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Learning multiple tasks

For input vector zj, and its outputs Yij under various conditions
(tasks), the standard regression model is

Yij = µ + mi(zj) + εij,

where εij
iid∼ N(0, σ2), i = 1, . . . ,M , and j = 1, . . . , N .
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A kernel approach to multi-task learning

To model the dependency between tasks, a hierarchical Bayesian ap-
proach may assume

mi
iid∼ GP(0,Σ)

where

– Σ(zj, zj′) � 0 is a shared covariance function among inputs;
– Many multi-task learning approaches are similar to this.a

aICML-09 tutorial, Tresp & Yu
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Using task-specific features

Assuming task-specific features x are available, a more flexible ap-
proach is to model the data jointly, as

Yij = µ + m(xi, zj) + εij,

where εij
iid∼ N(0, σ2), mij = m(xi, zj) is a relational function.
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A nonparametric kernel-based approach

Assume the relational function followsa

m ∼ GP(0,Ω⊗ Σ)

where

– Ω(xi,xi′) is a covariance function on tasks;
– Σ(zj, zj′) is a covariance function on inputs;
– any sub matrix follows

m ∼ N(0,Ω⊗Σ) ⇒ Cov(mij,mi′j′) = Ωii′Σjj′;

– If Ω = δ, the prior reduces to mi
iid∼ GP(0,Σ).

aYu et al., 2007; Bonilla et al., 2008
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The collaborative prediction problem

This essentially a multi-task learning problem with task features;

Matrix factorization using additional row/column attributes;

The formulation applies to many relational prediction problems.
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Challenges to the kernel approach

Computation: the cost O(M 3N 3) is prohibitive.

– Netflix data: M = 480, 189 and N = 17, 770.

Dependent “noise”: when Yij cannot be fully explained by the predic-
tors xi and zj, the conditional independence assumption is invalid,
which means,

p(Y |m,x, z) 6=
∏
i,j

p(Yij|m,xi, zj)

– User and movie features are weak predictors;
– The relational observations Yij alone are informative to each other.
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This work

Novel multi-task model using both input and task attributes;

Nonparametric random effects to resolve dependent “noises”;

Efficient algorithm for large-scale collaborative prediction problems.
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Nonparametric random effects

Yij = µ + mij + fij + εij,

m(xi, zj): a function depending on known attributes;

fij: random effects for dependent “noises”;

– modeling dependency in observations with repeated structures.

Let fij be nonparametric: dimensionality increases with data size;

– “nonparametric matrix factorization”
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Efficiency considerations in modeling

To save computation, we absorb ε into f and obtain

Yij = µ + mij + fij,

Introduce a special generative process for m and f ...

m, f ∼ ·, ·|Ω0(xi,xi′),Σ0(zj, zj′),
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The row-wise generative model



•First •Prev •Page 12 •Next •Last •Go Back •Full Screen •Close •Quit

The row-wise generative model
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The row-wise generative model
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The row-wise generative model
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The row-wise generative model
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The row-wise generative model
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The row-wise generative model
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The row-wise generative model
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The column-wise generative model
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Two generative models

Yij = µ + mij + fij,

column-wise model: row-wise model:

Ω ∼ IWP(κ,Ω0 + τδ), Σ ∼ IWP(κ,Σ0 + λδ),

m ∼ GP(0,Ω⊗ Σ0), m ∼ GP(0,Ω0 ⊗ Σ),

fj
iid∼ GP(0, λΩ), fi

iid∼ GP(0, τΣ),
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Two generative models are equivalent

Both models lead to the same matrix-variate Student-t process

Y ∼ MTP
(
κ, 0, (Ω0 + τδ), (Σ0 + λδ)

)
,

The model “learns” both Ω and Σ simultaneously;

Sometimes one model is computationally cheaper than the other.
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An idea of large-scale modeling
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Modeling large-scale data

If Ω0(xi,xi′) = 〈φ(xi), φ(xi′)〉, m ∼ GP(0,Ω0 ⊗ Σ) implies

mij = 〈φ(xi), βj〉

Without loss of generality, let Ω0(xi,xi′) = 〈p1
2xi, p

1
2xi′〉, xi ∈ Rp. On a

finite observational matrix Y ∈ RM×N , M � N , the row-wise model
becomes

Σ ∼ IW(κ,Σ0 + λIN),

β ∼ N(0, Ip ⊗Σ),

Yi ∼ N(β>xi, τΣ), i = 1, . . . ,M

where β is p×N random matrix.
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Approximate Inference - EM

E-step: compute the sufficient statistics {υi,Ci} for the posterior of
Yi given the current β and Σ:

Q(Y) =

M∏
i=1

p(Yi|YOi
,β,Σ) =

M∏
i=1

N(Yi|υi,Ci),

M-step: optimize β and Σ:

β̂, Σ̂ = arg min
β,Σ

{
EQ(Y) [− log p(Y,β,Σ|θ)]

}
and then let β ← β̂,Σ← Σ̂.
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Some notation

Let Ji ⊂ {1, . . . , N} be the index set of the Ni observed elements in
the row Yi;

Σ[:,Ji] ∈ RN×Ni is the matrix obtained by keeping the columns of Σ
indexed by Ji;

Σ[Ji,Ji] ∈ RNi×Ni is obtained from Σ[:,Ji] by further keeping only the
rows indexed by Ji;

Similarly, we can define Σ[Ji,:], Y[i,Ji] and m[i,Ji].
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The EM algorithm

E-step: for i = 1, . . . ,M

mi = β>xi,

υi = mi + Σ[:,Ji]Σ
−1
[Ji,Ji](Y[i,Ji] −m[i,Ji])

>,

Ci = τΣ− τΣ[:,Ji]Σ
−1
[Ji,Ji]Σ[Ji,:].

M-step:
β̂ = (x>x + τIp)

−1x>υ,

Σ̂ =
τ−1
[∑M

i=1(Ci + υiυi)− υ>x(x>x + τIp)
−1x>υ

]
+ Σ0 + λIN

M + 2N + p + κ

On Netflix, each EM iteration takes several thousands of hours .
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Fast implementation

Let Ui ∈ RN×Ni be a column selection operator, such that Σ[:,Ji] =
ΣUi and Σ[Ji,Ji] = U>i ΣUi.

The M-step only needs C =
∑M

i=1 Ci + υ>υ and υ>x from the pre-
vious E-step. To obtain them, it’s unnecessary to compute υi and Ci.
For example,

M∑
i=1

Ci =
M∑
i=1

(
τΣ− τΣ[:,Ji]Σ

−1
[Ji,Ji]

Σ[Ji,:]

)
=

M∑
i=1

(
τΣ− τΣUiΣ

−1
[Ji,Ji]

Ui
>Σ
)

= τMΣ− τΣ

(
M∑
i=1

UiΣ
−1
[Ji,Ji]

Ui
>

)
Σ

Similar tricks can be applied to υ>υ and υ>x. Time for each iteration
is reduced from thousands of hours to 5 hours only.
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EachMovie Data

74424 users, 1648 movies;

2, 811, 718 numeric ratings Yij ∈ {1, . . . , 6};
97.17% of the elements are missing;

Use 80% ratings of each user for training and the rest for testing;

This random selection is repeated 10 times independently.
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Compared methods

User Mean & Movie Mean: prediction by the empirical mean;

FMMMF: fast max-margin matrix factorization a;

PPCA: probabilistic principal component analysis b;

BSRM: Bayesian stochastic relational model c, BSRM-1 uses no addi-
tional user/movie attributes d;

NREM: Nonparametric random effects model, NREM-1 uses no addi-
tional attributes.

aRennie & Srebro (2005).
bTipping & Bishop (1999).
cZhu, Yu, & Gong (2009).
dTop 20 eigenvectors from of binary matrix indicating if a rating is observed or not.
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Results on EachMovie

TABLE: Prediction Error on EachMovie Data

Method RMSE Standard Error Run Time (hours)
User Mean 1.4251 0.0004
Movie Mean 1.3866 0.0004
FMMMF 1.1552 0.0008 4.94
PPCA 1.1045 0.0004 1.26
BSRM-1 1.0902 0.0003 1.67
BSRM-2 1.0852 0.0003 1.70
NREM-1 1.0816 0.0003 0.59
NREM-2 1.0758 0.0003 0.59
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Netflix Data

100, 480, 507 ratings from 480, 189 users on 17, 770 movies;

Yij ∈ {1, 2, 3, 4, 5};
A set of validation data contain 1, 408, 395 ratings;

Therefore there are 98.81% of elements missing in the rating matrix;

The test set includes 2, 817, 131 ratings;
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Compared methods

In addition to those compared in EachMovie experiment, there are sev-
eral other methods:

SVD: a method almost the same as FMMMF, using a gradient-based
method for optimization a.

RBM: Restricted Boltzmann Machine using contrast divergence b.

PMF and BPMF: probabilistic matrix factorization c, and its Bayesian
version d.

PMF-VB: probabilistic matrix factorization using a variational Bayes
method for inference e.

aKurucz, Benczur, & Csalogany, (2007).
bSalakhutdinov, Mnih & Hinton (2007).
cSalakhutdinov & Mnih (2008b).
dSalakhutdinov & Mnih (2008a).
eLim & Teh (2007).
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Results on Netflix

TABLE: Performance on Netflix Data

Method RMSE Run Time (hours)
Cinematch 0.9514 -
SVD 0.920 300
PMF 0.9265 -
RBM 0.9060 -
PMF-VB 0.9141 -
BPMF 0.8954 1100
BSRM-2 0.8881 350
NREM-1 0.8876 148
NREM-2 0.8853 150
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Predictive Uncertainty

Standard deviations of prediction residuals vs. standard deviations
predicted by our model on EachMovie
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Related work

Multi-task learning using Gaussian processes, those learn the covari-
ance Σ shared across tasks a, and those that additionally consider the
covariance Ω between tasks b

Application of GP models to collaborative filtering c

Low-rank matrix factorization, e.g., d. Our model is nonparametric in
the sense no rank constraint is imposed.

Very few matrix factorization methods use known predictors. One
such a work e introduces low-rank multiplicative random effects in
modeling networked observations.

aLawrence & Platt (2004); Schwaighofer, Tresp & Yu (2004); Yu, Tresp & Schwaighofer (2005).
bYu, Chu, Yu, Tresp, & Xu, (2007); Bonilla, Chai, & Williams (2008).
cSchwaighofer, Tresp & Yu (2004), Yu & Chu (2007)
dSalakhutdinov & Mnih (2008b).
eHoff (2005)
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Summary

The model provides a novel way to use random effects and known
attributes to explain the complex dependence of data;

We make the nonparametric model scalable and efficient on very
large-scale problems;

Our experiments demonstrate that the algorithm works very well on
two challenging collaborative prediction problems;

In the near future, it will be promising to perform a full Bayesian
inference by a parallel Gibbs sampling method.


