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Learning multiple tasks

z: input features

Y: output responses
different s Y
tasks

m For input vector z;, and its outputs Y;; under various conditions
(tasks), the standard regression model is

Yij = p+mi(z)) + €,

Whereeijir@N(O,ﬁ),i:1,...,M,andj:1,...,N.
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A kernel approach to multi-task learning

m To model the dependency between tasks, a hierarchical Bayesian ap-
proach may assume

m; < GP(0, )
where

— Y(z;,z;) > 01is a shared covariance function among inputs;

— Many multi-task learning approaches are similar to this.”

“ICML-09 tutorial, Tresp & Yu
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Using task-specific features

z: input features

x: task-specific features

= Y: output responses

m Assuming task-specific features = are available, a more flexible ap-
proach is to model the data jointly, as

Yij = p+m(x;, z;) + €,

iid . : :
where €;; ~ N(0, 0%), m;; = m(x;, z;) is a relational function.
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A nonparametric kernel-based approach

m Assume the relational function follows”
m ~ GP(0,Q2 ® ¥J)

where

— ()(x;, Xy) is a covariance function on tasks;
— Y(z;,z;) is a covariance function on inputs;

— any sub matrix follows

m ~ N(O, Q &) E) = COV(’I?"LZ’]', mi/j/) = QWZ]’]”;

— If Q) = ¢, the prior reduces to m; i GP(0,%).

"Yu et al., 2007; Bonilla et al., 2008
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The collaborative prediction problem

z: movie features

v X: user features
XZ PEETIrrTT . _:."‘:_ ’Lj

Y: ratings

m This essentially a multi-task learning problem with task features;
m Matrix factorization using additional row /column attributes;

m The formulation applies to many relational prediction problems.
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Challenges to the kernel approach

m Computation: the cost O(M?>N?) is prohibitive.
— Netflix data: M = 480,189 and N = 17, 770.

m Dependent “noise”: when Y;; cannot be fully explained by the predic-
tors x; and z,;, the conditional independence assumption is invalid,
which means,

p(Y |m,x,z) # | [ p(Yijlm, xi, z))
0J
— User and movie features are weak predictors;

— The relational observations Y;; alone are informative to each other.
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This work

m Novel multi-task model using both input and task attributes;
m Nonparametric random effects to resolve dependent “noises”;

m Efficient algorithm for large-scale collaborative prediction problems.
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Nonparametric random effects

Yij=p+my+ [ij + €,
m m(X;, z;): a function depending on known attributes;
m f;;: random effects for dependent “noises”;
— modeling dependency in observations with repeated structures.
m Let f;; be nonparametric: dimensionality increases with data size;

— “nonparametric matrix factorization”
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Efficiency considerations in modeling

m To save computation, we absorb € into f and obtain
Yij = p+mi+ fij,
m Introduce a special generative process for m and f ...

m, f ~ -, "QO(Xia }(g)7 ZO(Zja Zj/),
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The row-wise generative model

>~ IWP(K}, E() + )\(5)
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The row-wise generative model

>~ IWP(K}, E() + )\(5)

7

m ~ GP(0,Q @ )

J

m(xia Zj)
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The row-wise generative model

>~ IWP(K}, E() + )\(5)

7 N

m ~ GP(0,Qy ® %) £ S GP(0, %)

J J

m(xiazj)

ofirst ®Prev ®Page 13 ®Next elLast @ Go Back eFull Screen eClose ®Quit



The row-wise generative model

>~ IWP(KZ, EU + A(S)

7 N

m ~ GP(0,$ @ 3) £ S GP(0, )

J J

m(x;,2;)
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The row-wise generative model

>~ IWP(K}, E() + )\(5)

7 N

m ~ GP(0,Qy ® %) £ S GP(0, %)

J J

m(xiazj)
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The row-wise generative model

>~ IWP(K}, E() + )\(5)

7 N

m ~ GP(0,Qy ® %) £ S GP(0, %)

J J

m(xiazj)
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The row-wise generative model

>~ IWP(KZ, E(‘) + )\(5)

7 N

m ~ GP(0,Qy @ Y) £ S GP(0, )

J J

m(x;, z;)
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The row-wise generative model

>~ IWP(K}, E() + )\(5)

7 N

m ~ GP(0,Qy ® %) £ S GP(0, %)

J J

m(xiazj)

() l

Y Y

Yij = p+mi+ fi
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The column-wise generative model

() ~ IWP(k, 2 + 70)

7 N

m ~ GP(0, 0 ® %) £ %S GP(0, AQ)

J J

m(x;,2;)

i ()

Y 7

Yij = p+my + fi
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Two generative models

Yij =p+my+ fij,

column-wise model: row-wise model:
() ~ IWP(/'/{,, QO + 7'5), >~ IWP(/'/{,, 20 + )\5),
m ~ GP(O, Q ® 20), m ~ GP(O, QO ® Z),
f; = GP(0, XQ), f: = GP(0, 7)),
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Two generative models are equivalent

m Both models lead to the same matrix-variate Student-t process

Y ~ MTP(k,0, (R + 79), (o + ),

m The model “learns” both () and > simultaneously;

m Sometimes one model is computationally cheaper than the other.
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An idea of large-scale modeling

Assuming M > N, we
X Y :MxN m choose the row-wise model,

m let ((x;, x;) be low-rank.

Y ~ MT(H. 0, (Q[] + TIi\[). (E() —+ /\I_\\‘)).
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Modeling large-scale data

m If Qy(x;, x0) = (0(x:), p(x)), m ~ GP(0, )y ® ) implies
mi; = (o(xi), B;)

m Without loss of generality, let (y(x;, x;/) = <p%XZ~, péxﬁ, x;, € R?. Ona
finite observational matrix Y € R™*Y M > N, the row-wise model
becomes

2 ~ IW(K}, 20 + )\IN),
B~ N(0,I,®3),
Y, ~NB'x;,78), i=1,...,.M

where 3 is p X N random matrix.
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Approximate Inference - EM

m E-step: compute the sufficient statistics {v;, C;} for the posterior of
Y, given the current 3 and X::

QY) = Hp<Yi‘Y0i7167 ¥) = HN(Yz"’Uz:, Ci),

m M-step: optimize 3 and 3::
B.E = argmin {Equy) [~ log p(Y, 8, 5/6)] }

and then let 3 «— B, P 5]
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Some notation

mLet J; C {1,..., N} be the index set of the N; observed elements in
the row Y ;;

m 3, € RY*N s the matrix obtained by keeping the columns of X
indexed by .J;;

m 3 € RY"Niis obtained from X ;) by further keeping only the
rows indexed by J;;

m Similarly, we can define >(; ., Y, ) and my; ;.
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The EM algorithm

m E-step:forte=1,...,. M

-
m, = X,

Ci =73 — 13 12 0.

e

1
v, =m; + X 35 (Y —mg ),

m M-step:
B=(x'x+7L) "'x'v,

o T XG4 vy — v x(x x+7L) x| + B+ Ay
> =

M+2N+p+k

On Netflix, each EM iteration takes several thousands of hours .
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Fast implementation

mLet U, € RV*YNi be a column selection operator, such that g =
>U;and X, = U/ XU,

m The M-step only needs C = Zf\il C; + v'v and v'x from the pre-
vious E-step. To obtain them, it’s unnecessary to compute v; and C,.
For example,

WE

M
>ci-

=1 7

(7= = 72 B T

I
—

e

<Tz - T5U;E} MUJE)

1

7

M
=TMXE - 7% (Z Uiz Ji]Uﬁ> b
1=1

m Similar tricks can be applied to v ' v and v 'x. Time for each iteration
is reduced from thousands of hours to 5 hours only.
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EachMovie Data

m 74424 users, 1648 movies;

m 2,811, 718 numeric ratings Y;; € {1,...,6};

m 97.17% of the elements are missing;

m Use 80% ratings of each user for training and the rest for testing;

m This random selection is repeated 10 times independently.
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Compared methods

m User Mean & Movie Mean: prediction by the empirical mean;

m FMMMF: fast max-margin matrix factorization “;
m PPCA: probabilistic principal component analysis ’;

m BSRM: Bayesian stochastic relational model ¢, BSRM-1 uses no addi-
tional user/movie attributes ¢;

m NREM: Nonparametric random effects model, NREM-1 uses no addi-
tional attributes.

“Rennie & Srebro (2005).

"Tipping & Bishop (1999).

°Zhu, Yu, & Gong (2009).

“Top 20 eigenvectors from of binary matrix indicating if a rating is observed or not.
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Results on EachMovie

TABLE: Prediction Error on EachMovie Data

Method RMSE Standard Error Run Time (hours)
User Mean  1.4251 0.0004

Movie Mean 1.3866 0.0004

FMMMF 1.1552 0.0008 4.94

PPCA 1.1045 0.0004 1.26
BSRM-1 1.0902 0.0003 1.67
BSRM-2 1.0852 0.0003 1.70
NREM-1 1.0816 0.0003 0.59
NREM-2 1.0758 0.0003 0.59
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Netflix Data

m 100, 480, 507 ratings from 480, 189 users on 17, 770 movies;

mY;,; €{1,234,5};

m A set of validation data contain 1, 408, 395 ratings;

m Therefore there are 98.81% of elements missing in the rating matrix;

m The test set includes 2,817, 131 ratings;
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Compared methods

In addition to those compared in EachMovie experiment, there are sev-
eral other methods:

m SVD: a method almost the same as FMMMEF, using a gradient-based
method for optimization “.

m RBM: Restricted Boltzmann Machine using contrast divergence °.

m PMF and BPMF: probabilistic matrix factorization ¢, and its Bayesian

version “.

m PMF-VB: probabilistic matrix factorization using a variational Bayes
method for inference “.

“Kurucz, Benczur, & Csalogany, (2007).
bSalakhutdinov, Mnih & Hinton (2007).
‘Salakhutdinov & Mnih (2008b).

Salakhutdinov & Mnih (2008a).
*Lim & Teh (2007).
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Results on Netflix

TABLE: Performance on Netflix Data

Method RMSE Run Time (hours)
Cinematch 0.9514 -

SVD 0.920 300
PMF 0.9265 -
RBM 0.9060 -
PMEF-VB 0.9141 -
BPMF 0.8954 1100
BSRM-2 0.8881 350
NREM-1 0.8876 148
NREM-2  0.8853 150
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Predictive Uncertainty

- —_ —_
- (¥ EN o

Standard Deviation of Residual

o
o

0.8 1 1.2 1.4 16
Predicted Standard Deviation

Standard deviations of prediction residuals vs. standard deviations
predicted by our model on EachMovie
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Related work

m Multi-task learning using Gaussian processes, those learn the covari-
ance X shared across tasks ?, and those that additionally consider the
covariance §) between tasks

m Application of GP models to collaborative filtering °

m Low-rank matrix factorization, e.g., 4 Our model is nonparametric in
the sense no rank constraint is imposed.

m Very few matrix factorization methods use known predictors. One
such a work ¢ introduces low-rank multiplicative random effects in
modeling networked observations.

“Lawrence & Platt (2004); Schwaighofer, Tresp & Yu (2004); Yu, Tresp & Schwaighofer (2005).
"Yu, Chu, Yu, Tresp, & Xu, (2007); Bonilla, Chai, & Williams (2008).
‘Schwaighofer, Tresp & Yu (2004), Yu & Chu (2007)

Salakhutdinov & Mnih (2008b).
*Hoff (2005)
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Summary

m The model provides a novel way to use random effects and known
attributes to explain the complex dependence of data;

m We make the nonparametric model scalable and efficient on very
large-scale problems;

m Our experiments demonstrate that the algorithm works very well on
two challenging collaborative prediction problems;

m In the near future, it will be promising to perform a full Bayesian
inference by a parallel Gibbs sampling method.
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