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Abstract. In a pervasive computing environment, one is facing the
problem of handling heterogeneous data from different sources, trans-
mitted over heterogeneous channels and presented on heterogeneous user
interfaces. This calls for adaptive data representations keeping as much
relevant information as possible while keeping the representation as small
as possible. Typically, the gathered data can be high-dimensional vec-
tors with different types of attributes, e.g. continuous, binary and cat-
egorical data. In this paper we present - as a first step - a probabilis-
tic latent-variable model, which is capable of fusing high-dimensional
heterogenous data into a unified low-dimensional continuous space, and
thus brings great benefits for multivariate data analysis, visualization
and dimensionality reduction. We adopt a variational approximation to
the likelihood of observed data and describe an EM algorithm to fit the
model. The advantages of the proposed model are illustrated on toy data
and used on real-world painting image data for both visualization and
recommendation.

1 Introduction

Among others, pervasive computing will be characterized by the processing of
heterogeneous and high-dimensional data. For example, results provided by In-
ternet search engines may contain text, pictures, hyperlinks, categorial and bi-
nary data. The demand for clearly structured information presented to end users,
but also the limitations of telecommunication networks as well as user interfaces
calls for a lower-dimensional representation providing the most relevant informa-
tion. Promising candidates for this task of dimensionality reduction are latent
variable models.

Latent variable analysis is a family of data modelling approaches that fac-
torizes high-dimensional observations with a reduced set of latent variables. The
latent variables offer explanations of the dependencies between observed vari-
ables. An example is the probabilistic variant of the widely used principal com-
ponent analysis, PPCA, where observations are explained by a linear projection
of a set of Gaussian hidden variables, plus additive observation noise [10]. Stan-
dard PCA is widely used for data reduction, pattern recognition and exploratory



data analysis. Recent studies on PCA reveals its connections to statistical factor
analysis (FA) [7].

While existing PCA or FA approaches rely on continuous-valued observa-
tions, data analysis on mixed types of data (discrete and continous observations)
is often desirable:

– In solving typical data mining problems, one is always faced with mixed data.
For example, a hospital patient’s record typically includes fields like age (dis-
crete real-valued), gender (binary), various examination results (real-valued
or categorical), binary indicator variables for the presence of symptoms or
even textual descriptions. A unified means to explore the dependencies of
these data are needed.

– If applied to dimensionality reduction for pattern recognition, PCA is purely
unsupervised. Thus, the resulting projection can be not indicative of the tar-
geted pattern distribution. A generalized PCA which allows class member-
ship as additional attributes (binary or categorical) may obviously provide
a better solution.

– For heterogeneous data, it is often difficult to derive a small set of com-
mon features describing the total data. For example, in a web-based image
retrieval system, each image can be characterized by its visual features, ac-
companying words, categories, and user visit records.

For these reasons, we will present a probabilistic latent variable model to fit
observations with both continuous and binary attributes in this paper. Since
categorical attributes can always be encoded by sets of binary attributes1 (e.g. 1-
of-c coding scheme), this model can be applied to a wide range of situations. We
call this model generalized probabilistic PCA, GPPCA.

In the next section we describe the latent variable model and derive an effi-
cient variational expectation-maximization (EM) formalism to learn the model
from data. In Sec. 3 we discuss properties of the model and connections to pre-
vious work. In Sec. 5 we present empirical results based on toy data and image
data, with focus on both data visualization and information filtering.

2 A Generalized Probabilistic PCA Model

The goal of a latent variable model is to find a representation for the distribution
p(t) of observed data in an M -dimensional space t = (t1, . . . , tM ) in terms of
a number of L latent variables x = (x1, . . . , xL). In our setting of interest, we
consider a total ofM continuous and binary attributes. We usem ∈ R to indicate
that the variable tm is continuous-valued, and m ∈ B for binary variables (i.e. {0,

1 To be precise, an additional constraint is required here, which we drop for simplicity.



1}). The generative model is:

x ∼ N (0, I) (1)
y|x = W Tx+ b (2)

tm|ym ∼ N (ym, σ
2) m ∈ R (3)

tm|ym ∼ Be
(
g(ym)

)
m ∈ B (4)

By Be(p) we denote a Bernoulli distribution with parameter p (the probability
of giving a 1). W is an L ×M matrix with column vectors (w1, . . . ,wM ), b
an M -dimensional column vector, and g(a) the sigmoid function g(a) = 1/(1 +
exp(−a)). We assume that observed vectors t are generated from a prior Gaus-
sian distribution with zero mean2 unit covariance. Note that we assume a com-
mon noise variance σ2 for all continuous variables. To match this assumption,
we sometimes need to use scaling or whitening as a pre-processing step for the
continuous data in our experiments.

The likelihood3 of an observation vector t given the latent variables x and
model parameters θ is

p(t|x, θ) = p(tR|x, θ)p(tB|x, θ)

=
∏

m∈R

1√
2πσ2

exp
{
− 1

2
(ym − tm)2

σ2

} ∏
m∈B

g
(
(2tm − 1)ym

)
(5)

where ym = wT
mx+bm. The distribution in t-space, for a given value of θ is then

obtained by integration over the latent variables x

p(t|θ) =
∫
p(t|x, θ)p(x)dx (6)

For a given set of N observation vectors, the log likelihood of data D is

L(θ) = log p(D|θ) =
N∑

n=1

log p(tn|θ) (7)

We estimate the model parameters θ = {W , b, σ2} using a maximum likelihood
approach, which can be achieved by the expectation-maximization (EM) algo-
rithm. However, given parameters θ estimated from the previous M-step, the
integral Eq. (6) in the E-step can not be solved analytically. We thus have to re-
sort to an approximated solution. Previous work on mixed latent variable models
has concentrated, for example, on approximating the (equivalent of the) integral
Eq. (6) by Monte Carlo sampling [6] or by Gauss-Hermite numerical integration
[8]. These approaches demonstrate good performance in many cases, but intro-
duce a rather high computational cost. In the next section, we will present a
variational approximation to solve this problem.
2 A non-zero mean and non-identity covariance matrix can be moved to parameters
W and b without loss of generality.

3 A full Bayesian treatment would require prior distributions for the parameters θ. We
do not go for a full Bayesian solution here, thus implicitly assuming a non-informative
prior.



2.1 A Variational EM Algorithm for Model Fitting

In order to select the parameters θ that maximize Eq. (7), we employ a varia-
tional EM algorithm. A variational EM algorithm constructs a lower bound (the
variational approximation) for the likelihood of observations, Eq. (7), by first
introducing additional variational parameters ψ. Then, it iteratively maximizes
the lower bound with respective to the variational parameters (at the E-step)
and the parameters θ of interest (at the M-step). This idea has been applied by
Tipping [9] to a hidden-variable model for binary data only.

A variational approximation for the likelihood contributions of binary vari-
ables, tm ∈ B in Eq. (4) is given by

p(tm|x, θ) ≥ p̃(tm|x, θ, ψm)
= g(ψm)exp

{
(Am − ψm)/2 + λ(ψm)(A2

m − ψ2
m)

}
(8)

where Am = (2tm− 1)(wT
mx+ bm) and λ(ψm) = [0.5− g(ψm)]/2ψm. For a fixed

value of x, we get the perfect approximation where the lower bound is maximized
to be p(tm|x, θ) by setting ψm = Am.4 The variational approximation for the
log likelihood Eq. (7) of data D becomes

L(θ) ≥ F(θ, Ψ) = log
N∏

n=1

∫
p̃(tn|x, θ,ψn)p(x)dx (9)

where

p̃(tn|x, θ,ψn) =
∏

m∈R
p(tmn|x,wm, σ)

∏
m∈B

p̃(tmn|x,wm, ψmn) (10)

We denote the total set of N × |B| variational parameters by Ψ . Since the varia-
tional approximation depends on x only quadratically in the exponent and the
prior p(x) is Gaussian, the integrals to obtain the approximation F(θ, Ψ) can be
solved in closed form.

The variational EM algorithm starts with an initial guess of θ and then itera-
tively maximizes F(θ, Ψ) with respect to Ψ (E-step) and θ (M-step), respectively,
holding the other fixed. Each iteration increases the lower bound, but will not
necessary maximize the true log likelihood L(θ). However, since the E-step re-
sults a very close approximation of L(θ), we expect that, at M-step, the true log
likelihood is increased. Details are given in the following:

(i) E-step: Ψk+1 ← arg maxΨ F(θk, Ψ). The optimization can be achieved
by a normal EM approach. Given ψold

n updated from the previous step, the
algorithm iteratively estimates the sufficient statistics for the posterior approxi-
mation p̃(xn|tn, θk,ψold

n )5, which is again a Gaussian with covariance and mean

4 However, in the case of x distributed over a Gaussian prior N (0, I), maximization
of the corresponding lower bound with respect to ψm is not straightforward.

5 Based on Bayes’ rule, the posterior approximation is derived by normalizing
p̃(tn|xn, θ

k,ψold
n )p(xn) and thus is a proper density, no longer a lower bound.



given by

Cn =
[ 1
σ2

∑
m∈R

wmw
T
m + I − 2

∑
m∈B

λ(ψold
mn)wmw

T
m

]−1 (11)

µn = Cn

{ 1
σ2

∑
m∈R

(tmn − bm)wm +
∑
m∈B

[2tmn − 1
2

+ 2bmλ(ψold
mn)

]
wm

}
(12)

and then updates ψn by maximizing En

{
log p̃(tn,xn|θk,ψn)

}
where the expec-

tation is with respect to p̃(xn|tn, θk,ψold
n ). Taking the derivative of En

{
logp̃(tn,xn|θk,ψn)

}
with respect to ψn and setting it to zero leads to the updates

ψ2
mn = En

{
(wT

mxn + bm)2
}

= wT
mEn(xnx

T
n )wm + 2bmwT

mEn(xn) + b2m (13)

where En(xnx
T
n ) = Cn +µnµ

T
n and En(xn) = µn. The two-stage optimization

updates ψ and monotonously increases F(θk, Ψ). The experiments showed that
this procedure converges rapidly, most often in only two steps.

(ii) M-step: θk+1 ← arg maxθ F(θ, Ψk+1). Similar to the former E-step,
this can also be achieved by iteratively first estimating the sufficient statistics
of p̃(xn|tn, θold,ψk+1

n ) through Eq. (11) and Eq. (12), and then maximizing∑N
n=1En

{
logp̃(tn,xn|θ,ψk+1

n )
}

with respect to θ, where En(·) denotes the ex-
pectation over p̃(xn|tn, θold,ψk+1

n ). For m ∈ R, we derive the following updates

wT
m =

[ N∑
n=1

(tmn − bm)En(xn)T
][ N∑

n=1

En(xnx
T
n )

]−1

(14)

σ2 =
1

N |R|

N∑
n=1

{ ∑
m∈R

[
wT

mEn(xnx
T
n )wm+2(bm−tmn)wT

mEn(xn)+(bm−tmn)2
]}

(15)
where bm, m ∈ R, is directly estimated by the mean of tmn. For m ∈ B, we have
the following updates

(wT
m, bm)T = −

[ N∑
n=1

2λ(ψmn)En(x̂nx̂
T
n )

]−1[ N∑
n=1

(tmn − 0.5)En(x̂n)
]

(16)

where x̂n = (xT , 1)T .

2.2 Inference

Finally, given the trained generative model, we can infer the a posteriori distri-
bution of hidden variables for a complete observation vector t by using Bayes’
rule

p(x|t, θ) =
p(t|x, θ)p(x)∫
p(t|x, θ)p(x)dx

(17)



However, since the integral is again infeasible, we need to derive a variational ap-
proximation by normalizing p̃(t|x, θ,ψ)p(x), where ψ is obtained by maximizing
the lower bound p̃(t|θ,ψ).

For a vector t̂ of partial observations, we can still infer the posterior dis-
tribution in a similar way. If only continuous variables are observed, a normal
posterior calculation can be employed, without the need for a variational ap-
proximation. This solution is the same as calculating the posterior based on the
standard probabilistic PCA model [10].

3 Properties of Generalized Probabilistic PCA

The rows of the ML estimator W that relates latent to observed variables span
the principal subspace of the data. The GPPCA model allows a unified proba-
bilistic modelling of continuous, binary and categorical observations, which can
bring great benefits in real-world data analysis. Also, it can serve as a visualiza-
tion tool for high-dimensional mixed data in a two-dimensional latent variable
space. Existing models currently only visualize either continuous [1] or binary
data [9]. Also, like PPCA [10], GPPCA specifies a full generative model, it can
also handle missing observations in a principled way.

For pattern recognition tasks, GPPCA can provide a principled data trans-
formation for general learning algorithms (which most often rely on continuous
inputs) to handle data with mixed types of attributes. One such example, in
the context of painting image recommender system incorporating visual fea-
tures, artists, user ratings, will be shown in Sec. 5. Also, GPPCA can provide
a principled approach to supervised dimensionality reduction, by allowing the
target values as additional observation variables. GPPCA explores the depen-
dence between inputs and targets via the hidden variables and maximizes the
joint likelihood of both. It actually discovers a subspace of the joint space in
which the projections of inputs have small projection loss and also have clear
class distributions. A large number of methods have been developed to handle is-
sue of supervised data reduction (see [4]), like partial least squares, discriminant
analysis. However most of them, in general, can not handle missing data.

4 Relation to Previous Work

Jaakkola & Jordan [5] proposed a variational likelihood approximation for Bayesian
logistic regression, and briefly pointed out that the same approximation can be
applied to learn the “dual problem”, i.e. a hidden-variable model for binary ob-
servations. Tipping [9] derived the detailed variational EM formalism to learn
the model and used it to visualize high-dimensional binary data. Collins et al. [3]
generalized PCA to various loss functions from the exponential family, in which
the case of Bernoulli variables is similar to Tipping’s model. Latent variable
models for mixed observation variables were also studied by [6] and [8]. In con-
trast to our variational approach, [6] and [8] used numerical integration methods
to handle the otherwise intractable integral in the EM algorithm. Latent variable



models for mixed data were already mentioned by Bishop [1] and Tipping [9], yet
never explicitly implemented. Recently, Cohn [2] proposed informed projections,
a version of supervised PCA, that minimizes both projection loss and inner-class
dissimilarities. However, this requires tuning a parameter β to weight the two
parts of the loss function,

5 Empirical Study

Fig. 1. A toy problem: PCA, GPPCA and GPPCA-W solutions

5.1 A Toy Problem

We first illustrate GPPCA on a simple problem, where 100 two-dimensional sam-
ples are generated from two Gaussian distributions with mean [−1, 1] and [1,−1]
respectively and equal covariance matrices. A third binary variable was added
that indicates which Gaussian the sample belongs to. We perform GPPCA, as
described in Sec. 2, and standard PCA on the data to identify the principal
subspace. The results are illustrated in Fig. 1. As expected, the PCA solution is
along the direction of largest variance. The GPPCA solution, on the other hand,
also takes the class labels into account, and finds a solution that conveys more
information about the observations. In an additional experiment, we pre-process
the continuous variables with whitening and then perform GPPCA. We will re-
fer to this as GPPCA-W in the following. With GPPCA-W, the solution even
more clearly indicates the class distribution. Clearly, a change of the subspace
in W corresponding to the whitened continuous variables will no longer change
the likelihood contribution. Thus, the GPPCA EM algorithm will focus on the
likelihood of binary observations only and thus lead to a result with clear class
distribution.



(a) PCA solution (b) GPPCA solution (c) GPPCA-W solu-
tion

Fig. 2. Visualization of painting images

5.2 Visualization of Painting Images

Next, we show an application of GPPCA to visualizing image data. We consider
a data set of 642 painting images from 47 artists. An often encountered problem
in the research on image retrieval is that low-level visual features (like color,
texture, and edges) can hardly capture high-level information of images, like
concept, style, etc. GPPCA allows to characterize images by more information
than just those low-level features. In the experiment, we examine if it is possi-
ble to visualize different styles of painting images in a 2-dimensional space by
incorporating the information about artists.

As the continuous data describing the images, we extract 275 low-level fea-
tures (correlagram, wavelet texture, and color moment) for each image. We en-
code the artists in 47 binary attributes via a 1-of-c scheme, and obtain a 322-
dimensional vector with mixed data for each image. The result of projecting this
data to a 2-dimensional latent space is shown in Fig. 2, where we limit the shown
data to the images of 3 particular artists.

The solution given by normal PCA does not allow a clear separation of artists.
In contrast, the GPPCA solution, in particular when performing an additional
whitening pre-processing for the continuous features, shows a very clear sepa-
ration of artists. Note furthermore, that the distinction between Van Gogh and
Monet is a bit fuzzy here—these artists do indeed share similarities in their style,
in particular brush stroke, which is reflected by texture features.

5.3 Recommendation of Painting Images

Due to the deficiency of low-level visual features, building recommender systems
for painting image is a challenging task. Here we will demonstrate that GPPCA
allows a principled way of deriving compact and highly informative features.
Thus the accuracy of recommender systems based on the new image features
can be significantly improved.



(a) (b)

Fig. 3. Precision on painting image recommendation, based on different features

We use the same set of 642 painting images as in the previous section. 190
users’ ratings (like, dislike, or no rated) were collected through an online survey
6. For each image, we combine visual features (275-dim.), artist (47-dim.), and a
set of M advisory users’ ratings on it (M-dim.) to form an (322+M)-dimensional
feature vector. This feature vector contains continuous, binary and missing data
(because on average each user only rated 89 images). We apply GPPCA to map
the features to a reduced 50-dimensional feature space. The rest of 190−M users
are then treated as test users. For each test user, we hide some of his/her ratings
and assume that only 5, 10, 20, or 50 ratings are observed. We skip one particular
case if a user has not given that many ratings. Then we use the rated examples,
in form of input (image features) – output(ratings) pairs, to train an RBF-SVM
model to predict the user’s ratings on unseen images and make a ranking. The
performance of recommendation is evaluated by the top-20 precision, which is
the fraction of actually liked images among the top-20 recommendations. We
equally divide the 190 users into 5 groups, pick one group as the group of test
users and treat the other 152 users as advisory users. For each tested case, we
randomize 10 times and calculate the mean and error bars. The results are shown
in Fig. 3.

Fig. 3(a) shows that GPPCA improves the precision in all the cases by ef-
fectively incorporating richer information. This is not surprising since the in-
formation about artists is a good indicator of painting styles. Advisory users’
opinions on a painting actually reflect some high-level properties of the painting
from a different individual’s perspective. GPPCA here provides a princpled way
to represent different information sources into a unified form of continuous data,
and allows accurate recommendations based on the reduced data. Interestingly,
as shown in Fig. 3(a), a recommender system working with direct combination of

6 http://honolulu.dbs.informatik.uni-muenchen.de:8080/paintings/index.jsp



the three aspects of information shows a much lower precision than the compact
form of features. This indicates that GPPCA effectively detects the ‘signal sub-
space’ of high dimensional mixed data, while eliminating irrelevant information.
Note that there are over 80 percent of missing data in the user ratings. GP-
PCA also provides an effective means to handle this problem. Fig. 3(b) shows
that GPPCA incorporating visual features and artist information significantly
outperforms a recommender sytem that only works on artist information. This
indicates that GPPCA working on the pre-whitened continuous data does not
remove the influence of visual features.

6 Conclusion

This paper describes generalized probabilistic PCA (GPPCA), a latent-variable
model for mixed types of data, with continuous and binary observations. By
adopting a variational approximation, an EM algorithm can be formulated that
allows an efficient learning of the model parameters from data. The model gen-
eralizes probabilistic PCA and opens new perspectives for multivariate data
analysis and machine learning tasks. We demonstrated the advantages of the
proposed GPPCA model on toy data and data from painting images. GPPCA
allows an effective visualization of data in two-dimensional hidden space that
takes into account both information from low-level image features and artist
information. Our experiments on an image retrieval task show that the model
provides a principled solution to incorporating different information sources, thus
significantly improving the achievable precision. Currently the described model
reveals the linear principal subspace for mixed high dimensional data. It might
be interesting to pursue non-linear hidden variable model to handle mixed types
of data.

This approach and its possibly extensions may provide the basis for - even
adaptively - compactifying data representations in future pervasive computing
environments thus increasing their performance and acceptance.
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