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During the last decade, multimedia databases have become increasingly important in many
application areas such as medicine, CAD, geography or molecular biology. An important
research issue in the field of multimedia databases is similarity search in large data sets.
Most current approaches addressing similarity search use the so-called feature approach
which transforms important properties of the stored objects into points of a high-dimension-
al space (feature vectors). Thus, the similarity search is transformed into a neighborhood
search in the feature space. For the management of the feature vectors, multidimensional
index structures are usually applied. The performance of query processing can be substan-
tially improved by optimization techniques such as the blocksize optimization, data space
quantization or dimension reduction. To determine optimal parameters an accurate estima-
tion of the performance of index-based query processing is crucial. In this paper, we develop
a cost model for index structures for point databases such as the R*-tree or the X-tree. It
provides accurate estimations of the number of data page accesses for range queries and
nearest neighbor queries under Euclidean metric and maximum metric. The problems spe-
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cific to high-dimensional data spaces, called boundary effects, are considered. The concept
of the fractal dimension is used to take the effects of correlated data into account

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing H.2.8 [Database Management]: Database Applications
General Terms: Performance, Theory
Additional Key Words and Phrases: Cost model, multidimensional index.

1. INTRODUCTION

1.1  Motivation

Indexing high-dimensional data spaces is an emerging research domain. It gains increasing
importance by the need to support modern applications with powerful search tools. In the so-
called non-standard applications of database systems such as multimedia [Faloutsos et al.
1994a, Shawney and Hafner 1994, Seidl and Kriegel 1997], CAD [Berchtold 1997, Berch-
told and Kriegel 1997, Berchtold et al. 1997c, Jagadish 1991, Gary and Mehrotra 1993,
Mehrotra and Gary 1993, Mehrotra and Gary 1995], molecular biology [Altschul et al.
1990, Kastenmüller et al. 1998, Kriegel et al. 1997, Kriegel and Seidl 1998, Seidl 1997],
medical imaging [Keim 1997, Korn et al. 1996], time series analysis [Agrawal et al. 1995,
Agrawal et al. 1993, Faloutsos et al. 1994b], and many others, similarity search in large data
sets is required as a basic functionality.

A technique widely applied for similarity search is the so-called feature transformation,
where important properties of the objects in the database are mapped into points of a multi-
dimensional vector space, the so-called feature vectors. Thus, similarity queries are natural-
ly translated into neighborhood queries in the feature space.

In order to achieve a high performance in query processing, multidimensional index
structures [Gaede and Günther 1998] are applied for the management of the feature vectors.
Unfortunately, multidimensional index structures deteriorate in performance when the di-
mension of the data space increases, because they are primarily designed for low dimension-
al data spaces (2D and 3D) prevalent in spatial database systems whereas feature vectors are
usually high-dimensional. Therefore, a number of specialized index structures for high-
dimensional data spaces have been proposed. Most high-dimensional index structures are
variants of the R-tree family [Guttman 1984, Beckmann et al. 1990, Sellis et al. 1987] using
either rectangular or spherical page regions. Minimum bounding rectangles are used by the
X-tree [Berchtold et al. 1996]. The SS-tree [White and Jain 1996] and the TV-tree [Lin et al.
1995] use spheres to describe the regions of the space covered by data pages and directory
pages. The SR-tree [Katayama and Satoh 1997] uses a combination of a sphere and an MBR,
the intersection solid, as page region. Other high-dimensional index structures which are not
directly related to R-trees are the LSDh-tree [Henrich 1998] and the Pyramid-tree [Berchtold
et al. 1998b]. The Hybrid Tree combines the properties of data partitioning (e.g. R-tree) and
space partitioning (e.g. k-d-B trees) index structures [Chakrabarti and Mehrotra 1999]. An
index structure applicable in a parallel computer is the parallel X-tree [Berchtold et al.
1997a].

In spite of these efforts, there are still high-dimensional indexing problems under which
even specialized index structures deteriorate in performance. Therefore, various optimiza-
tion techniques for index structures have been proposed. The most common optimization
parameter in index structures is the logical page size, i.e. the basic unit of transfer between
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main memory and secondary storage. [Böhm 1998] and [Böhm and Kriegel 2000] propose
a dynamic and independent page size optimization. It turns out that large page sizes are
optimal in high-dimensional data spaces while in medium-dimensional cases smaller page
sizes are optimal. The optimum depends not only on the dimension but also on the number
of objects currently stored in the database and on the underlying data distribution. Weber,
Schek and Blott [Weber et al. 1998] give evidence that there always exists a dimension
which is high enough to make any thinkable index structure inefficient and propose the VA-
file, a method which is based on the sequential scan of the data set (combined with a data
compression method). [Böhm 1998] considers the sequential scan as a special case of an
optimized index having an infinite page size.

A second optimization technique is the data space quantization which is essentially a data
compression technique. It is applied in the VA-file [Weber et al. 1998] and in the IQ-tree
[Berchtold et al. 2000]. The basic idea is to reduce the I/O time by representing the attributes
not by their full 32 bit values but only with between 4 and 8 bits. As the representation of the
vectors is inexact in this concept, a refinement step is required for the results, which causes
additional I/O cost. A further price to pay is a greater CPU overhead for the decompression.
If query processing is I/O-bound, the cost balance of data space quantization can be positive.

A third optimization technique for indexes is dimension reduction. The TV-tree [Lin et
al. 1995] uses dimension reduction in the directory. Tree striping [Böhm 1998] is based on
the idea of decomposing the feature vectors and storing the sub-vectors in separate indexes
with moderate dimensionality. The results of query processing in the separate indexes must
be joined. Seidl [Seidl 1997] and Faloutsos et al. [Faloutsos et al. 1994a] apply dimension
reduction in the filter step of a multi-step query processing architecture.

For both the choice of a suitable index structure or query processing technique as well as
for the determination of optimal parameters in optimization techniques it is crucial to pro-
vide accurate estimations of the cost of query processing. In this paper we present a method-
ology for cost modeling of high-dimensional index structures.

1.2  Influence Factors on the Performance of Query Processing 

There are various factors which have an influence on the performance of index-based
query processing. First of all the data set. The efficiency of index-based query processing
depends on the dimension of the data space, the number of points in the database and on the
data distribution from which the points are taken. Especially the correlation of dimensions
is of high importance for the efficiency. Correlation means that the attributes of some dimen-
sions are statistically not independent from each other. The value of one attribute is more or
less determined by the values of one or more other attributes. In most cases, this dependency
is not strict, but rather observable by the means of statistics. From a geometric point of view,
correlation means that the data points are not spread over the complete data space. Instead,
they are located on a lower-dimensional subset of the data space which is not necessarily a
single linear subspace of the data space. For most index structures the performance of query
processing improves if this intrinsic dimension of the data set is lower than the dimension of
the data space. Our cost model takes these properties of the data set into account. The impact
of the dimension and the number of data points is considered separately for low-dimensional
data spaces (sections 3-4) and for high-dimensional data spaces (section 5). Section 5 devel-
ops also a criterion for distinguishing between the low-dimensional and the high-dimension-
al case. Correlation effects are handled by the concept of the fractal dimension in section 6.

The metric for measuring the distance between two data points (Euclidean metric, Man-
hattan metric, maximum metric) has an important influence on the query performance, too.
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The cost formulas are thus presented for the two most important metrics, the Euclidean and
the maximum metric throughout the whole paper. While the Manhattan metric is relatively
straightforward, modeling more complex kinds of metrics such as quadratic form distance
functions [Seidl 1997, Seidl and Kriegel 1997] is future work.

A second set of influence factors is connected with the index structure. Most important is
the shape of the page regions: It can be a rectangle, a sphere or a composed page region. If it
is a rectangle, it can be a minimum bounding rectangle or it can be part of a complete
decomposition of the data space such as in the k-d-B-tree or in the LSDh-tree. Most difficult
to capture in a model are the various heuristics which are applied during insert processing
and index construction. The impact of the heuristic on the volume and extension of page
regions is very hard to quantify. A further influence factor is the layout of pages on the
secondary storage. If the layout is clustered, i.e. pairs of adjacent pages are likely to be near
by each other on disk, the performance can be improved if the query processing algorithm is
conscious of this clustering effect. Our cost estimations are presented for rectangular page
regions. Considering spherical page regions or cylinders is straightforward, whereas more
complex shapes such as composed or intersected solids are difficult. The impact of insertion
heuristics is considered neither in this paper nor in any cost model for multidimensional
query processing known to the author. In fact, these cost models assume idealized index
structures which do not yield deteriorations such as heavy overlap among the page regions.
Such parameters could eventually be measured for a specific index and be integrated into the
formulas, but this is future work.

A third set of influence factors is due to the choice of the query processing algorithm. The
HS algorithm proposed by Hjaltason and Samet [Hjaltason and Samet 1995] yields a better
performance in terms of page accesses than the RKV algorithm by Roussopoulos, Kelley
and Vincent [Roussopoulos et al. 1995]. Disk clustering effects can be exploited by algo-
rithms considering the relative positions of pages on the background storage. We will as-
sume a depth-first search strategy for range queries and the HS algorithm for nearest neigh-
bor queries.

1.3  Paper Outline

After reviewing some related work on cost models, we start with the introduction of
modeling range queries assuming an independent and uniform distribution of the data
points. Moreover, we assume in the beginning that queries do not touch the boundary of the
data space. Range queries are transformed into equivalent point queries by accordingly
adapting the page regions. The central concept for this compensating adaptation is called
Minkowski sum or Minkowski enlargement. We determine from the Minkowski sum the
access probability of pages and use this access probability to develop an expectation for the
number of page accesses. In the next section, nearest neighbor queries evaluated by the HS
algorithm are modeled. This is conceptually done by a reduction step which transforms
nearest neighbor queries into an equivalent range query. The corresponding range r can be
estimated by a probability density function p(r) using r as variable.

The simplifying assumptions of a uniform and independent data distribution and the
ignorance of data space boundaries will be dropped step by step in the subsequent sections.
First, the so-called boundary effects are introduced and shown to be important in high-
dimensional data spaces. Our model is modified to take boundary effects into account. Then,
we consider non-uniform data distributions which are independent in all dimensions. Last,
we formalize correlations by the means of the fractal dimension and integrate this concept
into our cost models for range queries and nearest neighbor queries. Experimental evalua-
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tions showing the practical applicability of the cost models and their superiority over related
approaches are provided in each section separately.

1.4  Terminology

Due to the high variety of cost formulas we will develop in this paper the notation and the
identifiers we have to use are complex. There are a few general identifiers for basic cost
measures which will be used throughout this paper:

V for some volume
R for the expected distance between a query point and its nearest neighbor
P for some probability distribution function
X for the access probability of an individual page
A for the expectation of the number of page accesses.

The boundary conditions for the corresponding cost measure such as the distance metric and
basic assumptions such as uniformity or independence in the distribution of data points are
denoted by subscripted indices of the general identifiers. For instance, Xnn,em,ld,ui means the
access probability for a nearest neighbor query (nn) using the Euclidean metric (em) on a
low-dimensional data space (ld) under uniformity and independence assumption (ui). We
distinguish:

- the query type: range query (r), nearest neighbor (nn) and k-nearest neighbor (knn)
- the applied metric: Euclidean metric (em) and maximum metric (mm)
- the assumed dimensionality: low-dimensional (ld) and high-dimensional (hd)

- the data distribution assumption: uniform/independent (ui), correlated (cor).

Especially the metric identifier (em or mm) is sometimes left out if an equation is valid for
all applied metrics. In this case, all terms lacking the metric specification are understood to
be substituted by the same metric, of course. The volume V is specified by a few indices
indicating the geometric shape of the volume. Basic shapes are the hyper-sphere (S), the
hyper-cube (C) and the hyper-rectangle (R). The Minkowski sum (cf. section 3) of two
solids o1 and o2 is marked by a plus symbol ( ). The clipping operation (cf. section
5) is marked by the intersection symbol ( ). Often, indices denote only the type of
some geometrical object:  stands for the Volume of a Minkowski sum of a rectangle
and a sphere.

We use the following notational conventions throughout this paper: Our database con-
sists of a set of N points in a d-dimensional data space . Usually, we will restrict
ourselves to the data spaces normalized to the unit hypercube [0..1]d. It is unclear to what
extent the normalization of the data space affects the correctness of the result set. This
depends on the mapping between the object space and the feature space in the feature trans-
formation which is out of the scope of this paper. Generally, the multi-step architecture of
query processing requires that in the feature space more objects must be retrieved than the
user requests as similar objects. The ratio is called the filter selectivity. The mapping into a
normalized data space may affect this filter selectivity positively or negatively. The problem
of modeling the filter selectivity for various mappings and similarity measures is subject to
our future work. We will use the Euclidean metric δem and the maximum metric δmm for
distance calculations between two points P and Q:

 and .

o1 o2⊕
o1 o2∩

VR S⊕

DS ℜd⊆

δem P Q,( ) Qi Pi–( )2

0 i d<≤
∑2= δmm P Q,( ) max

0 i d<≤
Qi Pi–{ }=
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The average number of points stored in a data page will be denoted as the effective data
page capacity Ceff,data. In our cost estimations, we do not consider directory page accesses
for two reasons: First, directory pages are often assumed to be resident in the database cache
after their first access [Berchtold et al. 1996]. But even if the cache is too small to store the
complete directory, the number of accessed data pages is often even larger than the number
of available directory pages. Even if the ratio of accessed pages decreases when moving
from the root level to the leaf level, the data page accesses are the predominant factor in the
query processing cost. For concreteness, we restrict ourselves to point access methods with
rectilinear page regions minimizing the overlap in the index construction. The model can be
extended for structures with spherical regions in a straightforward way.

1.5  Algorithms for Query Processing in High-Dimensional Spaces

In this paper, we will consider two kinds of queries: range queries and nearest neighbor
queries. A range query is defined as follows: We are given a database DB of N points in a d-
dimensional data space, a query point Q, a radius r called query range and a distance metric

. Retrieve all points in the database which have a -distance from Q not greater than r:

RangeQuery(DB,Q,r, ) =

By Q and r, a high-dimensional hypersphere is defined, the query sphere. An index based
algorithm for range queries traverses the tree in a depth-first search. All pages intersecting
the query sphere are accessed.

In a k-nearest neighbor search, the region of the data space where data points are searched
is not previously known. Given is also the database DB, the query point Q, the distance
metric  and a number k of objects to be retrieved from the database. The task is to select the
k points from the database with minimum distance from Q:

This can be determined in a depth-first search, as in the RKV algorithm by Roussopoulos,
Kelley and Vincent [Roussopoulos et al. 1995]. This algorithm keeps a list of the k closest
points which is updated whenever a new, closer point is found. The distance of the last point
in the list is used for pruning branches of the tree from being processed. Although several
further information is used for pruning, the algorithm cannot guarantee a minimum number
of page accesses. The HS algorithm proposed by Hjaltason and Samet [Hjaltason and Samet
1995] and in a similar form earlier by Henrich [Henrich 1994] performs neither a depth-first
search nor a breadth-first search, but accesses pages in an order by increasing distance from
the query point. This can be implemented using a priority queue. The algorithm stops when
all pages with a distance less than the current pruning distance are processed. The details of
this algorithm can be taken from the original literature [Henrich 1994, Hjaltason and Samet
1995] or one of the secondary publications [Berchtold et al. 1997b, Böhm 1998]. In contrast
to the RKV algorithm, the optimality of the HS algorithm is provable (cf. [Berchtold et al.
1997b]), because it accesses exactly the pages in the knn-sphere, i.e. a sphere around the
query point which touches the k-th nearest neighbor. In contrast, RKV accesses a number of
additional pages which depends on the effectivity of the applied heuristics. Therefore, the
performance of the RKV algorithm is difficult to estimate, and we will restrict ourselves to
the HS algorithm in our cost model.

δ δ

δ P DB|δ P Q,( ) r≤∈{ }

δ

kNNQuery DB Q k M, , ,( ) P0…Pk 1– DB∈ P′ DB\ P0…Pk 1–{ }∈∃¬{=

i∃¬∧ 0 i k:δ Pi Q,( ) δ P′ Q,( ) }><≤,
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2. REVIEW OF RELATED COST MODELS

Due to the high practical relevance of multidimensional indexing, cost models for estimat-
ing the number of necessary page accesses have already been proposed several years ago.
The first approach is the well-known cost model proposed by Friedman, Bentley and Finkel
[Friedman et al. 1977] for nearest neighbor query processing using maximum metric. The
original model estimates leaf accesses in a kd-tree, but can be easily extended to estimate
data page accesses of R-trees and related index structures. This extension was published in
1987 by Faloutsos, Sellis and Roussopoulos [Faloutsos et al. 1987] and with slightly differ-
ent aspects by Aref and Samet in 1991 [Aref and Samet 1991], by Pagel, Six, Toben and
Widmayer in 1993 [Pagel et al. 1993] and by Theodoridis and Sellis in 1996 [Theodoridis
and Sellis 1996]. The expected number of data page accesses in an R-tree is

.

This formula is motivated as follows: The query evaluation algorithm is assumed to
access an area of the data space which is a hyper cube of the volume V1 = 1/N, where N is
the number of objects stored in the database. Analogously, the page region is approximated
by a hypercube with the volume V2 = Ceff/N. In each dimension, the chance that the projec-
tion of V1 and V2 intersect each other, corresponds to  if . To obtain a
probability that V1 and V2 intersect in all dimensions, this term must be taken to the power
of d. Multiplying this result with the number of data pages , yields the expected
number of page accesses Ann,mm,FBF. The assumptions of the model, however, are unrealis-
tic for nearest neighbor queries on high-dimensional data for several reasons. First, the num-
ber N of objects in the database is assumed to approach to the infinity. Second, effects of
high-dimensional data spaces and correlations are not considered by the model. Cleary
[Cleary 1979] extends the model of Friedman, Bentley and Finkel [Friedman et al. 1977] by
allowing non-rectangular page regions, but still does not consider boundary effects and
correlations. Eastman [Eastman 1981] uses the existing models for optimizing the bucket
size of the kd-tree. Sproull [Sproull 1991] shows that the number of data points must be
exponential in the number of dimensions for the models to provide accurate estimations.
According to Sproull, boundary effects significantly contribute to the costs unless the fol-
lowing condition holds:

where  is the volume of a hypersphere with radius r which can be computed as 

with the gamma-function  which is the extension of the factorial operator
 into the domain of real numbers: ,  and

. 

For example, in a 20-dimensional data space with Ceff = 20, Sproull’s formula evaluates
to . We will see later, how bad the cost estimations of the FBF model are if
substantially fewer than a hundred billion points are stored in the database. Unfortunately,
Sproull still assumes for his analysis uniformity and independence in the distribution of data

Ann,mm,FBF
1
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---------d 1+ 
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=
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points and queries, i.e. both data points and the center points of the queries are chosen from
a uniform data distribution, whereas the selectivity of the queries (1/N) is considered fix.
The above formulas are also generalized to k-nearest neighbor queries, where k is also a
user-given parameter.

The assumptions made in the existing models do not hold in the high-dimensional case.
The main reason for the problems of the existing models is that they do not consider bound-
ary effects. “Boundary effects” stands for an exceptional performance behavior, when the
query reaches the boundary of the data space. As we show later, boundary effects occur
frequently in high-dimensional data spaces and lead to pruning of major amounts of empty
search space which is not considered by the existing models. To examine these effects, we
performed experiments to compare the necessary page accesses with the model estimations.
Figure 1 shows the actual page accesses for uniformly distributed point data versus the
estimations of the model of Friedman, Bentley and Finkel. For high-dimensional data, the
model completely fails to estimate the number of page accesses.

The basic model of Friedman, Bentley and Finkel has been extended in two different
directions. The first is to take correlation effects into account by using the concept of the
fractal dimension [Mandelbrot 1977, Schröder 1991]. There are various definitions of the
fractal dimension which all capture the relevant aspect (the correlation), but are different in
the details, how the correlation is measured. We will not distinguish between these ap-
proaches in our subsequent work.

Faloutsos and Kamel [Faloutsos and Kamel 1994] used the box-counting fractal dimen-
sion (also known as the Hausdorff fractal dimension) for modeling the performance of R-
trees when processing range queries using maximum metric. In their model they assume to
have a correlation in the points stored in the database. For the queries, they still assume a
uniform and independent distribution. The analysis does not take into account effects of
high-dimensional spaces and the evaluation is limited to data spaces with dimensions less or
equal to 3. Belussi and Faloutsos [Belussi and Faloutsos 1995] used in a subsequent paper
the fractal dimension with a different definition (the correlation fractal dimension) for the
selectivity estimation of spatial queries. In this paper, range queries in low-dimensional data
spaces using Manhattan metric, Euclidean metric and maximum metric were modeled. Un-
fortunately, the model only allows the estimation of selectivities. It is not possible to extend
the model in a straightforward way to determine expectations of page accesses.

Papadopoulos and Manolopoulos used the results of Faloutsos and Kamel and the results
of Belussi and Faloutsos for a new model published in a recent paper [Papadopoulos and

Figure 1: Evaluation of the model of Friedman, Bentley and Finkel. 



A Cost Model For Query Processing in High-Dimensional Data Spaces · 9

Manolopoulos 1997]. Their model is capable of estimating data page accesses of R-trees
when processing nearest neighbor queries in a Euclidean space. They estimate the distance
of the nearest neighbor by using the selectivity estimation of Belussi and Faloutsos [Belussi
and Faloutsos 1995] in the reverse way. We will point out in section 4 that this approach is
problematic from a statistical point of view. As it is difficult to determine accesses to pages
with rectangular regions for spherical queries, they approximate query spheres by minimum
bounding and maximum enclosed cubes and determine upper and lower bounds of the num-
ber of page accesses in this way. This approach makes the model inoperative for high-
dimensional data spaces, because the approximation error grows exponentially with increas-
ing dimension. Note that in a 20-dimensional data space, the volume of the minimum
bounding cube of a sphere is by a factor of  larger than the volume
of the sphere. The sphere volume, in turn, is by  times larger than the
greatest enclosed cube. An asset of the model of Papadopoulos and Manolopoulos is that
queries are no longer assumed to be taken from a uniform and independent distribution.
Instead, the authors assume that the query distribution follows the data distribution.

The concept of fractal dimension is also widely used in the domain of spatial databases,
where the complexity of stored polygons is modeled [Gaede 1995, Faloutsos and Gaede
1996]. These approaches are of minor importance for point databases.

The second direction, where the basic model of Friedman, Bentley and Finkel needs
extension, are the boundary effects occurring when indexing data spaces of higher dimen-
sionality. 

Arya, Mount and Narayan [Arya et al. 1995, Arya 1995] presented a new cost model for
processing nearest neighbor queries in the context of the application domain of vector quan-
tization. Arya, Mount and Narayan restricted their model to the maximum metric and ne-
glected correlation effects. Unfortunately, they still assume that the number of points is
exponential with the dimension of the data space. This assumption is justified in their appli-
cation domain, but it is unrealistic for database applications. 

Berchtold, Böhm, Keim and Kriegel [Berchtold et al. 1997b] presented in 1997 a cost
model for query processing in high-dimensional data spaces, in the following called BBKK
model. It provides accurate estimations for nearest neighbor queries and range queries using
the Euclidean metric and considers boundary effects. To cope with correlation, the authors
propose to use the fractal dimension without presenting the details. The main limitation of
the model are (1) that no estimation for the maximum metric is presented, (2) that the num-
ber of data pages is assumed to be a power of two and (3) that a complete, overlap-free
coverage of the data space with data pages is assumed. Weber, Schek and Blott [Weber et al.
1998] use the cost model by Berchtold et al. without the extension for correlated data to

1 VS 1 2⁄( )⁄ 4.1 10
7⋅=

VS d 2⁄( ) 27 000,=

Figure 2: The Minkowski Sum. 
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show the superiority of the sequential scan in sufficiently high dimensions. They present the
VA-file, an improvement of the sequential scan. Ciaccia, Patella and Zezula [Ciaccia et al.
1998] adapt the cost model [Berchtold et al. 1997b] to estimate the page accesses of the M-
tree, an index structure for data spaces which are metric spaces but not vector spaces (i.e.
only the distances between the objects are known, but no explicit positions). Papadopoulos
and Manolopoulos [Papadopoulos and Manolopoulos 1998] apply the cost model for de-
clustering of data in a disk array. Two papers [Riedel et al. 1998, Agrawal et al. 1998]
present applications in the data mining domain.

This paper is based on the BBKK cost model which is presented in a comprehensive way
and extended in many aspects. The extensions not yet covered by the BBKK model include
all estimations for the maximum metric, which are developed additionally throughout the
whole paper. The restriction of the BBKK model to numbers of data pages which are a
power of two is overcome (cf. sections 5.2 and 5.3). A further extension of the model regards
k-nearest neighbor queries. The corresponding cost formulas are presented in section 4.4.
The numerical methods for integral approximation and for the estimation of the boundary
effects were to the largest extent out of the scope of [Berchtold et al. 1997b]. Improved
evaluation methods which are not contained in the BBKK model are described in sections
4.3, 5.2 and 5.3. These evaluation methods based on precomputed volume functions for
intersection solids have a high practical importance, because costly numerical methods such
as a Montecarlo integration can be completely performed during the compile time. Finally,
the concept of the fractal dimension, which was also used in the BBKK model in a simplified
way (the data space dimension is simply replaced by the fractal dimension) is in this paper
well established by the consequent application of the fractal power laws.

3. RANGE QUERY

In this section, we assume uniformity and independence in the distribution of both, data and
query points. Moreover, we ignore the existence of a boundary of the data space or assume
at least that page regions and queries are distant enough from the space boundary that the
boundary is not touched. We start with a given page region and a given query range r and
determine the probability with which the page is accessed under the uniformity and indepen-
dence assumption for the query point. The uniformity and independence assumption means
that the query point is a d-dimensional stochastic variable which is distributed such that each
position of the data space has the same probability.

3.1  The Minkowski Sum

The corresponding page is accessed, whenever the query sphere intersects with the page
region. To illustrate this, cf. figure 2. In all figures throughout this paper, we will symbolize
queries by spheres and page regions by rectangles. Also our terminology (“query sphere”,
for example) will often reflect this symbolization. We should note that queries using the
maximum metric rather correspond to hypercubes than hyperspheres. We should further
note that not all known index structures use hyperrectangles as page regions. Our concepts
presented here are also applicable if the shape of the query is cubical or the shape of the page
region is spherical.

For estimating the access probability of a page, we make conceptually the following
transformation: We enlarge the page region so that if the original page touched any point of
the query sphere, then the enlarged page touches the center point of the query. It is obvious
from figure 2 that the page region becomes enlarged by a sphere of the same radius r whose
center point is drawn over the surface of the page region. All positions inside the grey
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marked region of figure 2 are the positions of the query point, where the page is accessed,
and all positions outside the grey area are the positions of the query point, where the page is
not accessed. Therefore, the marked volume divided by the data space volume directly cor-
responds to the access probability of the page. As we assume for simplicity that the unit
hypercube [0..1]d is the data space, the data space volume corresponds to 1.

The concept of enlarging a given geometrical object by another object in the described
way is called Minkowski sum [Kaul et al. 1991]. The Minkowski sum of two objects A and
B is defined as the vector sum of all points of the objects:

The main application of the Minkowski sum is robot motion planning. In the context of cost
modeling, only the volume  of the Minkowski sum is needed. Therefore, we will not
strictly distinguish between the Minkowski sum as a spatial object (solid) and its volume.
For the determination of the volume, we have to consider various cases. The simplest case
is that both solids are hyperrectangles with side lengths ai and bi, for . In this case,
the volume  of the Minkowski sum of two rectangles is the rectangle with the side
lengths ci, where each ci corresponds to the sum of ai and bi:

.

If both solids, query sphere and page region are hyperspheres with radius rq and rp, the
Minkowski enlargement corresponds to a hypersphere with the radius rq + rp. The corre-
sponding volume of the hypersphere can be evaluated by the following formula:

.

The evaluation of the volume becomes more complex if query and page region are shaped
differently. This is illustrated in a 3-dimensional example in figure 3, which depicts some of
the solids by which the page region (gray) becomes enlarged: At each corner of the gray
solid, we have a part (1/8) of a sphere (drawn is only one part s1). The composed parts would
form one complete sphere of radius r (the query radius). At each edge of the region, we have
a part (1/4) of a cylinder. The parts form three complete cylinders where the radius is the
query radius. The length of c1, for instance, is the width of the page region. Last, at each
surface of the region, we enlarge the region by a cuboid where two side lengths are defined
by the surface of the region and the remaining side length is again r. In the general d-
dimensional case, our page region has not only corners, edges and 2-dimensional surfaces,
but surface segments with dimensions up to . Each surface with dimensionality k is
enlarged by a part of a hypercylinder which is spherical in  dimensions. In the remain-
ing k dimensions, the hypercylinder has the shape of the surface segment to which it is
connected.

Before we determine the volume of the Minkowski enlargement in the most complex
case of a hypersphere and a hyperrectangle, let us solve it for the simpler case that the page
region is a hypercube with side length a. In this case, all k-dimensional surface segments
have the volume ak. Still open is the question, how many such surface segments exist and
what the volume of the assigned part of the hypercylinder is. The number of surface seg-
ments can be determined by a combinatorial consideration. All surface segments (including
the corners and the page region itself) can be represented by a d-dimensional vector over the

A B⊕ a b a A b B∈,∈+{ }=

VA B⊕

0 i d<≤
VR R⊕

VR R⊕ a0 … ad 1–, ,( ) b0 … bd 1–, ,( ),( ) ai bi+( )
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symbols ‘L’, ‘U’ and ‘*’. Here, the symbol ‘L’ stands for the lower boundary, ‘U’ for the
upper boundary and the star stands for the complete interval between the lower and upper
boundary. Each position of a symbol L, U or * corresponds to one dimension of the original
data space. Using this notation, the corners have no star, the edges have one star, the 2-
dimensional surfaces have two stars in the vector, and so on. The hyperrectangle itself has d
stars, no ‘L’ and no ‘U’ in its description vector. In our example in figure 3, s1 is assigned to
the vector (LUL), and c1 is assigned to the vector (*UL), because it covers the entire range
in the x-direction and it is fixed at the upper end of the y-direction and at the lower end of the
z-direction. The number of k-dimensional surface segments corresponds to the number of
different vectors having k stars. The positions of the stars can be arbitrarily selected from d
positions in the vector, yielding a binomial number of possibilities. The remaining 
positions are filled with the symbols ‘L’ and ‘U’. Therefore, the number of surface segments
SSEGM(k) of dimension k is equal to:

.

The fraction of the hypercylinder at each surface segment is 1/2d-k, because the cylinder is
halved for each of the  dimensions. Therefore, we get the following formula for the
Minkowski sum of a hypersphere with radius r and a hypercube with side length a:

=

= .

In the most complex case of non-cubical hyperrectangles, the k-dimensional surface seg-
ments must be summed up explicitly, which is a costly operation. Instead of the binomial

Figure 3: Example of a 3-dimensional Minkowski sum. 
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multiplied with ak, we have to summarize over all k combinations of the side lengths of the
hyperrectangle, i.e. the power set :

.

We should note that in most cases the determination of the Minkowski sum of a hypersphere
and a hyperrectangle is an operation which is too costly, because it involves a number of
basic operations (multiplications), which is exponential in the dimension. The explicit de-
termination of the Minkowski sum of a real hyperrectangle and a hypersphere of high di-
mensionality must be avoided, even if exactness is sacrificed.

A usual work-around is to transform the page region into a hypercube with equivalent
volume. However, exactness is sacrificed in this approach, because the Minkowski sum of a
non-cubical hyperrectangle is larger than the Minkowski sum of a volume-equivalent hyper-
cube. Our experiments later will show that this approximation does not cause serious errors
in the cost estimations for the X-tree, which strives for square-like page regions. For other
index structures, this effect could play a more important role. Estimating access probabili-
ties in such cases is subject to future work.

3.2  Estimating Rectangular Page Regions

To make modeling manageable, we assume page regions which have the form of a hyper-
cube. Observe that structures as the X-tree or the R*-tree try to produce such page regions
and that our prediction matches the experimental observation. We exploit that the number of
points enclosed in an arbitrary hypercube of side length anonbound is proportional to the
volume of this hypercube. By the index nonbound we indicate that this hypercube is not the
minimum bounding rectangle of the enclosed points, i.e. anonbound is the expected side
length of the page regions before taking the MBR effect (minimum bounding rectangle) into
account. Similarly, VR,nonbound is the volume of the page region without considering the
MBR effect. Due to the proportionality, the number Ceff of points stored in a page divided
by the number N of all points in the database is equal to the volume of the page divided by
the volume VDS of the data space:

. 

In this formula for the side length of a typical page region, we assume a complete coverage
of the data space with page regions. This assumption is not meaningful for minimum bound-
ing rectangles. Usually, there is a small gap between two neighboring page regions. An
expectation for the width of this gap under uniformity and independence assumption can be
determined by projecting all points of a page onto the coordinate axis which is perpendicular
to the gap. The average distance between two neighboring projections is  times the
side length of the region, because the projections of the points are uniformly distributed.
This is also the expected value for the width of the gap by which the side length of the page
region is decreased compared with anonbound. Therefore, the side length of a minimum
bounding rectangle can be estimated as:

.
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The consideration of gaps between page regions is particularly important if the effective
page capacity is low. Figure 4 shows the compensation factor for varying page capacities
(left side) and for varying dimensions (right side). It shows the factor which decreases the
volume of a page region when gaps are considered. If the compensation factor is 1, no
compensation is needed. The smaller the compensation factor is, the higher is the impact of
the MBR effect. The left diagram shows the compensation factor for a fixed dimension
d = 16 with varying capacity Ceff. The strongest MBR effect occurs for low capacities. For
a typical capacity between 20 and 40 points per data page (which is the most frequently
applied capacity according to our experience), the compensation factor ranges between 40%
and 70%. The right diagram shows the compensation factor for a fixed effective page capac-
ity (30 points) and varying dimension. Most compensation is necessary for large dimen-
sions.

3.3  Expected Number of Page Accesses

By inserting the expected side length a into the formulas for the Minkowski enlargement, it
is possible to determine the access probabilities of typical data pages under uniformity and
independence assumption. This is for the maximum metric:

.

Note again that the volume corresponds to the access probability as the data space is normal-
ized to the unit hypercube. For Euclidean metric, the access probability for range queries
with radius r evaluates to:

 =

= .

Figure 4: The Compensation Factor for Considering Gaps. 
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From these access probabilities, the expected number of page accesses can be determined by
multiplying the access probability with the number of data pages :

.

For Euclidean metric, the corresponding result is:

.

4. NEAREST NEIGHBOR QUERY

In [Berchtold et al. 1997c] and [Böhm 1998], the optimality of the HS algorithm [Hjaltason
and Samet 1995] for nearest neighbor search was proven. The HS algorithm yields exactly
the same page accesses as an equivalent range query, i.e. a range query using the distance to
the nearest neighbor as query range. This enables us to reduce the problem of modeling
nearest neighbor queries to the problem of modeling range queries, which was solved in
section 3. Therefore, we have to estimate the nearest neighbor distance and apply this dis-
tance as the radius in the range query model.

Like in section 3 we start with the assumptions of an independent, uniform data distribu-
tion and we will ignore boundary effects. These effects will be investigated in depth in
section 5 and section 6.

4.1  Coarse Estimation of the Nearest Neighbor Distance

A simple way to estimate the nearest neighbor distance is to choose a sphere in the data
space such that an expected value of one data point is contained in it according to the current
point density and to use the radius of this sphere as an approximation of the actual nearest
neighbor distance. In the case of the maximum metric, we get the following formula:

.

For Euclidean metric, the corresponding formula is:

.

Unfortunately, this approach is not correct from the point of view of stochastics, because the
operation of building an expectation is not invertible, i.e. the expectation of the radius can-
not be determined from the expectation of the number of points in the corresponding sphere.
The approximation determined by this formula is rather coarse and can be used only if a fast
and simple evaluation is of higher importance than the accuracy of the model. The general
problem is that even under uniformity and independence assumption the nearest neighbor
distance yields a certain variance, when several range queries are executed. 

4.2  Exact Estimation of the Nearest Neighbor Distance

A stochastically correct approach is to determine a distribution function for the nearest
neighbor distance, and to derive an expectation of the nearest neighbor distance from the
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corresponding probability density function. From this probability density function, the ex-
pectation of the number of page accesses can also be derived.

According to the rules defining a distribution function P(r) for the nearest neighbor dis-
tance we must determine the probability, with which the actual nearest neighbor distance is
smaller than the stochastic variable r. The nearest neighbor distance is larger than r if and
only if no data point is contained in the sphere with radius r. The event ‘distance is larger
than r’ is the opposite of the event needed in our distribution function. Therefore, P(r) is as
follows:

.

Here,  models the probability with which a point selected from a uniform distribu-
tion is not contained in the volume. Therefore,  is the probability with which all
points are outside the volume. Subtracting this from 1 is the probability of at least one point
being inside. Due to the convergence of the limit

the distribution function can be approximated for a large number of objects N by the follow-
ing formula:

.

This approximation yields negligible relative errors for a large N (starting from 100) and will
facilitate the evaluation later in this paper.

For maximum metric and Euclidean metric, the probability distribution function P(r) can
be evaluated in the following way:

,

.

From the distribution function P(r) a probability density function p(r) can be derived by
differentiation:

.

For maximum and Euclidean metric, this evaluates to:

,

.

Figure 5 shows some probability density functions for 100,000 uniformly distributed data
points in a two-dimensional and an 8-dimensional data space, respectively.

To determine the expected value of the nearest neighbor distance, the probability density
function multiplied with r must be integrated from 0 to infinity:
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,

,

.

The integration variable is denoted by ‘∂’ instead of the more usual ‘d’  to avoid confusion
with the identifier ‘d’ standing for the dimension of the data space. The integral is not easy
to evaluate analytically. 

4.3  Numerical Evaluation

We present two numerical methods to evaluate the integrals presented at the end of section
4.2 numerically. The first is based on the binomial theorem. Basically, the probability den-
sity function p(r) is a polynomial of the degree . It can be transformed into the coeffi-
cient form  using the binomial theorem. We demonstrate
this for the maximum metric:

= ;

= .

This alternating series can be approximated with low error bounds by the first few sum-
mands ( ) if the absolute value of the summands is monotonically decreasing.
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Figure 5: Probability Density Functions. 
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This is possible if the power of r decreases in a steeper way with increasing i than the
binomial increases. This is guaranteed if the following condition holds:

 ⇒  ⇒ .

Therefore, we approximate our formula for the expected nearest neighbor distance in the
following way:

≈ 

≈ 

≈ .

The same simplification can be applied for the Euclidean metric. However, an alternative
way based on a histogram-approximation of the probability density function yields lower
approximation errors and causes even a lower effort in the evaluation.

To facilitate numerical integration methods such as the middlebox approximation, the
trapezoid approximation or the combined method according to Simpson’s rule [Press et al.
1988], we must determine suitable boundaries, where the probability density function has
values which are substantially greater than 0. If we consider for example figure 5, we ob-
serve that for d=8, pmm(r) is very close to 0 in the two ranges  and .
Only the range between the lower bound rlb = 0.05 and the upper bound rub = 0.16 contrib-
utes significantly. The criterion for a sensible choice of lower and upper bounds is based on
the distribution function which corresponds to the area below the density function. We
choose the lower bound rlb such that the area in the ignored range [0..rlb] corresponds to a
probability less than 0.1% and do the same for the upper bound rub. We get the following two
conditions, resulting from the approximation of the distribution function:

.

Integration can therefore be limited to the interval from rlb to rub. The integral can be ap-
proximated by a sum of trapezoids or by a sum of rectangles:
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As we limit the integration to a small interval, a small number of rectangles or trapezoids is
sufficient for a high accuracy. To achieve a relative error less than 1.0%, an approximation
by imax = 5 rectangles was sufficient in our experiments.

4.4  K-Nearest Neighbor Query

The cost model developed in the previous sections can also be extended for estimating k-
nearest neighbor queries. For the coarse model, this is straightforward since the volume
must be chosen such that k objects are contained rather than one. Therefore, the term 
must be replaced by . For maximum metric, the estimated distance is:

.

For Euclidean metric, the result is analogous:

.

For the exact model, the probability distribution must be modeled as a summation of Ber-
noulli-chains with lengths ranging from 1 to k. The probability that at least k points are inside
the volume V(r) corresponds to the following formula:

.

For k = 1, the formula corresponds to the distribution function P(r) for nearest neighbor
queries. The probability density function and the expectation of the nearest neighbor dis-
tance are determined in the same way as in section 4.2.

We should note that the peak in the probability density function of a k-nearest neighbor
query becomes steeper with increasing k (decreasing variance). Therefore, the approxima-
tion by the coarse model which is bad for high, asymmetric variances, becomes better with
increasing k. For sufficiently large  the coarse model and the exact model yield com-
parable accuracy.

4.5  Expectation of the Number of Page Accesses

As initially mentioned, the number of page accesses of a nearest neighbor query is equiva-
lent to the number of page accesses of a range query when the nearest neighbor distance is
used for the query range. An obvious approach to modeling is therefore to use the expecta-
tion of the nearest neighbor distance and to insert it into the expectation of the number of
page accesses using range queries:

.

However, this approach reveals similar statistical problems and leads to similar inaccura-
cies as the coarse estimation approach in section 4.1. The problem is that the number of page
accesses is not linear in the query range. Once again, the approach can be taken if high
accuracy is not required or if the variance of the nearest neighbor distance is low.
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Instead, we have once again to apply the distribution function P(r) to determine an expec-
tation of the number of page accesses by integration as follows:

.

For maximum and Euclidean metric, this formula evaluates to:

,

· .

This result can be simplified by a similar technique as in section 4.3.

5. EFFECTS IN HIGH-DIMENSIONAL DATA SPACES

In this section, we describe some effects occurring in high-dimensional data space which are
not sufficiently considered in our models of the previous sections. We still assume a uniform
and independent distribution of data and query points in this section. The models developed
in the previous sections will be modified to take the described effects into account.

5.1  Problems specific to High-Dimensional Data Spaces

The first effect occurring especially in high-dimensional data spaces is that all data and
query points are likely to be near by the boundary of the data space. The probability that a
point randomly taken from a uniform and independent distribution in a d-dimensional data
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space has a distance of r or less to the space boundary can be determined by the following
formula:

.

As figure 6 shows, the probability that a point is inside a 10% border of the data space
boundary increases rapidly with increasing dimension. It reaches 97% for a 16-dimensional
data space.

A second effect which is even more important, is the large extension of query regions. If
we use our model for determining an expected value of the nearest neighbor distance, we
observe that the expectation fast approaches surprisingly high values. Figure 7 shows the
expected values for the nearest neighbor distance with varying dimension for the maximum
metric and the Euclidean metric for several databases containing between 10,000 and
10,000,000 points. In particular, when applying the Euclidean metric in a data space of a
dimension between 13 and 19, the nearest neighbor distance reaches a value of 0.5, i.e. the
nearest neighbor sphere has the same diameter as the complete data space. The size of the
database has a minor influence on this effect.

The combination of the two effects described above leads us to the observation that large
parts of a typical nearest neighbor sphere must be outside the boundary of the data space (cf.
figure 8). The consequences arising from this fact are commonly referred to as boundary
effects. As we will investigate in depth in the subsequent sections, the most important con-
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sequence is that in our models all volume determinations must consider clipping at the
boundary of the data space. On the one hand, the expectation of the nearest neighbor dis-
tance increases by boundary effects, but on the other hand, access probabilities of data pages
decrease because large parts of the Minkowski sum are clipped away.

If the dimension further increases, the typical nearest neighbor distance grows to values
much greater than 1/2. In this case, it becomes very likely that the nearest neighbor sphere
exceeds most of the data space boundary areas.

A similar effect is observable for the page regions. If we assume, following our initial
model, hypercube shaped page regions, the side length of such a region quickly exceeds 0.5.
However, it is impossible that the data space is covered only with pages having side lengths
between 0.5 and 1. Basically, the pagination arises from a recursive decomposition of the
data space into parts of approximately the same volume (by uniformity and independence
assumption). Therefore, each page is split several times in each dimension. That means, only
the side lengths 1, 1/2, 1/4, 1/8,... (approximately) can occur. In sufficiently high dimen-
sions, the page regions do not have side lengths of 1/2 or smaller in all dimensions, because
if every data page is split at least once in each dimension, we need a total number of at least
2d data pages to cover the complete data space. For example, in a 30-dimensional data space,
we would need one billion data pages to reach such a pagination, resulting in a database size
of 4,000 GBytes (assuming a page size of 4KBytes).

Therefore, we will modify our cost models such that for database sizes N of less than
NSinglesplit objects with

this effect is considered.

5.2  Range Query

We still assume uniformity and independence in the distribution of data and query points.
For sufficiently high dimension d (such that the inequality above holds), we observe that the
data space is only split in a number d’ < d of dimensions. The maximum split dimension d’
can be determined by using the following formula:

.
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The data-pages have an average extension asplit with

 

in d’ dimensions and an average extension aunsplit with

in the remaining  dimensions. Figure 10 clarifies the position of two typical page
regions in the data space for split (y-axis) and unsplit (x-axis) dimensions. The projection on
an axis of a split dimension shows 2 page regions. Between these two regions, there is a gap
of the average width 0.5/Ceff which is caused by the property of the page region to be a
minimum bounding rectangle (called the MBR property, cf. section 3.2). The distance of
0.25/Ceff from the data space boundary is also due to the MBR property. In contrast, the
projection on an axis of an unsplit dimension shows only one page region with a distance of
0.5/Ceff from the lower and from the upper space boundary, respectively.

Now, we mark the Minkowski sum of the lower page region (cf. figure 11a). We observe
that large parts of the Minkowski sum are located outside the data space. The Minkowski
sum is the volume, from which a query point has to be taken such that the corresponding
page is accessed. However, we assume that only query points inside the data space boundary
are used as query points. Therefore, the Minkowski sum has to be clipped at the data space
boundary in order to determine the probability that a randomly selected query point accesses
the page (cf. figure 11b). We can express the clipping on the boundary with the following
integral formula which summarizes all points v in the data space (i.e. all possible positions
of query points) with a distance less or equal to the query range r from the page region R:

.

Here, the distance function  denotes the smallest distance between the point v and
the page region R according to the metric M (Euclidean metric or maximum metric). Unfor-
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tunately, this integral is difficult to evaluate. Therefore, it has to be simplified. The first
observation usable for this purpose is that the distance between the data space boundary and
the page region (0.5/Ceff for unsplit dimensions, 0.25/Ceff for split dimensions) is small
compared to a typical radius r (at least if there should be a realistic chance that at points are
retrieved). Therefore, the corresponding gap is filled up completely by the Minkowski en-
largement (the projection of the clipped Minkowski sum to an unsplit dimension is 1). Un-
split dimensions can be ignored for the determination of the access probability
(cf. figure 11c).

For maximum metric, the clipped Minkowski sum can be determined in the following
way (cf. figure 12a): We take the side length of the page region in all halved dimensions. The
gap between the region and the data space boundary must not be considered, because it is
filled by the Minkowski sum. We add the query radius only one time instead of two times (as
we did in our initial model), because only the Minkowski enlargement in the middle of the
data spaces applies (the rest is clipped). Here, we have also to consider the MBR effect. The
result is taken to the power of the number of dimensions which are split:

.

For a radius greater than , the Minkowski enlargement also reaches the data
space boundary on the opposite side. This is taken into account by the application of the
minimum function in the equation above. In this case, the page has an access probability of
100%.

Figure 11: Minkowski Sum Outside the Boundary of the Data Space. 
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If we apply the Euclidean metric, an additional complication arises as depicted on figure
12b. Since the radius r is typically much greater than 0.5 (cf. section 5.1 and figure 7), the
sphere itself must be clipped. The volume of a clipped hypersphere cannot be determined
analytically. However, we will show, how this volume can be simplified such that a precom-
puted volume function can be applied to improve the efficiency of the evaluation. The vol-
ume function can be precomputed numerically.

The volume of the clipped sphere depends on the dimension, the radius and the size of the
clipping window. This means that we have to store the precomputed values in a 3-dimen-
sional array. The dependency of the size of the clipping window can be eliminated by suit-
able scaling operations. We scale our clipping region (and also r) such that it is mapped to
the unit hypercube. Then, we determine the corresponding volume by looking up in the table
of precomputed volumes. After that, we apply the inverse scaling to the volume in the table.
Since our clipping window is now the unit hypercube, we need only a 2-dimensional array
for storing the precomputed values.

By Vcsi (d,r) we define the volume of the intersection of a sphere with radius r and the unit
hypercube in d-dimensional space. Figure 13 depicts the intersection volume Vcsi (2, r) in 2-
dimensional data space. We let the origin be the center of the sphere. Obviously,
Vcsi (d,0) = 0 and . Between these points, Vcsi is monotonically increasing. 

Definition 1: Cube-Sphere Intersection

Vcsi(d,r) denotes the intersection volume between the unit hypercube [0..1]d and a d-
dimensional sphere with radius r around the origin:

.

Vcsi(d,r) can be materialized into an array of all relevant dimensions d (e.g. ranging from 1
to 100) and for a discretization of the relevant r between 0 and  in a sufficiently high
number of steps (e.g. 10,000). For the determination of the discretization of Vcsi(d,r), the
Montecarlo integration [Kalos and Whitlock 1986] using the integral formula can be used.
Sufficient accuracy is achievable with 100,000 points. 
Figure 14 depicts Vcsi(d,r) for various dimensions d.

Vcsi(d,r) is used to determine the access probability of a page when a range query using
the Euclidean metric is performed. As we pointed out in the previous discussion, the range
query behaves like a range query in d’-dimensional space, because all dimensions, where the

Figure 13: The Volume of the Intersection between Sphere and the Unit Hypercube. 
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page region has full extension, can be projected out without affecting the volume of the
Minkowski enlargement.

The query sphere, however, is not clipped by the unit hypercube, but rather by the hyper-
cube representing the empty space between the page region and the opposite boundary of the
data space. The side length of this cube aempty is (cf. figures 11-12):

.

To determine clipping on such a hypercube, we have to scale the radius accordingly before
applying Vcsi(d,r):

.

The resulting formula for the access probability using Euclidean range queries is:

.

Here, we again sum up over all hypercylinders with k round dimensions and  rectan-
gularly shaped dimensions. The rectangular part has a side length of

. The volume of the round part is determined by the volume function
Vcsi(d,r). The radius must be scaled before applying Vcsi to take into account the normalized
clipping window. Last, the obtained volume must be brought back to the original scale by
multiplying it with .

To show the impact of the effects in high-dimensional spaces on the estimation of the
access probability, figure 15 compares our new function Xr,em,hd,ui(r) with the low-dimen-
sional estimation Xr,em,ld,ui(r) and with an intermediate form, where the volume function
Vcsi is replaced by the unclipped sphere volume Vs. In the intermediate form only hyper-

Figure 14: The Volume of the Intersection between a Sphere and the Unit Hypercube. 
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sphere segments completely lying outside the data space are clipped. The database in this
experiment contains 280,000 points in a 16-dimensional data space. Whereas the cost model
for low-dimensional query processing quickly yields unrealistic access probabilities that are
larger than 100%, the intermediate model is accurate for ranges less than r = 0.6. The inter-
mediate model avoids the precomputed discretization of the volume function Vcsi.

In [Berchtold et al. 1997b], we have given the cost formula for the special case that the
number of data pages N / Ceff is a power of two. In this case, the number of split dimensions
is equal for all data pages (although the dimensions on which the data pages are actually
split, may vary). If the number of data pages is not a power of 2, a number of data pages must
be split once more than the rest. As the number of all data pages is , the number of
data pages split once more than the others nd’ is equal to:

.

Likewise, the number of data pages split one time fewer nd’-1 is equal to:

.

Figure 15: Various Models in High-Dimensional Data Spaces. 
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Then, the expected number of page accesses is equal to:

.

This equation holds for maximum metric as well as Euclidean metric and for range queries
as well as nearest neighbor queries.

The accuracy of the low-dimensional and the high-dimensional cost models for range
query processing was compared by using a database of 100,000 points taken from a uniform,
independent data distribution in the 16-dimensional data space. The query range was varied
from 0.1 to 0.5 using the maximum metric, yielding selectivities between  and
11.8%. The results are depicted in figure 16. As expected, the high-dimensional model
yields a reasonable accuracy, whereas the low-dimensional model completely fails in this
case.

5.3  Nearest Neighbor Query

Typically, query spheres exceed the data space boundary in high-dimensional query pro-
cessing. For range queries, the consequence is a smaller result set compared with the expec-
tation when neglecting this boundary effect, because only the part of the sphere inside the
data space contributes to the result set. In contrast, nearest neighbor queries have a fixed
result set size (1 point for a 1-nearest neighbor query). The consequence here is that a greater
radius is needed to achieve the same result set size in the presence of boundary effects. 

First, we develop an expectation for the volume Vcsi,a(d,r) of the intersection volume of
the unit hypercube and a sphere with radius r, whose center is arbitrarily chosen in the unit
hypercube. We note that this task is similar to the intersection volume Vcsi(d,r) in the previ-
ous subsection. However, the center of the sphere is now arbitrarily chosen and not fixed in
the origin. Vcsi,a(d,r) corresponds to the probability that two points arbitrarily chosen from
the unit hypercube have a distance less or equal to r from each other.

When the maximum metric is used for the query, the expectation for the intersection
volume, which is an intersection of two hypercubes, can be determined analytically. Figure
17 depicts three different positions of queries in the data space. First, we consider only the
projection on the x-axis. The center point of q1 lies exactly on the lower space boundary.
Therefore, only half of the side length (r) is inside the data space. The center point of q2 has
a distance greater than r from the data space boundary. Therefore, the complete side length
of the cube (2r) is inside the data space. Query q3 intersects the right space boundary, but
more than half of the side length is inside the data space. The right diagram of figure 17
depicts the progression of the part of the side length which is inside the data space with
varying position of the query point. The side length is r at the points 0 and 1, 2r between the
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positions r and . Between 0 and r, the intersection increases linearly. The average of the
intersection over all positions is:

.

We can extend this result to the d-dimensional case simply by taking the power of d:

.

This result can be used to determine the expectation of the nearest neighbor distance. A
completely analytical solution is possible if we apply our coarse estimation by equalizing
Vcci,a(d,r) with 1/N:

.

The impact of boundary effects on the nearest neighbor distance is shown in figure 18. As
expected, boundary effects do not play any role in low dimensions up to 10. With increasing
dimension, the effect becomes slightly more important. Neglecting boundary effects, we
underestimate the nearest neighbor distance by 10% in 30-dimensional space. This error,
however, is also almost negligible. We will see later in this section that it is not the estima-
tion of the nearest neighbor distance that causes problems but the estimation of the
Minkowski sum.

The new volume determination Vcci,a(d,r) can also be applied in our exact model for
nearest neighbor estimation. The corresponding probability distribution is in this case:

.

The probability density pmm,hd(r), the expectation for the nearest neighbor distance Rmm,hd,
and the expectation of the number of page accesses Ann,mm,hd can be derived from the prob-
ability distribution as described in section 4.

When the Euclidean metric is applied, the same problem arises as in section 5.2. It is
difficult to determine the intersection volume between the unit hypercube and a sphere with
arbitrary center in an analytical way. To cope with this problem, a similar precomputation of
the volume may be used. Again, we define the Cube-Sphere Intersection with Arbitrary
Center, Vcsi,a(d,r) by a multidimensional integral which can be evaluated by using the Mon-
tecarlo integration [Kalos and Whitlock 1986]. The result can be stored in an array for use
by the model.
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Definition 2: Cube-Sphere Intersection with Arbitrary Center

Vcsi,a(d,r) denotes the intersection volume between the unit hypercube [0..1]d and a d-
dimensional sphere with radius r around a point arbitrarily chosen from the unit hyper-
cube:

.

Figure 19 shows Vcsi,a(d,r) for the dimensions 2, 4, 8, 16 and 32. The intersection volume
was determined for all dimensions between 1 and 100 for each radius between 0 and  in
10,000 intervals using 100,000 steps of the Montecarlo integration [Kalos and Whitlock
1986]. The 10,000 intervals can be used for an efficient numerical evaluation of the expec-
tation. Taking boundary effects into consideration, the probability distribution of the nearest
neighbor distance r for the Euclidean metric is:

.

The corresponding density function is:

.

Assuming that Vcsi,a[d,i] is an array with the range [1..dmax,0..imax] which contains the pre-
computed values of Vcsi,a(d,r) for r ranging from 0 to  with

,

we are able to replace integral formulas such as the expected value of the nearest neighbor
distance by a finite summation:
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Figure 19: The Intersection Volume for Euclidean Metric and Arbitrary Center Point. 
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=  = 

≈ .

The infinite upper bound of the integral can be replaced by , because the derivative of
Vcsi,a(d,r) is constantly 0 for r larger than , while all other terms have finite values. The
derivative is replaced by the local difference. The expected value of the number of page
accesses can be determined in the same way:

=

= .

The evaluation of these formulas is not costly, because the required volume functions
Vcsi,a(d,r) and Vcsi(d,r) are independent of any database specific setting such as the number
of points in the database, the point density or the effective page capacity Ceff. The predeter-
mined discretization of these functions requires a few megabytes of storage and can be
statically linked with the programs for evaluating cost models. Costly Montecarlo integra-
tion processes are run only at compile time, not at run-time. Further improvement is achiev-
able if we consider that the probability density only contributes in the interval between rlb
and rub (cf. section 4.3). Integration and summation can be bounded to this area:

≈ .

To evaluate the cost formula for query processing using nearest neighbor queries, we
constructed indexes with varying data space dimensionality. All databases contained
100,000 points taken from a uniform and independent distribution. The effective capacity of
the data pages was 48.8 in all experiments (the block-size was chosen correspondingly). The
dimension varied from 4 to 20. We performed nearest neighbor queries using maximum
metric and Euclidean metric on all these indexes and compared the observed page accesses
with the predictions of the low-dimensional and the high-dimensional model developed in
this paper. The results are depicted in figure 20. The diagram on the left side shows the
results for maximum metric, the right diagram shows the results for Euclidean Metric.
Whereas the cost model for high-dimensional query processing provides accurate estima-
tions over all dimensions, the low-dimensional model is only accurate in the low-dimen-
sional area up to d = 6. Beyond this area, the low-dimensional model completely fails to
predict the number of page accesses. Not even the order of magnitude is correctly revealed
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by the low-dimensional model. We should note that the low-dimensional model is mainly
related to the original model of Friedman, Bentley and Finkel [Friedman et al. 1977] and the
extension of Cleary [Cleary 1979].

6. DATA SETS FROM REAL-WORLD-APPLICATIONS

It has been pointed out that data sets from real applications consistently violate the assump-
tions of uniformity and independence [Faloutsos and Kamel 1994, Belussi and Faloutsos
1995]. In this section, we describe the effects and adapt our models to take non-uniformity
and correlation into account.

6.1  Independent Non-Uniformity

It was already proven in the well-known cost model by Friedman, Bentley and Finkel
[Friedman et al. 1977] that non-uniformity has no influence on the cost of nearest neighbor
query processing if no correlation occurs and if the data distribution is smooth. Smoothness
means in this context that the point density does not vary severely inside the Minkowski
enlargement of a page region. The intuitive reason is the following: Query points are as-
sumed to be taken from the same distribution as data points. For the access probability of a
page, we have to determine the fraction of query points which are inside the Minkowski
enlargement of the page. If the point density is above the average in some region (say by a
factor c) due to non-uniformity, then both, the average volume of the page regions and the
average volume of the query regions are scaled by the factor 1/c. This means that the
Minkowski sum is scaled by 1/c. However, the number of points inside a given volume is by
a factor of c higher than in the uniform case. Therefore, the number of points in the
Minkowski enlargement is the same as in the uniform case. For smooth distributions for
which the independence assumption holds, the performance of the evaluation of nearest
neighbor queries is the same as for uniform distributions. In contrast, range queries are
difficult to model in the case of non-uniformity, because in the same way as the point density
changes with varying location, the size of the result set and the number of page accesses will
change. Therefore, range queries will be subject to future work. Likewise, cost modeling in
the case that the data distribution is not smooth is an open question.
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Figure 20: Accuracy of the Cost Models for Nearest Neighbor Queries. 
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6.2  Correlation

For real data the assumption of independent non-uniform data distribution is as unrealistic
as the assumption of independent uniform distribution. One of the most important properties
of real data is correlation. 

If two dimensions are correlated, the value of the one attribute functionally depends on
the value of the other attribute. Either it can be directly determined from the other attribute,
or there are only a small number of possible values (or a small interval) that the dependent
attribute can take on. In contrast to the stochastical definition of correlation taking only
linear dependencies into account, we also consider non-linear correlations. The geometrical
meaning of a correlation is the following: The d-dimensional space is not completely cov-
ered with data points. Instead, all points are clustered on a lower-dimensional area which is
embedded in the data space. An example is shown in figure 21, where all data points are
located on a 1-dimensional line which is embedded in the 2-dimensional data space. As
depicted, the line is not necessarily a straight line. It is also possible that there are several
lines which are not connected, or that the data points are located in a cloud around the line. 

A concept which is often used to handle correlation is the singular value decomposition
(SVD) [Duda and Hart 1973, Fukunaga 1990, Golup and van Loan 1989] or the principal
component analysis (PCA) [Faloutsos and Lin 1995, Press et al. 1988, Strang 1980]. These
techniques transform the data points directly into a lower-dimensional data space by rotation
operations and eliminate the correlation in this way. The point set is indexed in lower-di-
mensional space, and query processing can be modeled by using our techniques presented
in sections 3 - 6.

However, SVD and PCA can only detect and eliminate linear correlations. A linear cor-
relation means a single straight line in our example. If there are, for example, two warped
lines on which data points are located, SVD and PCA will completely fail. We will show
later that the performance of query processing improves even without applying explicit
transformations to lower-dimensional data spaces if the intrinsic dimension of the point set
is lower than the dimension of the data space.

The general problem of correlations can also be observed in figure 21. If we consider
circles of varying size around some data point, we observe that the number of enclosed
points is not proportional to the area of the circle as we would expect. Because the intrinsic
dimension of the data set is 1, the number of points enclosed in a circle with radius r is
proportional to the radius r. The same observation is valid if we consider cubes or some other
d-dimensional objects which are uniformly scaled.

Figure 21: Correlations and their Problems. 
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This provides us with a means to define the intrinsic dimension of the data set. Under
uniformity and independence assumptions the number of points enclosed in a hypercube
with side length s is proportional to the volume of the hypercube:

,

where  is called the point density. Real data sets obey a similar power law using
the fractal dimension DF of the data set:

where  is the fractal analogue to the point density . The power law was used by Falout-
sos and Kamel [Faloutsos and Kamel 1994] for the ‘box counting’ fractal dimension. We use
this formula directly for the definition of the fractal dimension:

Definition 3: Fractal Dimension

The fractal dimension DF of a point set is the exponent for which the following power law
holds, provided that the center of the volume is located in the populated part of the data
space:

.

The fractal dimension is often not constant over all scales. It is possible that the fractal
dimension changes, depending on the size of the volume V. In practice, the fractal dimension
is often constant over the wide range of the relevant scales. It is also possible that the fractal
dimension is not location-invariant, i.e. a subset of the data set forms a different fractal
dimension than the rest of the data set. Intuitively, a reason for this behavior can be that our
database contains different kinds of objects (e.g. oil paintings and photos in an image data-
base). The restriction to the populated part of the data space in definition 3 forces us to the
assumption that the distribution of the query points must follow the distribution of the data
points. In many applications, this assumption seems intuitively reasonable, for instance if in
an image database, images of the same type are the query objects. If this assumption does
not hold, the performance of query processing is affected in a way that our current model is
not able to predict. This is subject to future work.

6.3  Model Dependence on the Fractal Dimension

The first consequence of the existence of the fractal dimension DF is that the choice of the
model to use (high-dimensional or low-dimensional) is dependent on DF rather than on the
embedding dimension d. If DF is small, then most data points and most queries are far away
from the data space boundary. Therefore, we need not to consider clipping in our model. For
this case, we must adapt the cost model for low-dimensional data spaces (cf. sections 3-4).
In contrast, if DF is large, effects of high-dimensional data spaces occur. Therefore, the
model for high-dimensional data spaces must be adapted for this case (cf. section 5). For
moderate DF both basic models can be applied. As a practical guide, we assume boundary
effects if the fractal dimension DF is greater than or equal to the maximum split dimension
d’:

.
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6.4  Range Query

First, we want to determine, how the access probability of a page changes in the presence of
a correlation described by the fractal dimension DF. Let us assume that the fractal point
density  is constant throughout the populated part of the page region and its Minkowski
enlargement. For range queries, this assumption is necessary as we have already pointed out
in the beginning of section 6. For nearest neighbor queries, a relaxed restriction to smoothly
distributed points in the subspace will be sufficient. In the case of low DF, we can estimate
the side length a of a page region according to the power law:

 ⇒ .

In the high-dimensional case, d’ splits are explicitly applied to achieve data pages with a
suitable number of points (Ceff). However, we must take into account that a split in some
dimension automatically leads to a reduced extension in some correlated dimension. We
assume the extension

(cf. section 5.2) in a number  of dimensions with 

and full extension (up to MBR effects, cf. section 5.2)

in the remaining  dimensions. 

Now we must make an assumption for the distribution of the query points. First, we
assume that they are taken from a uniform and independent data distribution. Later, we will
assume that data points and query points are selected from the same distribution. For uni-
formly distributed query points, the Minkowski sum of the page region and a query range r
corresponds to the access probability of the page. Following our discussion in section 3.3
and 5.2, we get the following access probabilities for Euclidean metric and maximum metric
and for the high-dimensional and the low-dimensional case, respectively:
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= .

The expected value of the number of page accesses can be easily determined by multiplica-
tion with the number of data pages .

For real applications, uniform distribution of the query points is not a realistic assump-
tion. A better alternative is to assume that data points and query points are taken from the
same distribution and yield the same fractal dimension DF. Instead of taking the volume of
the Minkowski enlargement for the access probability, we should rather determine the per-
centage of the query points lying in the Minkowski enlargement. The power law can be used
for this purpose, yielding:

=

= .

The other equations can be modified in the same way.

6.5  Nearest Neighbor Query

Following our coarse model for the estimation of the nearest neighbor distance (cf. section
4.1), we can easily determine a volume having an expectation of 1 point enclosed. As in the
preceding section, we assume that the distribution of the query points follows the distribu-
tion of the data points. The volume can then be estimated by using the power law:

for the maximum metric and

for the Euclidean metric. If DF is sufficiently large (according to section 6.4), boundary
effects must be considered. For the maximum metric, we get the following formula:

.

For the Euclidean metric, we need the inverse function of the cube-sphere intersection with
arbitrary center,  (cf. section 5.3). The corresponding discretization of

 can be obtained in a single pass of the discretization of . The estima-
tion of the nearest neighbor distance is:
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For our exact model, we have to adapt our distribution function in a suitable way. Again,
we have to apply the power law:

,

where V(r) is the volume of the d-dimensional hypersphere with radius r in the case of the
Euclidean metric and the volume of the d-dimensional hypercube with side length 2r in the
case of the maximum metric. We have to make a suitable distinction between the low-
dimensional and the high-dimensional case when choosing V(r). The rest is straightforward
and can be handled as in sections 4-5: An expectation for the nearest neighbor distance can
again be gained by integrating r multiplied with the derivative of P(r). The new distribution
function must be multiplied with the Minkowski sum as in sections 4-5. For the maximum
metric, we get the following formulas for the low-dimensional and the high-dimensional
case, respectively:

,

.

For the Euclidean metric, the corresponding result is

· ,

· .

Techniques facilitating the evaluation of these formulas were presented in sections 4-5.

To evaluate our model extension, indexes on several data sets from real-world applica-
tions were constructed. Our first application is a similarity search system for CAD drawings
provided by a subcontractor of the automobile industry [Berchtold and Kriegel 1997]. The
drawings were transformed into 16-dimensional fourier vectors. Our second application is a
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content based image retrieval using color histograms with 16 histogram bins [Seidl 1997].
Both databases contained 50,000 objects. Our third application contained 9-dimensional
vectors from weather observations. The fractal dimensions of our data sets are 7.0 (CAD),
8.5 (Color Histograms) and 7.3 (Clouds). We performed nearest neighbor queries using the
Euclidean and the maximum metric and compared the results obtained with the predictions
of the following 3 cost models:

• The original models by Friedman, Bentley and Finkel [Friedman et al. 1977] and

Cleary [Cleary 1979], cf. section 4

• our extension to high-dimensional query processing (cf. section 5)

• our extension to non-uniformity and correlation

The results are depicted in figure 22. In contrast to the low-dimensional and the high-dimen-
sional model, the new model considering correlation yields sufficient accuracy in all per-
formed experiments.

7. CONCLUSIONS

7.1  Summary

In this paper, we have proposed a comprehensive cost model for query processing in high-
dimensional data spaces. It is based on the concepts of our previous cost model [Berchtold
et al. 1997b] which were extended in many aspects. The BBKK model has introduced two
techniques, Minkowski sum and data space clipping to estimate the number of page accesses
when performing range queries and nearest neighbor queries in a high-dimensional Euclid-
ean space. These techniques are explained in detail and were extended to take also the max-
imum metric into account. Our new model drops the restriction of the BBKK model which
could only handle numbers of data pages which are a power of 2. A further extension of this
paper are k-nearest neighbor queries. We have described in detail and further developed the
numerical methods for evaluating the cost model. Computationally expensive steps in the
cost estimation are moved to the compile time by applying precomputed volume functions.
Correlated data were finally taken into account using the fractal dimension. Experimental
evaluations showed the practical applicability of the cost estimations and their superiority
over competing techniques in terms of accuracy.
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Figure 22: Accuracy for Data Sets from Real-World Applications. 
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7.2  Future Work

In the course of this paper, we have stated several limitations of the current approach which
are subject to future work. These open issues are summarized here. 

We noted in the introduction that query processing in high-dimensional data spaces is
often a result of a feature transformation which maps objects of an arbitrary application to
points in a high-dimensional vector space. In order to guarantee correctness, the selectivity
in the feature space is worse than the selectivity in the object space, such that more feature
vectors than objects must be retrieved. How much more objects must be searched, depends
on the feature transformation, which subsumes tasks such as dimension reduction and scal-
ing (normalizing) of the data space. The estimation of these effects is beyond the scope of
this paper. However, the selectivity of the feature transformation is important for our index
cost estimation. Therefore, modeling the feature transformation including effects such as
dimension reduction and scaling are subject to our future work.

An additional limitation of our model is the smoothness assumption of the data distribu-
tion and in general non-uniformity for range queries. As described in section 6.1, smooth-
ness means that there are no too sharp changes in the point density, for instance between
regions which are covered and regions which are not covered by points. Violations of this
smoothness assumptions which are not due to correlation are not considered by our model.
In the one-dimensional case, such distributions can be handled by models such as the Zipf
distribution, by histogram techniques or kernel estimators. We will investigate equivalent
multidimensional techniques in future. Similar approaches are needed for modeling range
queries in the presence of non-uniformity. This will also be an issue of our further research. 

Finally, our model does not take into account the impact of various heuristics in the
algorithms for index construction and for query processing. The insert and split strategies
are assumed to produce page regions which are cube-like in the dimensions which are affect-
ed by the splits. An important question is how the performance changes depending on how
different (unbalanced) the side lengths of the page regions are. The next obvious question
would be how to determine this asymmetry given the construction heuristics. For the algo-
rithms performing range queries and nearest neighbor queries, we have also assumed opti-
mality, which is met in the depth-first search for range queries and in the HS algorithm for
nearest neighbor queries. Another well-known algorithm for the nearest neighbor search is
the RKV algorithm (cf. section 1.5). As we have pointed out, the RKV algorithm is difficult
to predict. As RKV is known to yield worse performance than HS, there is no reason to apply
RKV. More interesting is the development of fast index scans [Berchtold et al. 2000] that
consider not only the position of a page region in the data space but also the position of the
page on disk while planning the disk accesses. Modeling such algorithms is also subject to
our future work.
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