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Abstract—Gene expression data usually contain a large number of genes,
but a small number of samples. Feature selection for gene expression data
aims at finding a set of genes that best discriminate biological samples of
different types. Using machine learning techniques, traditional gene se-
lection based on empirical mutual information suffers the data sparseness
issue due to the small number of samples. To overcome the sparseness is-
sue, we propose a model-based approach to estimate the entropy of class
variables on the model, instead of on the data themselves. Here, we use
multivariate normal distributions to fit the data, because multivariate nor-
mal distributions have maximum entropy among all real-valued distribu-
tions with specified mean and standard deviation, and are widely used to
approximate various distributions. Given that the data follow a multivari-
ate normal distribution, since the conditional distribution of class variables
given the selected features is normal distribution, its entropy can be com-
puted with the log-determinant of its covariance matrix. Because of the
large number of genes, the computation of all possible log-determinants is
not efficient. We propose several algorithms to largely reduce the compu-
tational cost. The experiments on seven gene datasets and the comparison
with other five approaches show the accuracy of the multivariate Gaussian
generative model for feature selection, and the efficiency of our algorithms.

Keywords— feature selection, multivariate Gaussian generative model,
entropy

I. INTRODUCTION

GENE expression refers to the level of production of protein
molecules defined by a gene. Monitoring of gene expres-

sion is one of the most fundamental approach in genetics and
molecular biology. The standard technique for measuring gene
expression is to measure the mRNA instead of proteins, because
mRNA sequences hybridize with their complementary RNA or
DNA sequences while this property lacks in proteins. The DNA
arrays, pioneered in [Chee et al.1996], [Fodor et al.1991], are
novel technologies that are designed to measure gene expression
of tens of thousands of genes in a single experiment. The ability
of measuring gene expression for a very large number of genes,
covering the entire genome for some small organisms, raises the
issue of characterizing cells in terms of gene expression, that is,
using gene expression to determine the fate and functions of the
cells. The most fundamental of the characterization problem is
that of identifying a set of genes and its expression patterns that
either characterize a certain cell state or predict a certain cell
state in the future [Li et al.2004].

When the expression dataset contains multiple classes, the
problem of classifying samples according to their gene expres-
sion becomes much more challenging, especially when the num-
ber of classes exceeds five [Ooi and Tan2003]. Moreover, the
special characteristics of expression data adds more challenge
to the classification problem. Expression data usually contains a
large number of genes (in thousands) and a small number of ex-
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periments (in dozens). In machine learning terminology, these
datasets are usually of very high dimensions with undersized
samples. In microarray data analysis, many gene selection meth-
ods have been proposed to reduce the data dimensionality [Su
et al.2003].

Gene selection aims to find a set of genes that best discrim-
inate biological samples of different types. The selected genes
are “biomarkers”, and they form “marker panel” for analysis.
Most gene selection schemes are based on binary discrimina-
tion using rank-based schemes [Dudoit et al.2002], such as in-
formation gain, which reduces the entropy of the class variables
given the selected features. One critical issue in these rank-
based methods is data sparseness. For example, the estima-
tion of the traditional information gain is an empirical estima-
tion directly on the data. Suppose we select the eleventh gene
for a dataset. The ten selected genes split the training data into
1024 = 210 groups (assuming each gene does a binary split).
Since we have very few samples in most groups, the estimations
of mutual information between the eleventh gene and the tar-
get in each group are not accurate. Thus the information gain,
which is the sum of the mutual information over all groups, is
not accurate.

To overcome the issue of data sparseness, we propose a
model-based approach to estimate the entropy on the model,
instead of on the data themselves. Here, we use multivariate
Gaussian generative models, which model the data with multi-
variate normal distributions. Multivariate normal distributions
are widely used in various areas, including gene expression
data [Yeung et al.2001], because of their generality and simplic-
ity. The means of variables (expression data of genes and class
labels) and the covariances between them are two basic mea-
sures of variables themselves and the interaction between them.
To predict the classes of data, we have to model the interaction
between genes and class labels. Given the mean and covariance,
multivariate Gaussian is the distribution with the maximum en-
tropy, which implies its generality according to the principle of
maximum entropy [Jaynes1957]. Usually we can explicitly and
efficiently estimate parameters of multivariate Gaussian models
via a few matrix operations, which implies the simplicity of the
models. Though the class variables are binary or categorical, we
relax them as numerical values, which bring us the simplicity.
Our experiments suggest that this approximation in the feature
selection does not affect the classification accuracy.

A nice property of multivariate Gaussian distributions is that
the conditional distribution of a subset of variables given an-
other subset of variables is still multivariate Gaussian distribu-
tion. We can explicitly compute the entropy of class variables
given the selected features with the log-determinant of the co-
variance matrix of the conditional distribution. Therefore, the
objective of minimizing the entropy becomes to find a set of
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features to minimize the log-determinant of the conditional co-
variance matrix. Because of the large number of genes, the com-
putation of all log-determinants of the conditional covariance
matrix is not time consuming. We propose several algorithms to
largely reduce the computational cost.

In summary, our contributions are: (1) We propose a model-
based approach to estimate the entropy based on multivariate
normal distributions. The model-based approach addresses the
data sparseness problem in gene selection; (2) We propose sev-
eral algorithms to efficiently compute all log-determinants of the
conditional covariance matrix and largely reduce the computa-
tional cost. The assumption of multivariate Gaussian genera-
tive models leads to simple, robust and effective computation
methods for gene selection; and (3) We perform extensive ex-
perimental study on seven gene datasets and compare our al-
gorithms with other five approaches. The rest of the paper is
organized as the follows. A brief note on the related work is
given in Section II. The notation used in this paper is listed
in Section III. Our algorithms are presented in Section IV and
the comparison methodologies are described in Section V. We
show the experimental results in Section VI and discuss the idea
of experimental designs and its connection with gene selection
in Section VII. Finally Section VIII concludes.

II. RELATED WORK

Generally two types of feature selection methods have been
studied in the literature: filter methods [Langley1994] and wrap-
per methods [Kohavi and John1997]. Filter-type methods are
essentially data pre-processing or data filtering methods. Fea-
tures are selected based on the intrinsic characteristics which
determine their relevance or discriminative powers with regard
to the target classes. In wrapper-type methods, feature selection
is ”wrapped” around a learning method: the usefulness of a fea-
ture is directly judged by the estimated accuracy of the learning
method. Wrapper methods typically require extensive compu-
tation to search for the best features. As pointed out in [Xing
et al.2001], the essential differences between the two methods
are:
(1) that a wrapper method makes use of the algorithm that will
be used to build the final classifier while a filter method does
not, and
(2) that a wrapper method uses cross validation to compare the
performance of the final classifier and searches for an optimal
subset while a filter method uses simple statistics computed
from the empirical distribution to select attribute subset.
Wrapper methods could perform better but would require much
more computational costs than filter methods. Most gene se-
lection schemes are based on binary discrimination using rank-
based filter methods [Dudoit et al.2002], such as t-statistics
and information gain [Su et al.2003]. One critical issue in
these rank-based methods is data sparseness, and most of the
rank-based methods do not take redundancy into consideration.
In order to remove the redundancy among features, a Min-
Redundancy and Max-Relevance (mRMR) framework is pro-
posed in [Peng et al.2005]. Yu and Liu [Yu et al.2004] also ex-
plored the the relationship between feature relevance and redun-
dancy and proposed a method that can effectively remove redun-
dant genes. In addition, ReliefF, a widely used feature subset se-

lection method, has also been applied to gene selection [Marko
and Igor2003]. In Section V, we will describe several gene se-
lection methods used in our experimental comparisons in detail.

In this paper, we propose a model-based approach to estimate
the information gain, instead of on the data itself. This would
overcome the limitations of data sparseness. In addition, the
model parameters can be explicitly and efficiently estimated via
a few matrix operations.

III. NOTATION

A summary of the notation we use in this paper is shown in
Table I.

K a matrix
KSR the sub-matrix of K, with row

indices S and column indices R
KsR the sub row vector of K, with row

index s and column indices R
Σ(S) the matrix Σ when a feature set S is

selected.
Ip an identity matrix of size p× p
x a column vector
x> the transposition of vector x
1 a vector whose elements are all ones
‖x‖2 the square of the norm of x, i.e., x>x
λ a scalar. regularization parameter.
|D| the cardinality of set D.
D the full index set in Z. |D| = d.
F the index set in Z corresponding

to the features, X. |F | = f .
T the index set in Z corresponding

to the targets, Y. |T | = t.
S the index set of selected features.

TABLE I
A SUMMARY OF NOTATION.

IV. MODEL-BASED FEATURE SELECTION

A. Feature Selection using Entropy Measure

Suppose we have f feature variables of the underlying data,
denoted by {Xi|i ∈ F}, where F is the full feature index set,
having |F | = f . We have the class variable, Y , represented
by multiple class indicator variables. For example, in a three-
class classification problem, the class variables are represented
by vectors (1,−1,−1), (−1, 1,−1) and (−1,−1, 1). The prob-
lem of feature selection is to select a subset features, S ⊂ F , to
accurately predict the target Y , given that the cardinality of S is
m (m < f ). Let us denote {Xi|i ∈ S} by XS , for any set S.

The prediction capability of Y given XS can be measured by
the entropy of Y given XS , which is defined as

H(Y |XS) def= −Ep(Y,XS)(ln p(Y |XS)), (1)
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where Ep(·) is the expectation given the distribution p, and p
stands for the underlying data distribution, i.e. the joint distribu-
tion p(Y,Xs). The feature selection problem using the mutual
information criterion is

arg min
S

H(Y |XS). (2)

Selecting an optimal subset of features is a combinatorial op-
timization problem, which is an NP problem. For the effective
practice is to take a greedy approach, i.e. sequentially selecting
features to achieve a sub-optimal solution. Given a selected fea-
ture set, S, the one-step goal of feature selection is to select one
feature to minimize the entropy. The one-step objective, named
as information gain, is to find i to maximize

IG(i; S) def= H(Y|XS)−H(Y; XS∪{i}).

Then the greedy procedure of feature selection based on mu-
tual information is shown in Algorithm 1.

Algorithm 1 Feature selection by information gain
1: Let S = ∅;
2: repeat
3: i = arg maxi∈F IG(i; S);
4: S ← S ∪ {i};
5: until |S| = m.

The distribution p(Y,XS) can be estimated by the empirical
distribution, i.e. measuring the proportion of Y and XS values
in the given data. The empirical distribution faces data sparse-
ness problem. Thus, we discuss the estimation based on a mul-
tivariate Gaussian generative model in the next section.

B. Multivariate Gaussian Model

We assume that the joint distribution of {Xi} and Y is a mul-
tivariate normal (Gaussian) distribution,

z = [XFY ] ∼ N (·; µ,Σ), (3)

where µ is the mean vector, Σ is the covariance matrix. Let F
be the index set of X in z, and T be the index set of Y in z. The
reason is that Gaussian assumption results a linear model, which
is simple and scalable.

We denote the feature values in the training data by X̃, where
each row represents a sample, and each column represents a fea-
ture (a gene). We consider multiple target variables. For training
data, we denote the target values as Ỹ, where each row repre-
sents target variables of a sample, and each column represents a
target variable.

Given the training data, we can estimate the parameters of
Eq. (3) by

µ̂
def=

1
n

1>[X̃, Ỹ], Σ̂ def=
1
n

Z>Z, (4)

where n is the number of rows of matrix X̃, 1 is a column vector
of size n, whose elements are all ones, and

Z def= [X,Y] def= [X̃, Ỹ]− 1µ̂>. (5)

Though the estimation of Eq. (4) is an unbiased estimation
of the covariance matrix, such estimation may suffer ill-posed
problems. By adding a regularization term, a robust estimation
can be obtained:

Σ̂ =
1
n

(
Z>Z + λId

)
. (6)

This is first proposed in [Stein1975]. Since Eq. (4) is a special
case of Eq. (6), we use Eq. (6) as the estimation of Σ.

After the parameters of the model being estimated, we do not
differentiate the parameters and the estimated parameters. For
simplicity, we write Σ̂ by Σ. Since the computation of the en-
tropy does not involve µ, we let µ = 0 without loss of general-
ity. Let z be a d dimensional vector, following the multivariate
Gaussian distribution N (z; 0,Σ). There are some properties of
multivariate Gaussian distribution.

Property 1: Let zS and zT be two sub-vectors of z, where S
and T are the index sets. We denote the sub-vector of µ cor-
responding to an index set S by µS , and the sub-matrix of Σ
corresponding to index sets S and T by ΣST . We have

Pr(zT |zS) def= N (zT ; µT |S ,ΣT |S),

where

µT |S
def= µT + ΣTSΣ−1

SS(zS − µS), (7)

ΣT |S
def= ΣTT −ΣTSΣ−1

SSΣST . (8)
This is the property of conditional distribution [Petersen and
Pedersen2006].

Then, the property of the incremental updates on
Property 2: Let D be the full index set of z, S ⊂ F , i ∈

F − S. We have

ΣT |S∪{i} = Σ(S)
TT −

1

Σ(S)
ii

Σ(S)
Ti Σ(S)

iT , (9)

where
Σ(S) def= Σ−ΣDSΣ−1

SSΣSD. (10)
Proof: Let T ′ = T ∪ {i}. By Property 1, Pr(zT ′ |zS) fol-

lows Gaussian distribution with covariance ΣT ′|S (see the def-
inition in Eq. (8)). By the definition of Σ(S), ΣT ′|S is the sub-
matrix of Σ(S), whose column and row indices are T ′. Since
Pr(zT |zS∪{i}) = Pr(zT |z{i}, zS), applying Property 1 again,
we obtain

ΣT |S∪{i} = Σ(S)
TT −Σ(S)

Ti [Σ(S)
ii ]−1Σ(S)

iT .

As Σ(S)
ii is a scalar, we have the Eq. (9).

The differential entropy of the multivariate normal distribu-
tion can be computed by the following Property.

Property 3:

H(z) = −
∫
N (z; µ,Σ) lnN (z; µ,Σ)dz

=
1

2
ln |Σ|+ d

2
ln(2πe).

This can be found in [Petersen and Pedersen2006].
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Property 4:

H(Y |XS) =
1

2
ln
∣∣ΣT |S

∣∣+ d

2
ln(2πe), (11)

where T be its set of indices for Y in z.
By Property 1 and Property 3, we have the property of the con-
ditional multivariate normal distribution.

C. Feature Selection Algorithms

Now we propose two sets of feature selection algorithms
based on multivariate Gaussian model and entropy measure.

C.1 D-optimality Feature Selection

In the multivariate Gaussian model, the problem of feature
selection Eq. (2) becomes

arg min
S

ln
∣∣ΣT |S

∣∣ . (12)

As the determinant of the covariance matrix is known as gen-
eralized variance. This criterion is to minimize the gen-
eralized variance of the joint distribution of targets. We
name the feature selection based on the determinant criterion
(Eq. (12)) as D-optimality Feature Selection after determinant.
We borrow the name of D-optimality from experimental de-
signs[Fedorov1972].

As solving Eq. (12) is still an NP-problem, we use the greedy
approach as Algorithm 1. Let Σ(S) = K + λId. By Eq. (9), we
have

ln
∣∣ΣT |S∪{i}

∣∣ = ln

∣∣∣∣∣Σ(S)
TT −

1

Σ(S)
ii

(Σ(S)
Ti Σ(S)

iT )

∣∣∣∣∣
= ln

∣∣∣∣KTT + λIt −
1

Kii + λ
(KTiKiT )

∣∣∣∣
= ln |KTT + λIt|+ ln(1− KiT (KTT + λIt)−1KTi

Kii + λ
),

(13)

where t = |T |. Therefore

arg min
i

ln
∣∣ΣT |S∪{i}

∣∣
= arg max

i

KiT (KTT + λIt)−1KTi

Kii + λ

(14)

We can compute Σ(S∪{i}) from Σ(S) by Eq. (10).

Σ(S∪{i}) = Σ(S) − 1

Σ(S)
ii

(Σ(S)
Di Σ

(S)
iD )

= K + λId −
1

Kii + λ
(KDiKiD + λδiKiD

+ λKDiδ
>
i + λ2δiδ

>
i ),

(15)

where δi is a column vector whose elements are zeros ex-
cept that the i-th element is one. Since we shall not select a
feature twice, we shall not concern the values in the i-th row
or column in K any more. Therefore we can update K by
K − 1

Kii+λ
(KDiKiD). By sequentially updating K, we have

Algorithm 2. Note that since we only compare the value for
features, we can drop the scale factor 1

n in Eq. (6) for simplic-
ity. The complexity of Algorithm 2 is O(m(d2 + dt2)), where
d = |D| and t = |T |.

Since the complexity of the algorithm containsmd2, the algo-
rithm is very inefficient when d is large. Especially, the memory
complexity is O(d2). When the sample size n is much smaller
than d, we can take advantage of it to speed up the algorithm.
Assume that K has the form of Z>ΦZ. Note that Φ is sym-
metric since K is symmetric. Initially, Φ = In in Step 2 of
Algorithm 2.

Algorithm 2 D-optimality Feature Selection-I
1: S = ∅;
2: K = Z>Z;
3: repeat
4: Let U = (KTT + λIt)−1;

5: i = arg max
i∈F−S

KiTUKTi

Kii + λ
;

6: K← K− 1
Kii + λ

(KDiKiD);

7: S ← S ∪ {i};
8: until |S| = m.

Let us denote the i-th column vector of X as xi. The update
of K can be written as

K− 1
Kii + λ

(KDiKiD)

= Z>ΦZ− 1
x>i Φxi + λ

(Z>Φxix>i ΦZ).
(16)

Therefore, we derive the update for Φ in Algorithm 3. The com-
plexity of the algorithm is O(m(dn2 + nt2 + t3)).

Algorithm 3 D-optimality Feature Selection-II
1: S = ∅;
2: Φ = In;
3: repeat
4: Let Ω = ΦY(Y>ΦY + λIt)−1Y>Φ;

5: i = arg max
i∈F−S

x>i Ωxi
x>i Φxi + λ

;

6: Φ← Φ− 1
x>i Φxi + λ

(Φxix>i Φ);

7: S ← S ∪ {i};
8: until |S| = m.
N.B. xi is the i-th column of centered feature matrix X.

When t < n, we can reduce the complexity by sequentially
compute ΦX def= P. We have Algorithm 4, whose complexity
is O(mdnt). Note that Phi and P in Algorithm 3 and Algo-
rithm 4 are used to save the intermediate results in the matrix
computation to reduce the computation complexity.

C.2 A-optimality Feature Selection

Because of the complexity in computing determinants and
non-convexity of log-determinants, we can replace the log-
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Algorithm 4 D-optimality Feature Selection-III
1: S = ∅;
2: Φ = In;
3: P = X;
4: repeat
5: Let R = Y((Y>ΦY + λIt)−1Y>P);

6: i = arg max
i∈F−S

r>i pi
x>i pi + λ

;

7: Φ← Φ− 1
x>i pi + λ

(pip
>
i );

8: P← P− 1
x>i pi + λ

(pi(p
>
i X));

9: S ← S ∪ {i};
10: until |S| = m.
N.B. xi is the i-th column of centered feature matrix X. pi is
the i-th column of P, ri the i-th column of R.

determinant of the covariance matrix with the trace of the covari-
ance matrix, which is the upper-bound of the log-determinant of
the covariance matrix.

Lemma 1: If X is a p × p positive definite matrices, it holds
that ln |X| ≤ tr (X) − p. The equality holds when X is an
orthonormal matrix.

Proof: Let {λ1, · · · , λp} be the eigenvalues of X. We
have ln |X| =

∑
i lnλi and tr (X) =

∑
i λi. Since lnλi ≤

λi− 1, we have the inequality. The equality holds when λi = 1.
Therefore, when X is an orthonormal matrix (especially X =
Ip), the equality holds.

As ln
∣∣ΣT |S

∣∣ ≤ tr
(
ΣT|S

)
− t, the problem feature selection

(12) can be approximated by

arg min
S

tr
(
ΣT|S

)
= arg max

S
tr
(
ΣTSΣ−1

SS ΣST

)
. (17)

Since the trace of the covariance divided by the number of vari-
ables is the average covariance, Eq. (17) is called A-optimality
feature selection. We also borrow the name of A-optimality
from experimental designs, which is an alternative of the D-
optimality criterion[Fedorov1972].

To sequentially solve Eq. (17), we have Algorithm 5. The al-
gorithm is similar to the sequential algorithm in [Yu et al.2006],
which is to solve transductive active learning problems. The
complexity of Algorithm 5 is O(md2).

Algorithm 5 A-optimality Feature Selection-I
1: S = ∅;
2: K = Z>Z + λId;
3: repeat

4: i = arg max
i∈F−S

KiTKTi

Kii + λ
;

5: K← K− 1
Kii+λ

(ΣDiKiD);
6: S ← S ∪ {i};
7: until |S| = m.

When n � d, we can use a similar method as Algorithm 3
to speed up Algorithm 5. We can obtain Algorithm 5 by letting

U = It in Algorithm 2. Then we can use

Ω = ΦYY>Φ

in Step 4 of Algorithm 3 to obtain Algorithm 6. The complexity
of Algorithm 6 is O(mdn2).

Algorithm 6 A-optimality Feature Selection-II
1: S = ∅;
2: Φ = In;
3: repeat
4: Let Ω = ΦYY>Φ;

5: i = arg max
i∈F−S

x>i Ωxi
x>i Φxi + λ

;

6: Φ← Φ− 1
x>i Φxi + λ

(Φxix>i Φ);

7: S ← S ∪ {i};
8: until |S| = m.
N.B. xi is the i-th column of centered feature matrix X.

We can also sequentially compute ΦX def= P as shown in
Algorithm 7, whose time complexity is O(mdn+ dnt).

Algorithm 7 A-optimality Feature Selection-III
1: S = ∅;
2: P = X;
3: R = Y(Y>P);
4: repeat

5: i = arg max
i∈F−S

r>i pi
x>i pi + λ

;

6: R← R− 1
x>i pi + λ

(ri(p>i X));

7: P← P− 1
x>i pi + λ

(pi(p
>
i X));

8: S ← S ∪ {i};
9: until |S| = m.
N.B. xi is the i-th column of centered feature matrix X. pi is
the i-th column of P, ri the i-th column of R.

Table II shows the summary of the complexity of the above
algorithms. In the gene expression data, which contain a large
number of genes, but a small number of samples, the D-opt III
and A-opt III are the good choice for computational efficiency.

Algorithm Time Space
D-opt I O(m(d2 + dt2)) O(d2)
D-opt II O(m(dn2 + nt2 + t3)) O(n2 + d)
D-opt III O(mdnt) O(n2 + nd)
A-opt I O(m(d2 + dt2)) O(d2)
A-opt II O(mdn2) O(n2 + d)
A-opt III O(mdn+ dnt) O(nd)

TABLE II
THE COMPLEXITY OF ALGORITHMS. THE SPACE COMPLEXITY MEASURES

THE EXTRA REQUIRED SPACE BESIDES DATA.
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V. METHODS USED FOR COMPARISON

In this section, we describe several feature selection methods
used in our experimental comparisons.

A. Rankgene

We use the following feature selection methods provided in
the program Rankgene [Su et al.2003]: information gain, two-
ing rule, and sum minority. These methods have been widely
used either in machine learning (information gain) or in statis-
tical learning theory (twoing rule and sum minority). All these
methods measure the effectiveness of a feature by evaluating the
strength of class prediction when the prediction is made by split-
ting it into two regions, the high region and the low region, by
considering all possible split points.

B. Max-Relevance

The Max-Relevance method selects a set of genes with the
highest relevance to the target class [Peng et al.2005]. Given gi
which represents the gene i, and the class label c, their mutual
information is defined in terms of their frequencies of appear-
ances p(gi), p(c), and p(gi, c) as follows.

I(gi, c) =
∫∫

p(gi, c) ln
p(gi, c)
p(gi)p(c)

dgidc (18)

The Max-Relevance method selects the top m genes in the de-
scent order of I(gi, c), i.e. the best m individual features corre-
lated to the class labels.

C. mRMR

Although we can choose the top individual genes using
Max-Relevance algorithm, it has been recognized that ”the m
best features are not the best m features” since the correla-
tions among those top features may also be high [Cover1974].
In order to remove the redundancy among features, a Min-
Redundancy and Max-Relevance (mRMR) framework is pro-
posed in [Peng et al.2005]. In mRMR, the mutual information
between each pair of genes is taken into consideration. Suppose
set G represents the set of genes and we already have Sm−1, the
feature set with m-1 genes, then the task is to select the m-th
feature from the set {G− Sm−1}. In the following formula, we
see that minimizing the redundancy and maximizing the rele-
vance can be achieved concordantly [Peng et al.2005]. Methods
proposed in [Yu et al.2004] shares the similar idea with mRMR.

max
gj∈G−Sm−1

[I(gi; c)−
1

m− 1

∑
gi∈Gm−1

I(gj ; gi)] (19)

D. ReliefF

ReliefF is a simple yet efficient procedure to estimate the
quality of attributes in problems with strong dependencies be-
tween attributes [Marko and Igor2003]. In practice, ReliefF is
usually applied as a feature subset selection method.

The key idea of the ReliefF is to estimate the quality of genes
according to how well their values distinguish between instances
that are near to each other. Given a randomly selected instance

Insm from class L, ReliefF searches for K of its nearest neigh-
bors from the same class called nearest hits H , and also K near-
est neighbors from each of the different classes, called nearest
misses M . It then updates the quality estimation Wi for gene i
based on their values for Insm, H , M . If instance Insm and
those in H have different values on gene i, then the quality es-
timation Wi is decreased. On the other hand, if instance Insm
and those in M have different values on the the gene i, then Wi

is increased. The whole process is repeated n times which is set
by users. The equation below can be used to update Wi.

Wi = Wi −

K∑
k=1

DH

n ·K
+
C−1∑
c=1

Pc ·

K∑
k=1

DMc

n ·K
(20)

where nc is the number of instances in class c, DH (or DMc ) is
the sum of distance between the selected instance and each H
(or Mc), Pc is the prior probability of class c. Detailed discus-
sions on ReliefF can be found i [Marko and Igor2003].

E. D-opt and A-opt Methods

Consider the large number of features (genes) and the rel-
ative small number of samples, we use Algorithm 4 for the D-
optimality feature selection (denoted byD-opt) and Algorithm 7
for the A-optimality feature selection (denoted by A-opt). The
mean of each data set is removed as Eq. (5). Note that the stan-
dardization is a way of increasing the degree of normality for
the gene expression data [Yeung et al.2001]. The regularization
parameter, λ, is set to 0.5 in our experiments.

VI. EXPERIMENTS

We conduct three sets of experiments using seven datasets
as described in Section VI-A. In the first set of experiments,
we compare the classification accuracy of data with gene selec-
tion and without gene selection using Support Vector Machine
(SVM) classifiers implemented in the LIBSVM package [Chang
and Lin2001]. The second set of experiments provides a com-
prehensive study on the performance of different gene selection
methods under different conditions. In the third set of experi-
ments, we discuss the number of selected genes.

A. Datasets Description

The datasets and their characteristics are summarized in Ta-
ble III.

The ALL dataset [Yeoh et al.2002] is a dataset that covers
six subtypes of acute lymphoblastic leukemia: BCR (15), E2A
(27), Hyperdip (64), MLL (20), T (43), and TEL (79). Here the
numbers in the parentheses are the numbers of samples. The
dataset is available at [ALL]. The GCM dataset [Ramaswamy
et al.2001] consists of 198 human tumor samples of fifteen
types. The HBC dataset consists of 22 hereditary breast can-
cer samples and was first studied in [Hedenfalk et al.2001]. The
dataset has three classes and can be downloaded at [HBC]. The
Lymphoma dataset is a dataset of the three most prevalent adult
lymphoid malignancies and available at [LYM] and it was first
studied in [Alizadeh et al.2000]. The MLL-leukemia dataset
consists of three classes and can be downloaded at [MLL]. The
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NCI60 dataset was first studied in [Ross et al.2000]. cDNA mi-
croarrays were used to examine the variation in gene expression
among the 60 cell lines from the National Center Institute’s an-
ticancer drug screen. The dataset spans nine classes and can
be downloaded at [NCI60]. SRBCT [Khan et al.2001] is the
dataset of small, round blue cell tumors of childhood and can be
downloaded at [SRBCT].

Dataset # Samples # Genes # Classes

ALL 248 12558 6
GCM 198 16063 14
HBC 22 3226 3

Lymphoma 62 4026 3
MLL 72 12582 3

NCI60 60 1123 9
SRBCT 83 2308 4

TABLE III
THE DATASET DESCRIPTION.

B. Effectiveness of Gene Selection

Table IV presents the accuracy values of applying SVM on
the top 30 genes selected by different methods and also on all
the genes without selection. The accuracy values are obtained
via 10-fold cross validation. The table shows that gene selec-
tion improves classification performance, at least the accuracy
of SVM on genes selected by both the D-opt and A-opt meth-
ods outperform that without feature selection. We will discuss
the number of selected genes in Section VI-D.

C. Performance of Different Gene Selection Methods

In this section, we present a comparative study of various
gene selection methods using SVM and Naive Bayes algo-
rithms on the seven datasets. Both SVM and Naive Bayes have
been widely used in previous studies(e.g., [Li et al.2004], [Peng
et al.2005]). Figure 1 and 2 show the classification accuracy re-
sults as a function of the number of selected genes on the seven
datasets, respectively. From the comparative study, we observe
that:
• Gene selection by experimental design (D-opt and A-opt)
outperforms other gene selection methods such as information
gain, etc. It largely owes to the generality of the multivariate
Gaussian generative model. In addition, our methods estimate
the information gain based on models, instead of on the data
itself. This overcomes the limitations of data sparseness and
provides more robust and accurate estimations.
• The results of the A-opt method are similar to those of the D-
opt method. Besides the simplicity of A-opt, the A-opt method
outperforms the D-opt method in most cases. There are some
discussion of comparing A-optimality and D-optimality in the
literature experimental designs [Fedorov1972].
• Gene selection by D-opt and A-opt implicitly selects the fea-
tures with the minimum redundancy. In Step 6 of Algorithm 2
and Step 5 of Algorithm 5, the covariance matrices are updated,
which remove the second-order redundancy. We can find similar
actions in other algorithms as well.

D. Number of Selected Genes

From the above experiment, it can be observed that when the
number of selected genes is greater than 30, the variation of the
performance is small. In Step 6 of Algorithm 4, we select genes
to reduce the generalized variance. In Step 5 of Algorithm 7, we
select genes to reduce the total variance. Figure 3, 4 and 5 show
the variance reduction as the function of the number of genes on
the seven datasets, respectively. The number of selected genes
is varied from 1 to 50, and the results show the change of clas-
sification accuracy.
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(a)A-opt: GCM dataset
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(d)D-opt: ALL dataset

Fig. 3. Variance Reduction on datasets (I).

The experiment results demonstrate that only a small number
of genes are needed for classification purpose. In our experi-
ments, we observe that when the number of selected genes is
greater than 30, the variation of the classification performance
is small. We find that the cumulative reduction in generalized
variance or total variance converges after 30 steps.

E. Other Discussion

This set of experiments aims to study the choice of the regu-
larization parameter λ in our proposed A-opt and D-opt meth-
ods. We set the number of selected gene to be 30, and change λ
from 0.1 to 0.9. Figure 6 shows that the accuracy is not sensi-
tive to the regularization parameter. Note that on LYM and HBC
datasets, the accuracies of both methods are 100% under differ-
ent regularization parameters. In our experiments, we choose
0.5 as λ.

VII. DISCUSSIONS

Though we are studying the feature selection problem in this
paper, the idea largely owes to that of experimental designs.

In the statistics literature, the experimental designs can be
backtracked to the ideas presented in [Kiefer1959]. The goal of
experimental designs is usually to extract the maximum amount
of information from as few observations as possible. For ex-
perimental designs, several criteria can be used, such as D-
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SRBCT NCI60 Lymphoma GCM HBC ALL MLL
No Gene Selection 85.22% 63.33% 95.16% 51.52% 77.27% 91.94% 97.22%

mRMR 81.82% 53.33% 100.0% N/A 95.45% N/A N/A
Maxrel 84.09% 51.67% 100.0% 60.61% 72.73% 89.11% 77.78%
ReliefF 89.77% 58.33% 100.0% 55.25% 95.45% 96.37% 94.44%

Information Gain 89.77% 61.67% 98.39% 46.97% 100.0% 97.58% 98.67%
Sum Minority 78.41% 65.00% 98.39% 55.05% 95.45% 93.95% 90.28%
Twoing Rule 84.09% 61.67% 98.39% 45.96% 90.91% 96.77% 97.22%

A-opt (Alg. 7) 94.32% 88.33% 100.0% 75.25% 100.0% 99.19% 100.0%
D-opt (Alg. 4) 90.91% 80.00% 100.0% 73.23% 100.0% 100.0% 100.0%

TABLE IV
COMPARATIVE ACCURACY OF DIFFERENT SELECTION METHODS ON 7 DATA SETS (GENE NUMBER = 30). BECAUSE OF LIMITATION OF MEMORY, MRMR

CAN NOT RUN ON GCM, ALL AND MLL.

(a)Results of Naive Bayes: GCM dataset (b)Results of SVM: GCM dataset

(c)Results of Naive Bayes: ALL dataset (d)Results of SVM: ALL dataset

(e)Results of Naive Bayes: HBC dataset (f)Results of SVM: HBC dataset

Fig. 1. Comparison of Various Gene Selection Methods (I).
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(a)Results of Naive Bayes: Lymphoma dataset (b)Results of SVM: Lymphoma dataset

(c)Results of Naive Bayes: MLL dataset (d)Results of SVM: MLL dataset

(e)Results of Naive Bayes: NCI60 dataset (f)Results of SVM: NCI60 dataset

(g)Results of Naive Bayes: SRBCT dataset (h)Results of SVM: SRBCT dataset

Fig. 2. Comparison of Various Gene Selection Methods (II).

optimality and A-optimality [Fedorov1972]. They all concern
about reducing the uncertainties of estimated parameters. The

criterion of theD-optimality is minimizing the generalized vari-
ance of joint distribution of parameters, i.e. the determinant of
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(f)D-opt: MLL dataset

Fig. 4. Variance Reduction on datasets (II).

the multivariate variance, which gives its name. The criterion
of the A-optimality is minimizing the average variance of all
parameters.

As concentrating on the predictive variance of a target set of
data, Yu et al [Yu et al.2006] propose transductive experimen-
tal designs for least-squares linear (or kernel) regression. The
idea is to add samples to training set in order to improve the
numerical stability of predictions on the target test data, mea-
sured by the inversion of the Fisher information matrix. It has
been shown that the predictive stability only depends on the lo-
cations of the selected training data, while does not depend on
their label values, which leads to a very simple active learning
approach[Yu et al.2006].

Though there is a big difference between experimental de-
signs and feature selection at the first glance, we find a duality
property between them.

Let us consider the problem of predicting target Y given a
row of feature random vector X . We assume that the model is a
linear model,

Y = X>w + ε, (21)

where w is the weight vector and ε is the error. The reason
of using linear models is because linear models are simple and
scalable.

Given the training data y and X, where y is the column target
vector and X is the feature matrix, each row of X is a feature
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(a)A-opt: NCI60 dataset
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(b)D-opt: NCI60 dataset
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(c)A-opt: SRBCT dataset
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(d)D-opt: SRBCT dataset

Fig. 5. Variance Reduction on datasets (III).

vector. We can write Eq. (21) in matrix format as

y = Xw + ε,

where ε is the error vector.
We further assume the loss function is a square loss, therefore

we want to minimize 1
2ε>ε. Meanwhile, we prefer a robust es-

timation of w, i.e., a regularization term, λ2 w>w. Combining
them, the estimation problem becomes

arg min
w

1

2
(y −Xw)>(y −Xw) +

λ

2
w>w. (22)

The problem (22) can be explicitly solved as

ŵ = (X>X + λI)−1X>y. (23)

This is also known as ridge regression.
Given a feature vector x, the estimation of y is

ŷ = x>(X>X + λI)−1X>y. (24)

On the other hand, we can estimate y by the multivariate
Gaussian model. For simplicity, we assume that µ = 0. By
Eq. (7), we know

ŷ = µT |F = ΣTF (ΣFF )−1x

= y>X(X>X + λI)−1x,

which is equal to Eq. (24) as long as we have the same λ.
This shows the duality between the target label and the fea-

ture. This property motivate us to treat the feature selection as a
dual problem of selecting data samples to label in active learning
or experimental designs. Then we can apply experimental de-
sign approaches, more precisely transductive experimental de-
sign [Yu et al.2006], onto the feature selection problem.
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(d)GCM dataset
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Fig. 6. Different regularization parameters on 7 datasets.

VIII. CONCLUSIONS

In this paper, we suggest multivariate Gaussian generative
models for feature (gene) selection because multivariate normal
(Gaussian) distributions are maximum entropy probability dis-
tribution. Using the model based entropy estimation, we avoid
the data sparseness problem which commonly happens in the
empirical information gain approach.

Using the properties of multivariate normal distributions, we
derive the feature selection methods based on the D-optimality
criterion and its approximation, A-optimality criterion.

To efficiently select genes from gene expression data, where
the numbers of features are large and the numbers of samples are
relatively small, we propose several simple algorithms (a few
lines of code). Among them, Algorithm 4 and Algorithm 7 are
most suitable for gene expression data. The time complexity of
the proposed algorithms is linear to the product of the number of
genes and the number of samples for each iteration of selection.

The experiments on seven gene datasets and the comparison

with other five approaches show the accuracy and efficiency of
our approach.
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