Large-scale Collaborative Prediction Using a Nonparametric Random Effects Model

Kai Yu †

Joint work with John Lafferty^{\ddagger} and Shenghuo Zhu^{\dagger}

[†]NEC Laboratories America, [‡]Carnegie Mellon University

● First ● Prev ● Page 1 ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Learning multiple tasks

- z: input features
- Y: output responses

• For input vector \mathbf{z}_j , and its outputs Y_{ij} under various conditions (tasks), the standard regression model is

$$Y_{ij} = \mu + m_i(\mathbf{z}_j) + \epsilon_{ij},$$

where $\epsilon_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, $i = 1, \ldots, M$, and $j = 1, \ldots, N$.

● First ● Prev ● Page 2 ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

A kernel approach to multi-task learning

To model the dependency between tasks, a hierarchical Bayesian approach may assume

$$m_i \stackrel{\text{iid}}{\sim} \operatorname{GP}(0, \Sigma)$$

where

– $\Sigma(\mathbf{z}_j, \mathbf{z}_{j'}) \succ 0$ is a shared covariance function among inputs;

- Many multi-task learning approaches are similar to this.^a

^{*a*}ICML-09 tutorial, Tresp & Yu

Using task-specific features

- z: input features
- x: task-specific features
- Y: output responses

■ Assuming task-specific features *x* are available, a more flexible approach is to model the data jointly, as

$$Y_{ij} = \mu + m(\mathbf{x}_i, \mathbf{z}_j) + \epsilon_{ij},$$

where $\epsilon_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, $m_{ij} = m(\mathbf{x}_i, \mathbf{z}_j)$ is a relational function.

● First ● Prev ● Page 4 ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

A nonparametric kernel-based approach

■ Assume the relational function follows^{*a*}

 $m \sim \operatorname{GP}(0, \Omega \otimes \Sigma)$

where

- $\Omega(\mathbf{x}_i, \mathbf{x}_{i'})$ is a covariance function on tasks;
- $\Sigma(\mathbf{z}_j, \mathbf{z}_{j'})$ is a covariance function on inputs;
- any sub matrix follows

$$\mathbf{m} \sim \mathbf{N}(0, \mathbf{\Omega} \otimes \mathbf{\Sigma}) \Rightarrow \mathbf{Cov}(m_{ij}, m_{i'j'}) = \Omega_{ii'} \Sigma_{jj'};$$

– If $\Omega = \delta$, the prior reduces to $m_i \stackrel{\text{iid}}{\sim} \operatorname{GP}(0, \Sigma)$.

^{*a*}Yu et al., 2007; Bonilla et al., 2008

The collaborative prediction problem

- This essentially a multi-task learning problem with task features;
- Matrix factorization using additional row/column attributes;
- The formulation applies to many **relational prediction** problems.

Challenges to the kernel approach

Computation: the cost $O(M^3N^3)$ is prohibitive.

- Netflix data: M = 480, 189 and N = 17, 770.

Dependent "noise": when Y_{ij} cannot be fully explained by the predictors x_i and z_j, the conditional independence assumption is invalid, which means,

$$p(\mathbf{Y} \mid m, \mathbf{x}, \mathbf{z}) \neq \prod_{i,j} p(Y_{ij} \mid m, \mathbf{x}_i, \mathbf{z}_j)$$

- User and movie features are weak predictors;
- The relational observations Y_{ij} alone are informative to each other.

This work

- Novel multi-task model using both input and task attributes;
- Nonparametric random effects to resolve dependent "noises";
- Efficient algorithm for large-scale collaborative prediction problems.

Nonparametric random effects

$$Y_{ij} = \mu + m_{ij} + f_{ij} + \epsilon_{ij},$$

• $m(\mathbf{x}_i, \mathbf{z}_j)$: a function depending on known attributes;

- f_{ij} : random effects for dependent "noises";
 - modeling dependency in observations with repeated structures.
- Let f_{ij} be **nonparametric**: dimensionality increases with data size;
 - "nonparametric matrix factorization"

Efficiency considerations in modeling

• To save computation, we absorb ϵ into f and obtain

$$Y_{ij} = \mu + m_{ij} + f_{ij}$$

• Introduce a special generative process for m and f ...

$$m, f \sim \cdot, \cdot |\Omega_0(\mathbf{x}_i, \mathbf{x}_{i'}), \Sigma_0(\mathbf{z}_j, \mathbf{z}_{j'}),$$

 $\Sigma \sim \text{IWP}(\kappa, \Sigma_0 + \lambda \delta)$

● First ● Prev ● Page 11 ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

The column-wise generative model

● First ● Prev ● Page 19 ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Two generative models

$$Y_{ij} = \mu + m_{ij} + f_{ij},$$

column-wise model:

row-wise model:

$$\begin{split} & \boldsymbol{\Omega} \sim \mathrm{IWP}(\kappa, \Omega_0 + \tau \delta), \\ & \boldsymbol{m} \sim \mathrm{GP}(0, \boldsymbol{\Omega} \otimes \boldsymbol{\Sigma}_0), \\ & \boldsymbol{f}_j \stackrel{\mathrm{iid}}{\sim} \mathrm{GP}(0, \boldsymbol{\lambda} \boldsymbol{\Omega}), \end{split}$$

$$\begin{split} & \sum \sim \mathrm{IWP}(\kappa, \Sigma_0 + \lambda \delta), \\ & m \sim \mathrm{GP}(0, \Omega_0 \otimes \Sigma), \\ & f_i \stackrel{\mathrm{iid}}{\sim} \mathrm{GP}(0, \tau \Sigma), \end{split}$$

● First ● Prev ● Page 20 ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Two generative models are equivalent

■ Both models lead to the same matrix-variate Student-t process $Y \sim \text{MTP}(\kappa, 0, (\Omega_0 + \tau \delta), (\Sigma_0 + \lambda \delta)),$

- The model "learns" both Ω and Σ simultaneously;
- Sometimes one model is computationally cheaper than the other.

An idea of large-scale modeling

Modeling large-scale data

• If
$$\Omega_0(\mathbf{x}_i, \mathbf{x}_{i'}) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_{i'}) \rangle$$
, $m \sim \operatorname{GP}(0, \Omega_0 \otimes \Sigma)$ implies
$$m_{ij} = \langle \phi(\mathbf{x}_i), \beta_j \rangle$$

• Without loss of generality, let $\Omega_0(\mathbf{x}_i, \mathbf{x}_{i'}) = \langle p^{\frac{1}{2}} \mathbf{x}_i, p^{\frac{1}{2}} \mathbf{x}_{i'} \rangle$, $\mathbf{x}_i \in \mathbb{R}^p$. On a finite observational matrix $\mathbf{Y} \in \mathbb{R}^{M \times N}$, $M \gg N$, the row-wise model becomes

$$\begin{split} \boldsymbol{\Sigma} &\sim \mathrm{IW}(\kappa, \boldsymbol{\Sigma}_0 + \lambda \mathbf{I}_N), \\ \boldsymbol{\beta} &\sim \mathrm{N}(0, \mathbf{I}_p \otimes \boldsymbol{\Sigma}), \\ \mathbf{Y}_i &\sim \mathrm{N}(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_i, \tau \boldsymbol{\Sigma}), \quad i = 1, \dots, M \end{split}$$

where β is $p \times N$ random matrix.

Approximate Inference - EM

E-step: compute the sufficient statistics {v_i, C_i} for the posterior of Y_i given the current β and Σ:

$$Q(\mathbf{Y}) = \prod_{i=1}^{M} p(\mathbf{Y}_i | \mathbf{Y}_{O_i}, \boldsymbol{\beta}, \boldsymbol{\Sigma}) = \prod_{i=1}^{M} N(\mathbf{Y}_i | \boldsymbol{v}_i, \mathbf{C}_i),$$

• M-step: optimize β and Σ :

$$\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\Sigma}} = \arg\min_{\boldsymbol{\beta}, \boldsymbol{\Sigma}} \left\{ \mathbb{E}_{Q(\mathbf{Y})} \left[-\log p(\mathbf{Y}, \boldsymbol{\beta}, \boldsymbol{\Sigma} | \boldsymbol{\theta}) \right] \right\}$$

and then let $oldsymbol{eta} \leftarrow \widehat{oldsymbol{eta}}, \Sigma \leftarrow \widehat{\Sigma}.$

Some notation

- Let $J_i \subset \{1, \ldots, N\}$ be the index set of the N_i observed elements in the row \mathbf{Y}_i ;
- $\Sigma_{[:,J_i]} \in \mathbb{R}^{N \times N_i}$ is the matrix obtained by keeping the columns of Σ indexed by J_i ;
- $\Sigma_{[J_i,J_i]} \in \mathbb{R}^{N_i \times N_i}$ is obtained from $\Sigma_{[:,J_i]}$ by further keeping only the rows indexed by J_i ;
- Similarly, we can define $\Sigma_{[J_i,:]}$, $\mathbf{Y}_{[i,J_i]}$ and $\mathbf{m}_{[i,J_i]}$.

The EM algorithm

• E-step: for
$$i = 1, ..., M$$

$$\mathbf{m}_{i} = \boldsymbol{\beta}^{\top} \mathbf{x}_{i},$$

$$\boldsymbol{\upsilon}_{i} = \mathbf{m}_{i} + \boldsymbol{\Sigma}_{[:,J_{i}]} \boldsymbol{\Sigma}_{[J_{i},J_{i}]}^{-1} (\mathbf{Y}_{[i,J_{i}]} - \mathbf{m}_{[i,J_{i}]})^{\top},$$

$$\mathbf{C}_{i} = \tau \boldsymbol{\Sigma} - \tau \boldsymbol{\Sigma}_{[:,J_{i}]} \boldsymbol{\Sigma}_{[J_{i},J_{i}]}^{-1} \boldsymbol{\Sigma}_{[J_{i},:]}.$$
• M-step:

$$\widehat{\boldsymbol{\beta}} = (\mathbf{x}^{\top}\mathbf{x} + \tau\mathbf{I}_p)^{-1}\mathbf{x}^{\top}\boldsymbol{v},$$
$$\widehat{\boldsymbol{\Sigma}} = \frac{\tau^{-1}\left[\sum_{i=1}^{M}(\mathbf{C}_i + \boldsymbol{v}_i\boldsymbol{v}_i) - \boldsymbol{v}^{\top}\mathbf{x}(\mathbf{x}^{\top}\mathbf{x} + \tau\mathbf{I}_p)^{-1}\mathbf{x}^{\top}\boldsymbol{v}\right] + \boldsymbol{\Sigma}_0 + \lambda\mathbf{I}_N}{M + 2N + p + \kappa}$$

On Netflix, each EM iteration takes several thousands of hours .

● First ● Prev ● Page 26 ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Fast implementation

- Let $\mathbf{U}_i \in \mathbb{R}^{N \times N_i}$ be a column selection operator, such that $\Sigma_{[:,J_i]} = \Sigma \mathbf{U}_i$ and $\Sigma_{[J_i,J_i]} = \mathbf{U}_i^\top \Sigma \mathbf{U}_i$.
- The M-step only needs $\mathbf{C} = \sum_{i=1}^{M} \mathbf{C}_{i} + \boldsymbol{v}^{\top} \boldsymbol{v}$ and $\boldsymbol{v}^{\top} \mathbf{x}$ from the previous E-step. To obtain them, it's **unnecessary to compute** \boldsymbol{v}_{i} and \mathbf{C}_{i} . For example,

$$\sum_{i=1}^{M} \mathbf{C}_{i} = \sum_{i=1}^{M} \left(\tau \boldsymbol{\Sigma} - \tau \boldsymbol{\Sigma}_{[:,J_{i}]} \boldsymbol{\Sigma}_{[J_{i},J_{i}]}^{-1} \boldsymbol{\Sigma}_{[J_{i},i]} \right)$$
$$= \sum_{i=1}^{M} \left(\tau \boldsymbol{\Sigma} - \tau \boldsymbol{\Sigma} \mathbf{U}_{i} \boldsymbol{\Sigma}_{[J_{i},J_{i}]}^{-1} \mathbf{U}_{i}^{\top} \boldsymbol{\Sigma} \right)$$
$$= \tau M \boldsymbol{\Sigma} - \tau \boldsymbol{\Sigma} \left(\sum_{i=1}^{M} \mathbf{U}_{i} \boldsymbol{\Sigma}_{[J_{i},J_{i}]}^{-1} \mathbf{U}_{i}^{\top} \right) \boldsymbol{\Sigma}$$

Similar tricks can be applied to $v^{\top}v$ and $v^{\top}x$. Time for each iteration is reduced from thousands of hours to 5 hours only.

EachMovie Data

- 74424 users, 1648 movies;
- 2,811,718 numeric ratings $Y_{ij} \in \{1, \ldots, 6\}$;
- 97.17% of the elements are missing;
- Use 80% ratings of each user for training and the rest for testing;
- This random selection is repeated 10 times independently.

Compared methods

- User Mean & Movie Mean: prediction by the empirical mean;
- **FMMMF**: fast max-margin matrix factorization ^{*a*};
- **PPCA**: probabilistic principal component analysis ^{*b*};
- BSRM: Bayesian stochastic relational model ^c, BSRM-1 uses no additional user/movie attributes ^d;
- NREM: Nonparametric random effects model, NREM-1 uses no additional attributes.

^{*a*}Rennie & Srebro (2005).

^bTipping & Bishop (1999).

^cZhu, Yu, & Gong (2009).

^dTop 20 eigenvectors from of binary matrix indicating if a rating is observed or not.

Results on EachMovie

Method	RMSE	Standard Error	Run Time (hours)
User Mean	1.4251	0.0004	
Movie Mean	1.3866	0.0004	
FMMMF	1.1552	0.0008	4.94
PPCA	1.1045	0.0004	1.26
BSRM-1	1.0902	0.0003	1.67
BSRM-2	1.0852	0.0003	1.70
NREM-1	1.0816	0.0003	0.59
NREM-2	1.0758	0.0003	0.59

TABLE: Prediction Error on EachMovie Data

Netflix Data

- 100, 480, 507 ratings from 480, 189 users on 17, 770 movies;
- $\blacksquare Y_{ij} \in \{1, 2, 3, 4, 5\};$
- A set of validation data contain 1, 408, 395 ratings;
- Therefore there are 98.81% of elements missing in the rating matrix;
- The test set includes 2, 817, 131 ratings;

Compared methods

In addition to those compared in EachMovie experiment, there are several other methods:

- SVD: a method almost the same as FMMMF, using a gradient-based method for optimization^a.
- **RBM**: Restricted Boltzmann Machine using contrast divergence ^{*b*}.
- **PMF** and **BPMF**: probabilistic matrix factorization ^{*c*}, and its Bayesian version ^{*d*}.
- PMF-VB: probabilistic matrix factorization using a variational Bayes method for inference^e.

^{*a*}Kurucz, Benczur, & Csalogany, (2007). ^{*b*}Salakhutdinov, Mnih & Hinton (2007). ^{*c*}Salakhutdinov & Mnih (2008b). ^{*d*}Salakhutdinov & Mnih (2008a). ^{*e*}Lim & Teh (2007).

Results on Netflix

TABLE: Performance on Netflix Data

Method	RMSE	Run Time (hours)
Cinematch	0.9514	-
SVD	0.920	300
PMF	0.9265	-
RBM	0.9060	-
PMF-VB	0.9141	-
BPMF	0.8954	1100
BSRM-2	0.8881	350
NREM-1	0.8876	148
NREM-2	0.8853	150

Predictive Uncertainty

Standard deviations of prediction residuals vs. standard deviations predicted by our model on EachMovie

Related work

- Multi-task learning using Gaussian processes, those learn the covariance Σ shared across tasks ^a, and those that additionally consider the covariance Ω between tasks ^b
- Application of GP models to collaborative filtering ^c
- Low-rank matrix factorization, e.g., ^{*d*}. Our model is nonparametric in the sense no rank constraint is imposed.
- Very few matrix factorization methods use known predictors. One such a work ^e introduces low-rank multiplicative random effects in modeling networked observations.

^aLawrence & Platt (2004); Schwaighofer, Tresp & Yu (2004); Yu, Tresp & Schwaighofer (2005).
^bYu, Chu, Yu, Tresp, & Xu, (2007); Bonilla, Chai, & Williams (2008).
^cSchwaighofer, Tresp & Yu (2004), Yu & Chu (2007)
^dSalakhutdinov & Mnih (2008b).
^eHoff (2005)

Summary

- The model provides a novel way to use random effects and known attributes to explain the complex dependence of data;
- We make the nonparametric model scalable and efficient on very large-scale problems;
- Our experiments demonstrate that the algorithm works very well on two challenging collaborative prediction problems;
- In the near future, it will be promising to perform a full Bayesian inference by a parallel Gibbs sampling method.