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Introduction

The genetic code is well-known to be fault tolerant, in
the sense that transcription errors in the third codon
position frequently do not influence the amino acid
expressed, while errors in other codon positions often
lead to amino acids having similar chemical proper-
ties. Several articles in the recent past ([?, ?, ?] etc.)
have studied the question of optimality of the genetic
code.

In [?] Di Giulio estimated that the natural code
has achieved 68% minimization of polarity distance,
by comparing the natural code with random block re-
specting codes (those codes obtained by relabeling the
20 amino acids in the natural table by a permutation
thereof). When considering single base changes in
the codons, let Ni,j be the number of times the i-th
amino acid changes into the j-th amino acid, and Xi

be the polarity index [?] of the i-th amino acid. The
percent minimization is defined by

∆mean −∆code

∆mean − δlow

where

∆2 =

∑
i,j(Xi −Xj)2Ni,j∑

i,j Ni,j
,

∆mean is the average ∆ value, obtained by averaging
over many random block respecting codes, and ∆low

is an approximation of the lowest possible ∆ value
obtained using the method of Lagrange multipliers
to solve a constrained minimization problem.

Again restricting attention only to block respect-
ing codes, in [?] Haig and Hurst considered to what
extent the natural code has been optimized with re-
spect to fault tolerance concerning (a) polar requirement,1

(b) hydropathy, (c) molecular volume and (d) iso-
electric point. By measuring the values MS1, MS2,
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1Polar requirement, as measured by C. Woese et al. [?], is

taken to be synonomous with hydrophobicity.

MS3, MS0 for the mean squared change in an at-
tribute’s value (eg. polar requirement, hydropathy,
etc.) for all single-base substitutions in first, sec-
ond, third, resp. all codon positions for the natu-
ral and random block respecting codes, the authors
concluded that “single-base substitutions are strongly
conservative with respect to changes in polar require-
ment and hydropathy in the first and third codon
positions, but much less so in the second codon posi-
tion.” Moreover, the polar requirement mean square
difference MS0 for the natural code was determined
to be 5.194, while only 2 out of 10,000 random codes
were found to be more conservative with respect to
polar requirement (MS0 values of 5.167 and 5.189).
Polar requirement MS1, MS2 and MS3 values for
the natural code were determined to be 4.88, 10.56
and 0.14, which reflects the fact that error tolerance
is highest for transcription errors in the third codon
(i.e. on average there is greatest conservation of polar
requirement for single-base substitutions in the third
codon position).

In contrast to the block respecting codes of [?, ?],
Goldman [?] considered more general shuffled codon
codes, which maintain the same number of codons per
amino acid as in the natural code, but do not require
the block structure of the natural code table. While
there are 20! = 2432902008176640000 > 2.43 × 1018

block respecting codes, there are 64!
(2!)9(3!)2(4!)8(6!)3 >

1065 many shuffled codon codes. Goldman computed
the mean square difference MS0 over all single-base
substitutions (for amino acid, non-stop codons) for
artificial codes obtained by the record-to-record travel
algorithm [?] (a heuristic for optimization). The most
conservative code found by in [?] had polar require-
ment value MS0 = 4.005, and for this code more uni-
formly spread MS1, MS2, MS3 values of 3.06, 3.67,
and 5.28.
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Methods

In this paper, we consider optimality of the natural
code in the much larger space of general codes, which
are taken to be surjective maps from {A,C,G, T}3
onto the 20 amino acids plus the stop signal. Since
a general code is identified with an onto mapping c :
64 → 21, it follows that there are 21! ·S(64, 21) many
codes, where S(n, m) is a Stirling number of the sec-
ond kind. Since S(64, 21) = 2.95572845518811×1064,
it follows that there are more than 1.51×1084 general
codes. We define the fault tolerance FT (c) of code c is
defined to be

∑
xyz∈{A,C,G,T}3 [(1) + (2) + (3)], where∑

x′∈{A,C,G,T}−{x}

WAC(c(xyz), c(x′yz)) (1)

∑
y′∈{A,C,G,T}−{y}

WAC(c(xyz), c(xy′z)) (2)

∑
z′∈{A,C,G,T}−{z}

WAC(c(xyz), c(xyz′)). (3)

Here, WAC(A,B) is the similarity between amino
acids A and B, as given in [?], and c(xyz) is the
amino acid encoded by codon xyz using code c.2 Note
that we apply the WAC matrix, rather than the bet-
ter known PAM250 matrix [?], since the latter mea-
sures substitution frequency between amino acids, as
determined in protein families, and so assumes the
natural genetic code. To avoid this circularity, we
applied the WAC matrix, created by measuring the
physico-chemical properties in radial shells up to 10Å
centered around a given amino acid, thus constitut-
ing a description of the “micro-environment” of the
amino acid. Define fault tolerance in the first position
FT1(c) of code c by

∑
xyz∈{A,C,G,T}3 [(1)], and sim-

ilarly for FT2(c) and FT3(c).3 The WAC similarity
matrix has integer entries ranging between −5 and
4, where WAC(a, b) = 4 when amino acids a, b are
identical, and −5 for very dissimilar amino acids.

Using this, we apply a Monte-Carlo algorithm MC
with simulated annealing [?] to try to produce an op-
timal code from an arbitrary initial code. One step
of our MC algorithm performs a random codon re-
assignment in code c to another amino acid or stop
signal, while ensuring surjectivity of the new code c′;
if FT (c′) > FT (c) or if FT (c′) ≤ FT (c) and the
Metropolis criterion is satisfied, then c = c′. MC
executes N iterations before temperature is lowered.

2One could multiply by the normalizing factor of 1/9 ·64 to
obtain an expected value, but we do not do so.

3One could multiply by the normalizing factor of 1/3 · 64,
but we do not do so.

Results

The fault tolerance FT (cn) of the natural code is 236.
Our MC was run for 3 different values N of iterations
per temperature step: 500, 5000 and 5 million.

For N = 500, the average FT was −516.16 with
standard deviation σ of 94.88, while average FT for
optimized codes was −111.64 with σ of 25.13. The
table of average number of codons per amino acid for
initial versus optimized codes is given below. It is
striking that methionine has an average of 7 codons
in the optimized codes.

For N = 5000, random initial codes had FT value
ranging between −700 to −400, and when optimized
using MC, the final FT values ranged from −80 to
−10.

For N = 5 million, the optimized code had fault
tolerance of 2 (2 hours computation time).

A comparison between the natural code and the
best artificial code shows that the latter depends less
on third base redundacy,4 but instead uses a few “pre-
ferred” amino acids which are frequently encoded (up
to 8 times), while other amino acids are assigned only
very few codons. Obviously these “preferred” codons
are highly replaceable. It is interesting to note that
optimized artificial codes often have 3 stop codons
but no evident block structure.

Conclusion and further work

When iterating 500, 5000 and 5 million steps be-
fore changing temperature in MC, we found that the
natural code is extremely fault tolerant, in contrast
to the results of [?, ?]. However, since the space
of general codes (1084) is substantially larger than
that of block respecting codes (1018), and of shuffle
codon codes (1065), it could be that an implemen-
tation on a distributed system or parallel computer
could yield many codes more optimal than the natu-
ral code. Nevertheless, since it seems that the restric-
tion to block respecting or shuffled codon codes has
no justification in nature, we conclude that the natu-
ral code is far too optimized for fault tolerance than
to allow an explanation of its origin from a random
surjective code optimized by FT criteria according
to WAC similarity. Making some simple assumptions
about mutation rate for a genetic code and comparing
the number of MC steps required for optimization,
one could speculate about the origin of the code (eg.
originally a compact code for fewer amino acids) and
the mechanism of change.

Many questions remain unanswered from our pre-
liminary study.

4We plan to quantify this by computing FT1, FT2, FT3.
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1. Using the simpler record-to-record travel algo-
rithm of [?], can one find more optimized gen-
eral codes than the natural code?

2. How does the FT (c) measure using WAC cor-
respond to the measures ∆mean and MS0?

3. Can one measure the extent to which the natu-
ral code is optimized against general (not neces-
sarily block respecting or shuffle codes)? Using
Lagrange multipliers Di Giulio [?] computed an
approximation of 68% optimality for block re-
specting codes. Unfortunately, the method of
[?] changes polarity values to unrealistic val-
ues. To rectify this, we plan to apply techniques
from constraint programming languages.

4. Consider the mapping c 7→ opt(c), where opt
is the optimized code (according to our Monte-
Carlo procedure with simulated annealing). To
what extent is opt a continuous map (i.e. if
c ≈ c′ then is opt(c) ≈ opt(c′), where one defines
an appropriate metric on the space of codes?
Is the landscape of codes rugged? In analogy
to [?], one can define neutral networks of codes
as the set of codes which optimize to the same
optimal code. What is the structure of such
neutral networks?
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Amino acid Init. code Opt. code
Ala 3 2
Artg 3 1
Asn 2 3
Asp 3 1
Cys 2 3
Gln 3 4
Glu 2 1
Gly 3 2
His 3 2
Ile 2 3
Leu 3 3
Lys 2 1
Met 2 7
Phe 3 3
Pro 3 3
Ser 3 2
Thr 3 2
Trp 2 3
Tyr 3 2
Val 2 2
stop 2 4
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