q) is called in A1. q.e.d.

We note without a formal proof that for each pair (p,q) both DoSome-
thing and DoSomething’ are evaluated at most once. Considering the
algorithmic schema A2, we observe that this schema actually represents
an implementation of a join-operation which is called pagewise nested
loop join. More precisely, it is a self-join operation where the join pred-
icate is the distance comparison |p - q| ≤ ε. Such a join is also called
similarity self-join. If we hide the actual implementation (i.e. the access
strategy of the pages) of the join operation, we could also replace the
algorithmic schema A2 by a more general schema A3 where
D ◊◊|p - q| ≤ ε D denotes the similarity self-join:

Algorithmic Schema A3:
foreach PointPair (p,q) ∈ (D ◊◊|p - q| ≤ ε D)

DoSomething’ (p,q) ;

This representation allows us not only to use the pagewise nested loop
join but any known evaluation strategy for similarity joins (cf. section
2). Depending on the existence of an index or other preconditions, we
can select the most suitable join implementation.

When transforming a KDD algorithm, we proceed in the following
way: First, the considered KDD method is broken up into several sub-
tasks that represent independent runs of the similarity join algorithm.

mindist2
P Q,( )

P.lbi Q.ubi–( )2 if P.lbi Q.ubi>

Q.lbi P.ubi–( )2 if Q.lbi P.ubi>
0 otherwise
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Figure 3. An Index Pagination for the Sample Data Set



Additional steps for preprocessing (e.g. index generation) and postpro-
cessing (e.g. cleaning-up phases) may be defined. Then, the original
algorithm in A1 notation is transformed such that it operates on a cursor
iterating over a similarity join (A3 notation). Next, we consider how the
operations can be further improved by exploiting the knowledge of not
only one pair of points but of all points on a pair of index pages. In
essence, this means that the original algorithm runs restricted to a pair
of data pages.

In summary, our transformation of a KDD algorithm allows us to apply
any algorithm for the similarity self-join, be it based on the sequential
scan or on an arbitrary index structure. The choice of the join algorithm
and the index structure is directed by performance considerations.

4  Experimental Evaluation
In order to show the practical relevance of our method, we applied the
proposed schema transformation to two effective data mining tech-
niques. In particular, we transformed the known clustering algorithm
DBSCAN and the hierarchical cluster structure analysis method
OPTICS such that both techniques use a similarity self-join instead
of repeated range queries. Note again that the resulting cluster struc-
tures generated by DBSCAN and OPTICS based on the similarity
self-join are identical to the cluster structures received from the orig-
inal techniques. We performed an extensive experimental evaluation
using two real data sets: an image database containing 64-d color his-
tograms of 112,000 TV-snapshots and 300,000 feature vectors in 9-d
representing weather data, both with the Euclidean distance. We used
the original version of the R*-tree and a 2-level variant of the X-tree. In
all experiments, the R*-tree and the X-tree were allowed to use the
same amount of cache (10% of the database size). Additionally, we
implemented the similarity query evaluation based on the sequential
scan. The join algorithm we used is similar to the algorithm proposed in
[8], i.e. the basic join strategy for R-tree like index structures.
Advanced similarity join algorithms can further improve the perfor-
mance of our approach. All experiments were performed on an HP-
C160 under HP-UX B.10.20. In the following, Q-DBSCAN denotes the
original algorithm, i.e. when DBSCAN is performed with iterative

range queries, and J-DBSCAN denotes our new approach, i.e. based on
a similarity self-join. In the same way we will use Q-OPTICS and J-
OPTICS. In all experiments, we report the total time (i.e. I/O plus CPU
time). The sequential scan methods on the file were implemented effi-
ciently, such that the file is scanned in very large blocks. Therefore, the
I/O cost of scanning a file is considerably smaller than reading the same
amount of data pagewise from an index.

4.1 Page Size
In our first set of experiments, we performed DBSCAN and OPTICS
with varying page sizes in order to determine the optimal page sizes
with respect to the used access method. In figure 4a, the runtimes of
Q-DBSCAN and J-DBSCAN on 100,000 points from the weather data
with ε = 0.005 and MinPts = 10 are shown. The page size is given as the
average number of points located on a data page. We can observe that
for all page sizes the runtime of Q-DBSCAN is considerably higher
than the runtime of J-DBSCAN and this holds for the R*-tree, for the
X-tree and for the sequential scan. The speed-up factor of J-DBSCAN
compared to Q-DBSCAN for the optimal page sizes is 20 for both index
structures, i.e. J-DBSCAN based on the R*-tree is 20 times faster than
Q-DBSCAN based on the R*-tree (and the same speed-up factor is
achieved for the X-tree). 

Performing Q-DBSCAN on the sequential scan clearly yields the worst
runtime, which is 556 times the runtime of J-DBSCAN using the X-
tree. Note that we used a logarithmic scale of the y-axis in figure 4 since
otherwise the runtimes of J-DBSCAN and J-OPTICS would hardly be
visible. Figure 4b shows the results for the image data. We clustered
40,000 points with ε = 0.08 and MinPts = 10. For this data set, the per-
formance improvement of J-DBSCAN compared to Q-DBSCAN using
the R*-tree is even higher: the speed-up factor is 54 when the R*-tree is
the underlying access method and 19 using the X-tree. For small page
sizes, performing Q-DBSCAN on the sequential scan yields a better
runtime than using the R*-tree. However, when the page size of the R*-
tree is well adjusted, the Q-DBSCAN on the sequential scan again has
the slowest runtime. We can also observe, that the J-DBSCAN variants
on the R*-tree and on the X-tree are relatively insensitive to page size
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Figure 4. DBSCAN on (a) weather data (b) image data
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calibrations. Independently from the underlying page size, the join
based techniques outperform the query based techniques by large fac-
tors. Therefore, page size optimization is neither absolutely necessary
to achieve good performance, nor is it possible to outperform our new
techniques simply by optimizing the page size parameter of the query-
based DBSCAN algorithm. For OPTICS, we observed similar results
(not depicted). We varied the page size and ran Q-OPTICS and J-
OPTICS on both data sets. The speed-up factor of J-OPTICS over Q-
OPTICS is 22 using the R*-tree, and 12 using the X-tree.

Since the X-tree consistently outperformed the R*-tree on both data
sets, we focus on the X-tree and on the sequential scan in the remainder
of our experimental evaluation.

4.2 Database Size
Our next objective was to investigate the scalability of our approach
when the database size increases. We ran Q-DBSCAN and J-DBSCAN
with ε = 0.005, MinPts = 10 on the image data and increased the num-
ber of points from 10,000 to 110,000. As figure 5 depicts, the query
based approach Q-DBSCAN scales poorly when the iterative range
queries are processed by the sequential scan. The reason is that
DBSCAN yields a quadratic time complexity when using a sequential
scan as the underlying access method. 

The scalability of Q-DBSCAN on top of the X-tree is obviously better
due to the indexing properties of the X-tree. For J-DBSCAN, however,
we clearly observe the best scalability as the database size increases: the
speed-up factor compared to Q-DBSCAN using the X-tree increases to
20 for 110,000 points. The results on the weather data (not depicted) are
very similar and the speed-up factor using the X-tree reaches 22 for
300,000 points. 

We also investigated the scalability of Q-OPTICS and J-OPTICS. The
results for the weather data with ε = 0.01 and MinPts = 10 are depicted
in figure 6. In this experiment we increased the number of points from
50,000 up to 300,000. As before, the scalability of the query based
approach is poor whereas the join based approach scales well. We also
used the image data (not shown), increased the number of points from

10,000 to 110,000 and again found the scalability of J-OPTICS clearly
better than the scalability of Q-OPTICS. For 110,000 points, the speed-
up factor increases from 7.6 to 14 using the X-tree.

4.3 Query Range

For the performance of Q-DBSCAN and Q-OPTICS, the query range ε
is a critical parameter when the underlying access method is an index
structure. When ε becomes too large, a range query cannot be per-
formed in logarithmic time since almost every data page has to be
accessed. Consequently, performing Q-DBSCAN and Q-OPTICS on
the sequential scan can yield better runtimes for large ε-values since the
sequential scan does not cause random seeks on the secondary storage.
In order to analyze our join based approach when ε becomes large, we
ran J-DBSCAN and J-OPTICS with increasing ε-values. 

Figure 7 depicts the results for Q-DBSCAN and J-DBSCAN on 40,000
points of the image data and MinPts = 10. The runtime of Q-DBSCAN
drastically increases with ε whereas the runtime of J-DBSCAN shows
only moderate growth, thus leading to a speed-up factor of 33 for
ε = 0.2. Note, in figure 7 we omitted the runtimes of Q-DBSCAN on
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the sequential scan since even for ε = 0.2 it was about 5 times the
runtime of Q-DBSCAN based on the X-tree. 

We also performed Q-OPTICS and J-OPTICS with increasing ε on
40,000 points of the image data and MinPts = 10 (cf. figure 8).The
runtime of Q-OPTICS based on the X-tree quickly increases and even-
tually reaches the runtime of Q-OPTICS based on the sequential scan.
Obviously, when increasing ε further, Q-OPTICS on the sequential scan
will outperform Q-OPTICS based on the X-tree since the X-tree will
read too many data pages for each range query while paying expensive
random disk seeks. The runtime of J-OPTICS, on the other hand, shows
a comparatively small growth when increasing ε. J-OPTICS outper-
forms Q-OPTICS on both the X-tree and the sequential scan by a large
factor. This results from the fact that even when the similarity self-join
generates all possible data page pairs due to a large ε, these are gener-
ated only once whereas Q-OPTICS generates these page pairs many
times.

5  Conclusions

In this paper, we have presented a general technique for accelerating
query-driven algorithms for knowledge discovery in databases. A large
class of KDD algorithms depends heavily on repeated range-queries in
multidimensional data spaces, which, in the most extreme case, are
evaluated for every point in the database. These range queries are
expensive database operations which cause serious performance prob-
lems when the data set does not fit into main memory. Our solution is
the transformation of such a data mining technique into an equivalent
form based on a similarity join algorithm. We proposed a general
schema for rewriting KDD algorithms which use repeated range queries
such that they are based on a similarity join. In order to show the prac-
tical relevance of our approach, we applied this transformation schema
to the known clustering algorithm DBSCAN and to the hierarchical
cluster structure analysis method OPTICS. The result of the trans-
formed techniques are guaranteed to be identical to the result of the
original algorithms. In a careful experimental evaluation, we compared
our transformed algorithms with the original proposals, where the
query evaluation is based on various concepts such as the X-tree, the
R*-tree and the sequential scan. The traditional techniques are outper-
formed by factors of up to 33 for the X-tree and 54 for the R*-tree.
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